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Abstract—We consider the problem of deciding whether a
highly incomplete signal lies within a given subspace. This
problem, Matched Subspace Detection, is a classical, well-
studied problem when the signal is completely observed. High-
dimensional testing problems in which it may be prohibitive or
impossible to obtain a complete observation motivate this work.
The signal is represented as a vector in Rn, but we only observe
m� n of its elements. We show that reliable detection is possible,
under mild incoherence conditions, as long as m is slightly greater
than the dimension of the subspace in question.

I. INTRODUCTION

Testing whether a signal lies within a subspace is a problem
arising in a wide range of applications including medical [1]
and hyperspectral [4] imaging, communications [5], radar [7],
and anomaly detection [11]. The classical formulation of this
problem is a binary hypothesis test of the following form. Let
v ∈ Rn denote a signal and let x = v + w, where w is a
noise of known distribution. We are given a subspace S ⊂ Rn
and we wish to decide if v ∈ S or not, based on x. Tests
are usually based on some measure of the energy of x in
the subspace S, and these ‘matched subspace detectors’ enjoy
optimal properties [9], [10].

This paper considers a variation on this classical prob-
lem, motivated by high-dimensional applications where it
is prohibitive or impossible to measure v completely. We
assume that only a small subset Ω ⊂ {1, . . . , n} of the
elements of v are observed (with or without noise), and
based on these observations we want to test whether v ∈ S.
For example, consider monitoring a large networked system
such as a portion of the Internet. Measurement nodes in the
network may have software that collects measurements such
as upload and download rate, number of packets, or type of
traffic given by the packet headers. In order to monitor the
network these measurements will be collected in a central
place for compilation, modeling and analysis. The effective
dimension of the state of such systems is often much lower
than the extrinsic dimension of the network itself. Subspace
detection, therefore, can be a useful tool for detecting changes
or anomalies. The challenge is that it may be impossible to
obtain every measurement from every point in the network
due to resource constraints, node outages, etc.

The main result of this paper answers the following ques-
tion. Given a subspace S of dimension r � n, how many
elements of v must be observed so that we can reliably decide
if it belongs to S? The answer is that, under some mild
incoherence conditions, the number is O(r log r). This means

that reliable matched subspace detectors can be constructed
from very few measurements, making them scalable and
applicable to large-scale testing problems.

The main focus of this paper is an estimator of the energy
of v in S based on only observing the elements {vi}i∈Ω. Sec-
tion II proposes the estimator. Section III presents a theorem
giving quantitative bounds on the estimator’s performance and
the proof using three lemmas that are proved in the Appendix.
Section IV presents numerical experiments. Section V applies
the main result to the subspace detection problem, both with
and without noise.

II. ENERGY ESTIMATION FROM INCOMPLETE DATA

Let vΩ be the vector of dimension |Ω|×1 comprised of the
elements vi, i ∈ Ω, ordered lexigraphically; here |Ω| denotes
the cardinality of Ω. The energy of v in the subspace S is
‖PSv||22, where PS denotes the projection operator onto S.
There are two natural estimators of ‖PSv||22 based on vΩ. The
first is simply to form the n× 1 vector ṽ with elements vi if
i ∈ Ω and zero if i 6∈ Ω, for i = 1, . . . , n. This ‘zero-filled’
vector yields the simple estimator ‖PS ṽ‖22. Filling missing
elements with zero is a fairly common, albeit naı̈ve, approach
to dealing with missing data. Unfortunately, the estimator
‖Psṽ‖22 is fundamentally flawed. Even if v ∈ S, the zero-filled
vector ṽ does not necessarily lie in S.

A better estimator can be constructed as follows. Let U
be an n × r matrix whose columns span the r-dimensional
subspace S. Note that for any such U , PS = U(UTU)−1UT .
With this representation in mind, let UΩ denote the |Ω| × r
matrix, whose rows are the |Ω| rows of U indexed by the set
Ω, arranged in lexigraphic order. Since we only observe v on
the set Ω, another approach to estimating its energy in S is to
assess how well vΩ can be represented in terms of the rows of
UΩ. Define the projection operator PSΩ := UΩ(UTΩUΩ)†UTΩ ,
where † denotes the pseudoinverse. It follows immediately that
if v ∈ S, then ‖v − PSv||22 = 0 and ‖vΩ − PSΩvΩ‖22 = 0,
whereas ‖ṽ−PS ṽ‖22 can be significantly greater than zero. This
property makes ‖PSΩvΩ‖22 a much better candidate estimator
than ‖PS ṽ‖22. However, if |Ω| ≤ r, then it it is possible that
‖vΩ−PSΩvΩ‖22 = 0, even if ‖v−PSv||22 > 0. Our main result
shows that if |Ω| is just slightly greater than r, then with high
probability ‖vΩ − PSΩvΩ‖22 is very close to |Ω|n ‖v − PSv||

2
2.

III. MAIN THEOREM

Let us now focus on our main goal of detecting from a very
small number of samples whether there is energy in a vector



v outside the r-dimensional subspace S. In order to do so, we
must first quantify how much information we can expect each
sample to provide. The authors in [2] defined the coherence
of a subspace S to be the quantity

µ(S) :=
n

r
max
j
‖PSej‖22 .

That is, µ(S) measures the maximum magnitude attainable
by projecting a standard basis element onto S. Note that
1 ≤ µ(S) ≤ n

r . The minimum µ(S) = 1 can be attained by
looking at the span of any r columns of the discrete Fourier
transform. Any subspace that contains a standard basis element
will maximize µ(S). For a vector z, we let µ(z) denote the
coherence of the subspace spanned by z. By plugging in the
definition, we have

µ(z) =
n‖z‖2∞
‖z‖22

.

To state our main theorem, write v = x + y where x ∈
S and y ∈ S⊥. Let the entries of v be sampled uniformly
with replacement. Again let Ω refer to the set of indices for
observations of entries in v, and denote |Ω| = m. Given these
conventions, we have the following.

Theorem 1. Let δ > 0 and m ≥ 8
3rµ(S) log

(
2r
δ

)
. Then with

probability at least 1− 4δ,

m(1− α)− rµ(S) (1+β)2

(1−γ)

n
‖v − PSv‖22 ≤ ‖vΩ − PSΩvΩ‖22

and
‖vΩ − PSΩvΩ‖22 ≤ (1 + α)

m

n
‖v − PSv‖22

where α =
√

2µ(y)2

m log
(

1
δ

)
, β =

√
2µ(y) log

(
1
δ

)
, and γ =√

8rµ(S)
3m log

(
2r
δ

)
.

Proof: In order to prove the theorem, we split the quantity
of interest into three terms and bound each with high proba-
bility. Consider ‖vΩ − PSΩvΩ‖22 = ‖yΩ − PSΩyΩ‖22. Let the
r columns of U be an orthonormal basis for the subspace S.
We want to show that

‖yΩ − PSΩyΩ‖22 = ‖yΩ‖22 − yTΩUΩ

(
UTΩUΩ

)−1
UTΩ yΩ (1)

is near m
n ‖y‖

2
2 with high probability. To proceed, we need the

following three Lemmas whose proofs can be found in the
Appendix.

Lemma 1. With the same notations as Theorem 1,

(1− α)
m

n
‖y‖22 ≤ ‖yΩ‖22 ≤ (1 + α)

m

n
‖y‖22

with probability at least 1− 2δ.

Lemma 2. With the same notations as Theorem 1,

‖UTΩ yΩ‖22 ≤ (β + 1)2m

n

rµ(S)
n
‖y‖22

with probability at least 1− δ.

Lemma 3. With the same notations as Theorem 1,

‖
(
UTΩUΩ

)−1 ‖2 ≤
n

(1− γ)m

with probability at least 1− δ, provided that γ < 1.

To apply these three Lemmas, write the second term of
Equation (1) as

yTΩUΩ

(
UTΩUΩ

)−1
UTΩ yΩ = ‖WΩU

T
Ω yΩ‖22

where WT
ΩWΩ =

(
UTΩUΩ

)−1
. By Lemma 3, UTΩUΩ is

invertible under the assumptions of our theorem, and hence
WΩ is well-defined and has spectral norm bounded by the
square root of the inverse of the smallest eigenvalue of UTΩUΩ.
That is, we have

‖WΩU
T
Ω yΩ‖22 ≤ ‖WΩ‖22‖UTΩ yΩ‖22

= ‖WT
ΩWΩ‖2‖UTΩ yΩ‖22

= ‖
(
UTΩUΩ

)−1 ‖2‖UTΩ yΩ‖22 .

‖
(
UTΩUΩ

)−1 ‖2 is bounded by Lemma 3 and ‖UTΩ yΩ‖2 is
bounded by Lemma 2. Putting these two bounds together with
the bounds in Lemma 1 and using the union bound, we have
that with probability at least 1− 4δ

(1 + α)2m

n
‖y‖22 ≥ ‖yΩ‖22 − ‖

(
UTΩUΩ

)−1 ‖2‖UTΩ yΩ‖22

≥ (1− α)2m

n
‖y‖22 −

(β + 1)2rµ(S)
(1− γ)n

‖y‖22

giving us our bound.

IV. DISCUSSION AND NUMERICAL EXPERIMENTS

In this section we wish to give some intuition for the lower
bound in Theorem 1 and show simulations of the estimate
‖vΩ−PSΩvΩ‖2. If the parameters α, β, γ are very near 0, our
lower bound is approximately equal to

m− rµ(S)
n

‖v − PSv‖2

For an incoherent subspace, the parameter µ(S) = 1. In this
case, for m ≤ r the bound is ≤ 0, which is consistent with the
fact that ‖vΩ−PSΩvΩ‖2 = 0 always for m ≤ r. Once m ≥ r+
1, linear algebraic reasoning tells us that ‖vΩ−PSΩvΩ‖2 will
be strictly positive with positive probability; Theorem 1 goes
further to say the norm is strictly positive with high probability
once m ∼ O(rlogr).

The parameters α, β, γ all depend on
√

log
(

1
δ

)
; these

parameters grow as δ gets very small. Increasing the number
of observations m will counteract this behavior for α and γ,
but this does not hold for β. In fact, even if the vector y is
incoherent and µ(y) = 1, its minimum value, then β = 2 for
δ ≈ .135. To get β very near zero, δ must be very near one,
but this is not a useful regime.

We can see, however, that in simulations these large con-
stants are somewhat irrelevant; The large deviations analysis
needed for the proof is overly conservative in most cases.
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(a) Incoherent subspace (random
Gaussian basis). µ(S) ≈ 1.5,
µ(y) ≈ 13.6.
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(b) Coherent subspace. µ(S) ≈
4.1, µ(y) ≈ 47.0.

Fig. 1: These plots show the projection residual ‖vΩ −
PSΩvΩ‖22 over 100 simulations. Each of the simulations has a
fixed subspace, vector v ∈ S⊥ and sample size m, but different
sample set Ω drawn without replacement. The problem size is
n = 10000, r = 50.
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Fig. 2: Simulation results for the zero-filling approach, v ∈ S,
‖v‖22 = 1. The basis used is a random Gaussian basis, r = 50,
n = 10000, µ(S) ≈ 1.5, µ(y) ≈ 17.9. Note that the zero-filled
residuals can be made arbitrarily large by increasing ‖v‖22.

This plays out in the simulations shown in Figure 1, where
we see that for very incoherent subspaces, ‖vΩ − PSΩvΩ‖2
is always positive for m > rµ(S) log r. The plots show the
minimum, maximum and mean value of ‖vΩ−PSΩvΩ‖2 over
100 simulations, for fixed S and fixed v such that ‖v‖22 = 1
and v ∈ S⊥. For each value of the sample size m, we
sampled 100 different instances of Ωwithout replacement,
giving us a realistic idea of how much energy of v is captured
by m samples. Our simulations for the Fourier basis and a
basis made of orthogonalized Gaussian random vectors always
showed the estimate to be positive for m > rµ(S) log r,
even for the worst-case simulation run. For more coherent
subspaces, we often (but not always) see that the norm is
positive as long as m > rµ(S) log r.

V. MATCHED SUBSPACE DETECTION

We have the following detection set up. Our hypotheses are
H0 : v ∈ S and H1 : v /∈ S and the test statistic we will use
is

t(vΩ) = ‖vΩ − PSΩvΩ‖22
H1

≷
H0

η

In the noiseless case, we can let η = 0; our result in
Theorem 1 shows for δ > 0, the probability of detection is
PD = P [t(vΩ) > 0|H1] ≥ 1−4δ as long as m is large enough,
and we also have that the probability of false alarm is zero,

PFA = P [t(vΩ) > 0|H0] = 0 since the projection error will
be zero when v ∈ S.

When we introduce noise we have the same hypotheses, but
we compute the statistic on ṽΩ = vΩ +w where w ∼ N (0, 1)
is Gaussian white noise:

t(ṽΩ) = ‖ṽΩ − PSΩ ṽΩ‖22
H1

≷
H0

ηλ

We choose ηλ to fix the probability of false alarm:

P [t(ṽΩ) > ηλ|H0] ≤ λ = PFA

Then we have from [9] that t(ṽΩ) is distributed as a non-
central χ2 with r degrees of freedom and non-centrality
parameter ‖vΩ − PSΩvΩ‖22, and that PD is monotonically
increasing with the non-centrality parameter. Putting this to-
gether with Theorem 1 we see that as m grows, ‖vΩ−PSΩvΩ‖22
grows and thus the probability of detection grows.

We now show why the heuristic approach of zero-filling
the incomplete vector vΩ does not work. As we described in
Section II, the zero-filling approach is to fill the vector v with
zeros and then project onto the full subspace S. We denote
the zero-filled vector as v0 and then calculate the projection
energy only on the observed entries:

t0(vΩ) = ‖vΩ − (PSv0)Ω ‖
2
2

H1

≷
H0

η

Simple algebraic consideration reveals that t0(vΩ)|H0 is pos-
itive. In fact, even in the absence of noise, the probability
of false alarm can be arbitrarily large as ‖v‖22 increases. The
value of t0(vΩ)|H0, based on noiseless observations, is plotted
as a function of the number of measurements in Figure 2.

We note that for unknown noise power or structured inter-
ference, these results can be extended using the GLRT [10].

VI. CONCLUSION

We have shown that it is possible to detect whether a highly
incomplete vector has energy outside a subspace. This is a
fundamental result to add to a burgeoning collection of results
for incomplete data analysis given a low-rank assumption.
Missing data are the norm and not the exception in any massive
data collection system, so this result has implications on many
other areas of study.

One of our reviewers shared an insight that the process by
which we observe some components and observe erasures in
other components can be expressed as a projection operator.
It may be possible to extend the results of Theorem 1 to a
wide class of models of random projection operators beyond
the class of deletion operators studied here.
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APPENDIX

We will need the following two large deviation bounds in
the proofs of our Lemmas below.

Theorem 2 (McDiarmid’s Inequality [6]). Let X1, . . . , Xn be
independent random variables, and assume f is a function for
which there exist ti, i = 1, . . . , n satisfying

sup
x1,...,xn,x̂i

|f(x1, . . . , xn)− f(x1, . . . , x̂i, . . . , xn)| ≤ ti

where x̂i indicates replacing the sample value xi with any
other of its possible values. Call f(X1, . . . , Xn) := Y . Then
for any ε > 0,

P [Y ≥ E [Y ] + ε] ≤ exp
(
−2ε2∑n
i=1 t

2
i

)
(2)

P [Y ≤ E [Y ]− ε] ≤ exp
(
−2ε2∑n
i=1 t

2
i

)
(3)

Theorem 3 (Noncommutative Bernstein Inequality
[3], [8] ). Let X1, . . . , Xm be independent zero-
mean square r × r random matrices. Suppose
ρ2
k = max{‖E[XkX

T
k ]‖2, ‖E[XT

k Xk]‖2} and ‖Xk‖2 ≤ M
almost surely for all k. Then for any τ > 0,

P

[∥∥∥∥∥
m∑
k=1

Xk

∥∥∥∥∥
2

> τ

]
≤ 2r exp

(
−τ2/2∑m

k=1 ρ
2
k +Mτ/3

)

We now proceed with the proof of our three central Lem-
mas.

Proof of Lemma 1: To prove this we use McDiarmid’s
inequality from Theorem 2 for the function f(X1, . . . , Xm) =∑m
i=1Xi. The resulting inequality is more commonly referred

to as Hoeffding’s inequality.
We begin with the first inequality. Set Xi = y2

Ω(i). We seek
a good value for ti. Since y2

Ω(i) ≤ ‖y‖
2
∞ for all i, we have∣∣∣∣∣∣

m∑
i=1

Xi −
∑
i6=k

Xi − X̂k

∣∣∣∣∣∣ =
∣∣∣Xk − X̂k

∣∣∣ ≤ 2‖y‖2∞

We calculate E [
∑m
i=1Xi] as follows. Define I{} to be the

indicator function, and assume that the samples are taken
uniformly with replacement.

E

[
m∑
i=1

Xi

]
= E

[
m∑
i=1

y2
Ω(i)

]

=
m∑
i=1

E

 n∑
j=1

y2
j I{Ω(i)=j}

 =
m

n
‖y‖22

Plugging into Equation (3), the left hand side is

P

[
m∑
i=1

Xi ≤ E

[
m∑
i=1

Xi

]
− ε

]
= P

[
m∑
i=1

Xi ≤
m

n
‖y‖22 − ε

]

and letting ε = αmn ‖y‖
2
2, we then have that this probability is

bounded by

exp

(
−2α2

(
m
n

)2 ‖y‖42
4m‖y‖4∞

)
Thus, the resulting probability bound is

P
[
‖yΩ‖22 ≥ (1− α)

m

n
‖y‖22

]
≥ 1− exp

(
−α2m‖y‖42
2n2‖y‖4∞

)
(4)

Substituting our definitions of µ(y) and α shows that the lower
bound holds with probability at least 1 − δ. The argument
for the upper bound is identical after replacing Equation (2)
instead of (3). The Lemma now follows by applying the union
bound.

Proof of Lemma 2: We use McDiarmid’s inequality in
a very similar fashion to the proof of Lemma 1. Let Xi =
yΩ(i)UΩ(i), where Ω(i) refers to the ith sample index. Thus
yΩ(i) is a scalar, and the notation UΩ(i) refers to an r × 1
vector representing the transpose of the Ω(i)th row of U .

Let our function f(X1, . . . , Xm) = ‖
∑m
i=1Xi‖2 =

‖UTΩ yΩ‖2. To find the ti of the theorem we first need to
bound ‖Xi‖ for all i. Observe that ‖UΩ(i)‖2 = ‖UT ei‖2 =
‖PSei‖2 ≤

√
rµ(S)/n by assumption. Thus,

‖Xi‖2 ≤ |yΩ(i)|‖UΩ(i)‖2 ≤ ‖y‖∞
√
rµ(S)/n

Then observe
∣∣∣f(X1, . . . , Xm)− f(X1, . . . , X̂k, . . . , Xm)

∣∣∣ is∣∣∣∣∣∣
∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
2

−

∥∥∥∥∥∥
∑
i 6=k

Xi + X̂k

∥∥∥∥∥∥
2

∣∣∣∣∣∣ ≤
∥∥∥Xk − X̂k

∥∥∥
2

≤ ‖Xk‖2 + ‖X̂k‖2

≤ 2‖y‖∞

√
rµ(S)
n

.

Here, the first two inequalities follow from the triangle in-
equality. Next we calculate a bound for E [f(X1, . . . , Xm)] =
E [‖

∑m
i=1Xi‖]. Assume again that the samples are taken

uniformly with replacement. We have
r∑

k=1

U2
jk = ‖PSej‖2 ≤

r

n
µ(S) ,

from which we can see that

E

∥∥∥∥∥
m∑
i=1

Xi

∥∥∥∥∥
2

2

 = E
[∥∥UTΩ yΩ

∥∥2

2

]

=
r∑

k=1

E

 m∑
i=1

n∑
j=1

U2
jky

2
j I{Ω(i)=j}

 (5)

=
r∑

k=1

m

 n∑
j=1

U2
jky

2
j

 1
n

(6)

≤ m

n

rµ(S)
n
‖y‖22



The step (5) follows because the cross terms cancel by
orthogonality. The step (6) is because of our assumption that
sampling is uniform with replacement.

Since E [‖X‖2] ≤ E
[
‖X‖22

]1/2
by Jensen’s inequality, we

have that E
[
‖
∑m
i=1Xi‖2

]
≤
√

m
n

√
rµ(S)
n ‖y‖2. Letting ε =

β
√

m
n

√
rµ(S)
n ‖y‖2 and plugging into Equation (2), we then

have that the probability is bounded by

exp

(
−2β2m

n
rµ(S)
n ‖y‖22

4m‖y‖2∞
rµ(S)
n

)
Thus, the resulting probability bound is

P
[
‖UΩyΩ‖22 ≥ (1 + β)2mrµ(S)

n2
‖y‖22

]
≤ exp

(
−β2‖y‖22
2n‖y‖2∞

)
Substituting our definitions of µ(y) and β shows that the lower
bound holds with probability at least 1 − δ, completing the
proof.

Proof of Lemma 3: We use the Noncommutative Bern-
stein Inequality as follows. Let Xk = UΩ(k)U

T
Ω(k)−

1
nIr, where

the notation UΩ(k) is as before, i.e. is the transpose of the
Ω(k)th row of U , and Ir is the r × r identity matrix. Note
that this random variable is zero mean.

We must compute ρ2
k and M . Since Ω(k) is chosen uni-

formly with replacement, the Xk are identically distributed,
and ρ does not depend on k. For ease of notation we will
denote UΩ(k) as Uk.

Using the fact that for positive semi-definite matrices,
‖A−B‖2 ≤ max{‖A‖2, ‖B‖2}, and recalling again that
‖Uk‖22 = ‖UT ek‖22 = ‖PSek‖22 ≤ rµ(S)/n, we have∥∥∥∥UkUTk − 1

n
Ir

∥∥∥∥
2

≤ max
{
rµ(S)
n

,
1
n

}
and we let M := rµ(S)/n.

For ρ, we note∥∥E [XkX
T
k

]∥∥
2

=
∥∥E [XT

k Xk

]∥∥
2

=

∥∥∥∥∥E
[(

UkU
T
k −

1
n
Ir

)2
]∥∥∥∥∥

2

=
∥∥∥∥E [UkUTk UkUTk − 2

n
UkU

T
k +

1
n2
Ir

]∥∥∥∥
2

=
∥∥∥∥E [UkUTk UkUTk ]− 1

n2
Ir

∥∥∥∥
2

≤ max
{∥∥E [UkUTk UkUTk ]∥∥ , 1

n2

}
≤ max

{
rµ(S)
n
‖E[UkUTk ]‖2,

1
n2

}
= max

{
rµ(S)
n2
‖Ir‖2,

1
n2

}
=

rµ(S)
n2

.

Thus we let ρ2 := rµ(S)/n2.

Now we can apply the Noncommutative Bernstein Inequal-
ity, Theorem 3. First we restrict τ to be such that Mτ ≤ mρ2

to simplify the denominator of the exponent. Then we get that

2r exp
(

−τ2/2
mρ2 +Mτ/3

)
≤ 2r exp

(
−τ2/2

4
3m

rµ(S)
n2

)
and thus

P

[∥∥∥∥∥∑
k∈Ω

(
UkU

T
k −

1
n
Ir

)∥∥∥∥∥ > τ

]
≤ 2r exp

(
−3n2τ2

8mrµ(S)

)
Now take τ = γm/n with γ defined in the statement of
Theorem 1. Since γ < 1 by assumption, Mτ ≤ mρ2 holds
and we have

P

[∥∥∥∥∥∑
k∈Ω

(
UkU

T
k −

1
n
Ir

)∥∥∥∥∥
2

≤ m

n
γ

]
≥ 1− δ

We note that
∥∥∑

k∈Ω UkU
T
k − m

n Ir
∥∥

2
≤ m

n γ implies that the
minimum singular value of

∑
k∈Ω UkU

T
k is at least (1−γ)mn .

This in turn implies that∥∥∥∥∥∥
(∑
k∈Ω

UkU
T
k

)−1
∥∥∥∥∥∥

2

≤ n

(1− γ)m

which completes the proof.
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