
Online Identification and Tracking of Subspaces from Highly

Incomplete Information

Laura Balzano], Robert Nowak] and Benjamin Recht†

] Department of Electrical and Computer Engineering.
University of Wisconsin-Madison

† Department of Computer Sciences. University of Wisconsin-Madison

June 20, 2010

Abstract

This work presents GROUSE (Grassmanian Rank-One Update Subspace Estimation), an
efficient online algorithm for tracking subspaces from highly incomplete observations. GROUSE
requires only basic linear algebraic manipulations at each iteration, and each subspace update
can be performed in linear time in the dimension of the subspace. The algorithm is derived
by analyzing incremental gradient descent on the Grassmannian manifold of subspaces. With
a slight modification, GROUSE can also be used as an online incremental algorithm for the
matrix completion problem of imputing missing entries of a low-rank matrix. GROUSE performs
exceptionally well in practice both in tracking subspaces and as an online algorithm for matrix
completion.

1 Introduction

The evolution of high-dimensional dynamical systems can often be well summarized or approxi-
mated in low-dimensional subspaces. Certain patterns of computer network traffic including origin-
destination flows can be well represented by a subspace model [13]. Environmental monitoring of
soil and crop conditions [10], water contamination [15], and seismological actitiy [18] have all been
demonstrated to be efficiently summarized by very low-dimensional subspace representations.

The subspace methods employed in the aforementioned references are based upon first collecting
full-dimensional data from the systems and then using approximation techniques to identify an
accurate low-dimensional representation. However, it is often difficult or even infeasible to acquire
and process full-dimensional measurements. For example, collecting network traffic measurements
at a very large number of points and fine time-scales is impractical. An alternative is to randomly
subsample the full-dimensional data. If the complete full-dimensional data is well-approximated
by a lower dimensional subspace, and hence is in some sense redundant, then it is conceivable that
the subsampled data may provide sufficient information for the recovery of that subspace. This is
the central intuition of our proposed on-line algorithm for identifying and tracking low-dimensional
subspaces from highly incomplete (i.e., undersampled) data. Such an algorithm could enable rapid
detection of traffic spikes or intrusions in computer networks [13] or could provide large efficiency
gains in managing energy consumption in a large office building [8].

1



In this paper, we present GROUSE (Grassmanian Rank-One Update Subspace Estimation), a
subspace identification and tracking algorithm that builds high quality estimates from very sparsely
sampled vectors. GROUSE implements an incremental gradient procedure with computational
complexity linear in dimensions of the problem, and is scalable to very high-dimensional appli-
cations. An additional feature of GROUSE is that it can be immediately adapted to an ‘online’
version of the matrix completion problem, where one aims to recover a low-rank matrix from a
small, streaming random subsets of its entries. GROUSE is not only remarkably efficient for online
matrix completion, but additionally enables incremental updates as columns are added or entries
are incremented over time. These features are particularly attractive for maintaining databases of
user preferences and collaborative filtering.

2 Problem Set-up

We aim to track an d-dimensional subspace of Rn that evolves over time, denoted by S[t]. At every
time t, we observe a vector vt ∈ S[t] at locations Ωt ⊂ {1, . . . n}. Let PΩt denote the |Ωt|×n matrix
that selects the coordinate axes of Rn indexed by Ωt. That is, we observe PΩtvt, t = 1, 2, . . . .
We will measure the error of our subspace using the natural cost function: the squared Euclidean
distance from our current subspace estimate Sest[t] to the observed vector vt only on the coordinates
revealed in the set in Ωt:

F (Sest[t], t) := dist(PΩt(Sest[t]),PΩt(vt))
2 (1)

We can compute F (S; t) explicitly for any subspace S. Let U be any matrix whose columns span
S. Let UΩt denote the submatrix of U consisting of the rows indexed by Ωt. For a vector v ∈ Rn,
let vΩt = PΩt(vt) denote a vector in R|Ωt| whose entries are indexed by Ωt. Then we have

F (S; t) = min
a
‖UΩta− vΩt‖2 (2)

We will use this definition in Section 3 to derive our algorithm. If the matrix UTΩt
UΩt has full rank,

then we must have that w = (UTΩt
UΩt)−1UTΩt

vΩt achieves the minimum in (2). Thus,

F (S; t) = vTΩt
(I − UΩt(U

T
Ωt
UΩt)

−1UTΩt
)vΩt . (3)

In the special case where the subspace is time-invariant, that is S[t] = S0 for some fixed subspace
S0, then it is natural to consider the average cost function

F̄ (S) :=
T∑
t=1

dist(PΩt(S),PΩt(vt))
2 . (4)

The average cost function will allow us to estimate the steady-state behavior of our algorithm.
Indeed, in the static case, our algorithm will be guaranteed to converge to a stationary point of
F̄ (S).

2.1 Relation to Matrix Completion

In the scenario where the subspace does not evolve over time and we only observe vectors on a
finite time horizon, then the cost function (4) is identical to the matrix completion optimization

2



problem studied in [11, 6]. To see the equivalence, let Ω = {(k, t) : k ∈ Ωt 1 ≤ t ≤ T , and let
V = [v1, . . . , vT ]. Then

F̄ (S) =
T∑
t=1

min
a
‖UΩta− vΩt‖2 = min

A∈Rd×T

∑
(i,j)∈Ω

(UA− V )2
ij (5)

That is, the global optimization problem can be written as minU,A
∑

(i,j)∈Ω(UA − V )2
ij , which is

precisely the starting point for the algorithms and analyses in [11, 6]. The authors in [11] use a
gradient descent algorithm to jointly minimize both U and A while [6] minimizes this cost function
by first solving for A and then taking a gradient step with respect to U . In the present work, we
consider optimizing this cost function one column at a time. We show that by using our online
algorithm, where each measurement vt corresponds to a random column of the matrix V , we achieve
state-of-the-art performance on matrix completion problems.

3 Stochastic Gradient Descent on the Grassmannian

The set of all subspaces of Rn of dimension d is denoted G(n, d) and is called the Grassmannian. The
Grassmannian is a compact Riemannian manifold, and its geodesics can be explicitly computed [7].
An element S ∈ G(n, d) can be represented by any n × d matrix U whose columns form an
orthonormal basis for S. Our algorithm derives from an application of incremental gradient descent
on the Grassmannian manifold. We first compute a gradient of the cost function F , and then follow
this gradient along a short geodesic curve in the Grassmannian.

We follow the program developed in [7]. To compute the gradient of F on the Grassmannian
manifold, we first need to compute the partial derivatives of F with respect to the components of
U . For a generic subspace, the matrix UTΩt

UΩt has full rank provided that |Ωt| > r, and hence the
cost function (2) is differentiable almost everywhere. Let ∆Ωt be the n× n diagonal matrix which
has 1 in the jth diagonal entry if j ∈ Ωt and has 0 otherwise. We can rewrite

F (S; t) = min
a
‖∆Ωt(Ua− vt)‖2 (6)

from which it follows that the derivative of F with respect to the elements of U is

dF

dU
= −2(∆Ωt(vt − Uw))wT (7)

= −2rwT (8)

where r := ∆Ωt(vt − Uw) denotes the (zero padded) residual vector and w is the least-squares
solution in (2).

Using Equation (2.70) in [7], we can calculate the gradient on the Grassmannian from this
partial derivative

∇F = (I − UUT )
dF

dU
= −2(I − UUT )rwT = −2rwT . (9)

The final equality follows because the residual vector r is orthogonal to all of the columns of U .
This can be verified from the definitions of r and w.

3



A gradient step along the geodesic with tangent vector −∇F is given by Equation (2.65) in [7],
and is a function of the singular values and vectors of ∇F . It is trivial to compute the singular
value decomposition of ∇F , as it is rank one. The sole non-zero singular value is σ = 2||r||||w||
and the corresponding left and right singular vectors are r

‖r‖ and w
‖w‖ respectively. Let x2, . . . xr be

an orthonormal set orthogonal to r and y2, . . . , yr be an orthonormal set orthogonal to w. Then

−2rwT =
[
− r
‖r‖ x2 . . . xr

]
diag(σ, 0, . . . , 0)

[
w
‖w‖ y2 . . . yr

]T
(10)

forms an SVD for the gradient. Now using (2.65) from [7], we find that for η > 0, a step of length
η in the direction ∇F is given by

U(η) = U +
(cos(ση)− 1)
‖w‖2

UwwT + sin(ση)
r

‖r‖
wT

‖w‖
(11)

= U +
(

sin(ση)
r

‖r‖
+ (cos(ση)− 1)

p

‖p‖

)
wT

‖w‖
(12)

where p := Uw, the predicted value of the projection of the vector v onto S.
This geodesic update rule is remarkable for a number of reasons. First of all, it consists only

of a rank-one modification of the current subspace basis U . Second, the term sin(ση)
‖r‖‖w‖ = sin(ση)

σ is
on the order of η when ση is small. That is, for small values of σ and η this expression looks
like a normal step along the gradient direction −2rwT given by (8). From the Taylor series of the
cosine, we see that the second term is approximately equal to σ2η2 pwT

‖p‖‖w‖ . That is, this term serves
as a second order correction to keep the iterates on the Grassmannian. Surprisingly, this simple
additive term maintains the orthogonality, obviating the need for orthogonalizing the columns of U
after a gradient step. Below, we will also discuss how this iterate relates to more familiar iterative
algorithms from linear algebra which use full information.

The GROUSE algorithm simply follows geodesics along the gradients of F with a prescribed set
of step-sizes η. The full computation is summarized in Algorithm 1. Our derivations have shown
that computing a gradient step only requires the solution of the least squares problem (2), the
computation of p and r, and then a rank one update to the previous subspace.

Each step of GROUSE can be performed efficiently with standard linear algebra packages.
Computing the weights in Step 2 of Algorithm 1 requires solving a least squares problem in |Ωt|
equations and d unknowns. Such a system is solvable in at most O(|Ωt|d2) flops in the worst case.
Predicting the component of v that lies in the current subspace requires a matrix vector multiply
that can be computed in O(nd) flops. Computing the residual then only requires O(|Ωt|) flops, as
we will always have zeros in the entries indexed by the complement of Ωt. Computing the norms of
r and p can be done in O(n) flops. The final subspace update consists of adding a rank one matrix
to an nr matrix and can be computed in O(nd) flops. Totaling all of these computation times gives
an overall complexity estimate of O(nd+ |Ωt|d2) flops per subspace update.

3.1 Step-sizes

In the static case where the subspace S[t] = S0 for all t, we can guarantee that the algorithm
converges to a stationary point of (4) as long as the stepsizes ηt satisfy

lim
k→∞

ηt = 0 and
∞∑
k=1

ηt =∞ (13)

4



Algorithm 1 Grassmannian Rank-One Update Subspace Estimation
Require: An n × d orthogonal matrix U0. A sequence of vectors vt, each observed in entries Ωt.

A set of stepsizes ηt.
1: for t = 1, . . . , T do
2: Estimate weights: w = arg mina ‖∆Ωt(Uta− vt)‖2
3: Predict full vector: p = Utw
4: Compute residual: r = ∆Ωt(vt − p)
5: Update subpace: Ut+1 = Ut +

(
(cos(σηt)− 1) p

‖p‖ + sin(σηt) r
‖r‖

)
wT

‖w‖
where σ = ‖r‖‖p‖

6: end for

Selecting ηt ∝ 1/t will satisfy this assumption. This analysis appeals to the classical ODE
method [12], and we are guaranteed such convergence because G(n, d) is compact.

In the case that S[t] is changing over time, a constant stepsize is needed to continually adapt
to the changing subspace. Of course, if a non-vanishing stepsize is used then the error will not
converge to zero, even in the static case. This leads to the common tradeoff between tracking rate
and steady-state error in adaptive filtering problems. We explore this tradeoff in Section 4.

3.2 Comparison to methods that use full information

GROUSE can be understood as an adaptation of an incremental update to a QR or SVD factoriza-
tion. Most batch subspace identification algorithms that rely on the eigenvalue decomposition, the
singular value decomposition, or their more efficient counterparts such as the QR decomposition or
the Lanczos method, can be adapted for on-line updates and tracking of the principal subspace. A
comprehensive survey of these methods can be found in [5].

Suppose we fully observe the vector v at each increment. Given an estimated basis, Uest for the
unknown subspace S, we would update our estimate for S by computing the component of v that
is orthogonal to U . We would then append this new orthogonal component to our basis U , and
use an update rule based on the magnitude of v that does not lie in the span of U . Brand [2] has
shown that this method can be used to compute an efficient incremental update of an SVD using
optimized algorithms for computing rank one modifications of matrix factorizations [9].

In lieu of being able to exactly able to compute component of vt that is orthogonal to our
current subspace estimate, GROUSE computes this component only on the entries in Ωt. Recent
work [1] shows that for generic subspaces, the estimate for r computed by Algorithm 1 in a single
iteration is an excellent proxy for the amount of energy that lies in the subspace, provided that
the number of measurements at each time step is greater than the true subspace dimension times a
logarithmic factor. One can also verify that the GROUSE update rule corresponds to forming the
matrix [U, r] and then truncating the last column of the matrix

[U, r]Rη (14)

where Rη denotes the (r + 1)× (r + 1) rotation matrix

Rη =

[
I − ww′

‖w‖ (1− cos(ησ)) − w
‖w‖ sin(ησ)

w
‖w‖ sin(ησ) cos(ησ)

]
. (15)

5



That is, our algorithm computes a mixture of the current subspace estimate and a predicted or-
thogonal component. This mixture is determined both by the stepsize and the relative energy of
vt outside the current subspace.

4 Numerical Experiments

4.1 Subspace Identification and Tracking

Static Subspaces We first consider the problem of identifying a fixed subspace. In all of the
following experiments, the full data dimension is n = 700, the rank of the underlying subspace
is d = 10, and the sampling density is 0.17 unless otherwise noted. We generated a series of iid
vectors vt according to generative model:

vt = Utrueα+ β (16)

where Utrue is an n×d matrix whose d orthonormal columns spam the subspace, α is a d×1 vector
whose entries are realizations of iid N (0, 1) random variables, and β is an n×1 vector whose entries
are iid N (0, ω2). Here N (0, ω2) denotes the Gaussian distribution with mean zero and variance
ω2 > 0 which governs the SNR of our data.

We implemented GROUSE (see Algorithm 1 above) with a stepsize rule of ηt := C/t for some
constant C > 0. Figure 1(a) shows the steady state error of the tracked subspace with varying
values of C and the noise variance. All the data points reflect the error performance at t = 14000.
We see that GROUSE converges for C ranging over an order of magnitude, however with additive
noise the smaller stepsizes yield smaller errors. When there is no noise, i.e., ω2 = 0, the error
performance is near the level of machine precision and is flat for the whole range of converging
stepsizes. In Figure 1(b) we show the number of input vectors after which the algorithm converges
to an error of less than 10−6. The results are consistent with Figure 1(a), demonstrating that smaller
stepsizes in the suitable range take fewer vectors until convergence. We only ran the algorithm up
to time t = 14000, so the data points for the smallest and the largest few stepsizes only reflect
that the algorithm did not yet reach the desired error in the allotted time. Figures 1(c) and 1(d)
repeat identical experiments with a constant stepsize policy, ηt = C. We again see a wide range of
stepsizes for which GROUSE converges, though the region of stability is narrower in this case.

We note that the norm of the residual ‖r‖ provides an excellent indicator for whether tracking
is successful. A shown in Figure 2(a), the error to the true subspace is closely approximated by
‖r‖/‖vt‖. This confirms the theoretical analysis in [1] which proves that this residual norm is an
accurate estimator of the true subspace error when the number of samples is appropriately large.

Subspace Change Detection As a first example of GROUSE’s ability to adapt to changes in
the underlying subspace, we simulated a scenario where the underlying subspace abruptly changes
at three points over the course of an experiment with 14000 observations. At each break, we selected
a new subspace S uniformly at random and GROUSE was implemented with a constant stepsize.
As is to be expected, the algorithm is able to re-estimate the new subspace in a time depending on
the magnitude of the constant stepsize.

Rotating Subspace In this second synthetic experiment, the subspace evolves according to a
random ordinary differential equation. Specifically, we sample a skew-symmetric matrix B with

6



101 102 103 10410−15

10−10

10−5

100

no
rm

al
ize

d 
fro

be
ni

us
 s

ub
sp

ac
e 

er
ro

r

diminishing step size

 

 

0
2.6e−8
2.6e−4

10
1

10
2

10
3

10
42000

4000

6000

8000

10000

12000

14000

diminishing step size parameter

Ite
ra

tio
n 

nu
m

be
r

(a) (b)

10−3 10−2 10−1 10010−15

10−10

10−5

100

105

no
rm

al
ize

d 
fro

be
ni

us
 s

ub
sp

ac
e 

er
ro

r

constant step size

 

 

0
2.6e−8
2.6e−4

10
−3

10
−2

10
−1

10
0

10
1

2000

4000

6000

8000

10000

12000

14000

constant step size parameter

Ite
ra

tio
n 

nu
m

be
r

(c) (d)

Figure 1: (a) Performance sensitivity to noise for a diminishing stepsize policy ηt = C/t. Results are
displayed for three values of the noise magnitude, ω. (b) The number of iterations required to achieve an
error of 10−6 as a function of C. (c) and (d) are the same except that the stepsize policy is here ηt = C.

independent, normally distributed entries and set

U̇ = BU , U [0] = U0. (17)

The resulting subspace at each iteration is thus U [t] = exp(δtB) where δ is a positive constant.
The resulting subspace at each iteration is thus U [t] = exp(δtB) where δ is a positive constant. In
Figure 3, we show the results of tracking the rotating subspace with δ = 10−5. To demonstrate the
effectiveness of the tracking, we display the projection of four random vectors using both the true
subspace (in blue) and our subspace estimate at that time instant (in red).

Tracking Chlorine Levels We also analyzed the performance of the GROUSE algorithm on
simulated chlorine level monitoring in a pressurized water delivery system. The data were generated
using EPANET 1 software and were previously analyzed [15]. The input to EPANET is a network
layout of water pipes and the output has many variables including the chemical levels, one of
which is the chlorine level. The data we used is available from [15] 2. This dataset has ambient
dimension n = 166, and T = 4610 data vectors were collected, once every 5 minutes over 15 days.
We tracked an d = 6 dimensional subspace and compare this with the best 6-dimensional SVD

1http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
2http://www.cs.cmu.edu/afs/cs/project/spirit-1/www/

7



0 5000 10000 15000
0

0.5

1

1.5

# of vectors seen

er
ro

r

 

 

Subspace error
Incomplete vector residual

2 4 6 8 10 12 14
x 10

4

0.2

0.4

0.6

0.8

1

1.2

1.4

# of vectors seen

su
bs

pa
ce

 fr
ob

en
iu

s 
er

ro
r

 

 

0.001
0.005
Step size 0.1

2 4 6 8 10 12 14
x 10

4

0.5

1

1.5

2

# of vectors seen

ve
ct

or
 r

es
id

ua
l e

rr
or

 

 

0.001
0.005
Step size 0.1

(a) (b) (c)

Figure 2: (a) Comparison of the distance to the true subspace and the norm of the residual in Step 4
of the GROUSE algorithm. The residual norm closely tracks the distance to the actual subspace. (b)
Using constant stepsize to track sudden changes in subspace. We plot the transient behavior three constant
stepsize policies. In (c), we again verify that the norm of the residual gives an accurate signature for anomaly
detection and for tracking success.

0 2 4 6

x 10
4

0.06

0.08

0.1

0.12

0.14

0.16

number of samples
0 2 4 6

x 10
4

0.05

0.1

0.15

0.2

0.25

number of samples
0 2 4 6

x 10
4

0.05

0.1

0.15

0.2

0.25

number of samples
0 2 4 6

x 10
4

0.06

0.08

0.1

0.12

0.14

0.16

0.18

number of samples

Figure 3: Tracking a rotating subspace. Here we plot the norm of the projection of four random vectors
over time. The blue curves denote the true values of these norms, and the red curves plot the GROUSE
predictions. Note that except for very early transients, GROUSE fully tracks the subspace.

approximation of the entire complete dataset. The results are displayed in Figure 4. The table
gives the results for various constant stepsizes and various fractions of sampled data. The smallest
sampling fraction we used was 20%, and for that the best stepsize was 3e-2; we also ran GROUSE
on the full data, whose best stepsize was 5e-3. As we can see, the performance error improves for
the smaller stepsize of 5e-3 as the sampling fraction increases; Also the performance error improves
for the larger stepsize of 3e-2 as the sampling fraction decreases. However for all intermediate
sampling fractions there are intermediate stepsizes that perform near the best reconstruction error
of about 0.12. The normalized error of the full data to the best 3-dimensional SVD approximation
is 0.0704. Note that we only allow for one pass over the data set and yet attain, even with very
sparse sampling, comparable accuracy to a full batch SVD which has access to all of the data.

Figure 4(a) and (b) show the original and the GROUSE reconstructions of five of the chlorine
sensor outputs. We plot the last 500 of the 4310 samples, each reconstructed by the estimated
subspace at that time instant.

4.2 Matrix Completion Problems

As described in Section 2.1, matrix completion can be thought of as a subspace identification
problem where we aim to identify the column space of the unknown low-rank matrix. Once the
column space is identified, we can project the incomplete columns onto that subspace in order to

8



0 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

0 100 200 300 400 5000

0.2

0.4

0.6

0.8

1

(a) (b)

reconstruction
|Ωt|/n ηt error

0.2 5e-3 0.2530
3e-2 0.1244

0.4 5e-3 0.1797
1e-2 0.1233
3e-2 0.1432

0.7 5e-3 0.1289
7e-3 0.1221
3e-2 0.1684

1 5e-3 0.1253
3e-2 0.2217

Figure 4: (a) Actual sensor readings. (b) Predicted sensor readings from tracked subspace. In these
figures we are displaying the values at sensors 4, 17, 148,158, and159. The table lists errors in tracking the
chlorine data set for varying sampling densities and stepsizes. The error between the data and the best SVD
approximation is 0.0704.

complete the matrix. We have examined GROUSE in this context with excellent results. Our
approach is to do descent on the column vectors in random order, and allow the algorithm to pass
over those same incomplete columns a few times.

Our simulation set-up aimed to complete 700 × 700 dimensional matrices of rank 10 sampled
with density 0.17. We generated the low-rank matrix by generating two factors YL and YR with
i.i.d. Gaussian entries, and added normally distributed noise with variance ω2. The robustness to
step-size and time to recovery are shown in Figure 5.

In Figure 6 we show a comparison of five matrix completion algorithms and GROUSE (labeled
as Stochastic Gradient). Namely, we compare to the performance of OPT-SPACE [11], FPCA [14],
SVT [4], SDPLR [3, 16], and NNLS [17]. We downloaded each of these MATLAB codes from
the original developer’s websites when possible. We use the same random matrix model as in
Figure 5. GROUSE is faster than all other algorithms, and achieves higher quality reconstructions
on many instances. We subsequently compared against NNLS, the fastest batch method, on very
large problems. Both GROUSE and NNLS achieved excellent reconstruction, but GROUSE was
twice as fast.

5 Discussion and Future Work

The inherent simplicity and empirical power of the GROUSE algorithm merit further theoretical
investigations to determine exactly when it provides consistent estimates. It is possible that an
adaptation of the analysis of [11] to this online setting will yield such consistency bounds. The main
difficulty lies in characterizing the trajectory of the GROUSE algorithm from a random starting
subspace. Though we can guarantee that there is a basin of attraction around the global minimum,
it is not yet clear how to characterize when GROUSE will end up in this basin.

We would also like to investigate how to adapt step-size in the GROUSE algorithm automatically
to varying data. This is the only parameter required to run the GROUSE algorithm, and we
have seen that there are substantial performance gains when this parameter is optimized. Using
techniques from Least-Squares Estimation, it may be possible to automatically tune the step size
based on our current error residuals.

9



10−2 10−1 100 10110−20

10−15

10−10

10−5

100

step size

re
la

tiv
e 

fro
b−

no
rm

 e
rro

r f
or

 fu
ll m

at
rix

 

 

1e−15
1e−5
1e−3

10−10 10−8 10−6 10−4 10−2 10010−10

10−8

10−6

10−4

10−2

100

noise power

re
la

tiv
e 

fro
b−

no
rm

 e
rro

r f
or

 fu
ll m

at
rix

 

 

5 passes
10
25
50

(a) (b)

Figure 5: (a) Performance sensitivity to noise parameter ω and stepsize for matrix completion. Here we use
a diminishing stepsize η = C/t. (b) Here we plot the time to get to a desired Frobenius norm error on the
hidden matrix. We see that GROUSE converges to the noise floor after at most 10 passes over the columns
of the matrix.

6 Acknowledgments

This work was partially supported by the AFOSR grant FA9550-09-1-0140. R. Nowak would also
like to thank Trinity College and the Isaac Newton Institute at the University of Cambridge for
support while this work was being completed.

References

[1] L. Balzano, B. Recht, and R. Nowak. High-dimensional matched subspace detection when data are
missing. Submitted for publication. Preprint available at http://arxiv.org/abs/1002.0852, 2010.

[2] M. Brand. Fast low-rank modifications of the thin singular value decomposition. Linear Algebra and
its Applications, 415(1):20–30, 2006.

[3] S. Burer and R. D. C. Monteiro. Local minima and convergence in low-rank semidefinite programming.
Mathematical Programming, 103(3):427–444, 2005.

[4] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion.
SIAM Journal on Optimization, 20(4):1956–1982, 2008.

[5] P. Comon and G. Golub. Tracking a few extreme singular values and vectors in signal processing.
Proceedings of the IEEE, 78(8), August 1990.

[6] W. Dai and O. Milenkovic. SET: An algorithm for consistent matrix completion. In Proceedings of
ICASSP, 2010.

[7] A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints.
SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998.

[8] N. Gershenfeld, S. Samouhos, and B. Nordman. Intelligent infrastructure for energy efficiency. Science,
327(5969):1086, 2010.

[9] M. Gu and S. Eisenstat. A stable and efficient algorithm for the rank-one modification of the symmetric
eigenproblem. SIAM journal on Matrix Analysis and Applications, 15:1266–1276, 1994.

[10] J. Gupchup, R. Burns, A. Terzis, and A. Szalay. Model-based event detection in wireless sensor networks.
In Proceedings of the Workshop on Data Sharing and Interoperability (DSI), 2007.

10



10−7 10−6 10−5100

101

102

103

Full matrix relative reconstruction error

C
om

pu
ta

tio
n 

tim
e 

in
 S

ec
on

ds

Error v Computation Time

 

 

GROUSE
SDP LR
NNLS
FPCA
SVT
OPT−Space

Problem parameters GROUSE NNLS
nr nc r dens rel.err. passes time rel. err. time (s)

5000 20000 5 0.006 1.10e-4 2 14.8 4.12e-04 66.9
5000 20000 10 0.012 1.5e-3 2 21.1 1.79e-4 81.2
6000 18000 5 0.006 1.44e-5 3 21.3 3.17e-4 66.8
6000 18000 10 0.011 8.24e-5 3 31.1 2.58e-4 68.8
7500 15000 5 0.005 5.71e-4 4 36.0 3.09e-4 62.6
7500 15000 10 0.013 1.41e-5 4 38.3 1.67e-4 68.0

Figure 6: The figure compares five matrix completion algorithms against GROUSE. The table gives a
comparison of GROUSE and NNLS on large random matrix completion problems.

[11] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. 2009. Preprint
available at http://arxiv.org/abs/0901.3150.

[12] H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Applications.
Springer-Verlag, New York, second edition, 2003.

[13] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. In Proceedings of
SIGCOMM, 2004.

[14] S. Ma, D. Goldfarb, and L. Chen. Fixed point and Bregman iterative methods for matrix rank minimiza-
tion. Preprint available at http://www.optimization-online.org/DB_HTML/2008/11/2151.html,
2008.

[15] S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming pattern discovery in multiple time-series. In
Proceedings of VLDB Conference, 2005.

[16] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum rank solutions of matrix equations via nuclear
norm minimization. SIAM Review, 2007. To appear. Preprint Available at http://pages.cs.wisc.
edu/~brecht/publications.html.

[17] K.-C. Toh and S. Yun. An accelerated proximal gradient algorithm for nuclear norm regularized least
squares problems. Preprint available at http://www.optimization-online.org/DB_HTML/2009/03/
2268.html, 2009.

[18] G. S. Wagner and T. J. Owens. Signal detection using multi-channel seismic data. Bulletin of the
Seismological Society of America, 86(1A):221–231, February 1996.

11


