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Abstract

This paper develops Jellyfish, an algorithm for solving data-processing problems with
matrix-valued decision variables regularized to have low rank. Particular examples of problems
solvable by Jellyfish include matrix completion problems and least-squares problems regular-
ized by the nuclear norm or γ2-norm. Jellyfish implements a projected incremental gradient
method with a biased, random ordering of the increments. This biased ordering allows for a
parallel implementation that admits a speed-up nearly proportional to the number of processors.
On large-scale matrix completion tasks, Jellyfish is orders of magnitude more efficient than
existing codes. For example, on the Netflix Prize data set, prior art computes rating predictions
in approximately 4 hours, while Jellyfish solves the same problem in under 3 minutes on a 12
core workstation.

Keywords. Matrix completion, Incremental gradient methods, Parallel computing, Multicore.

1 Introduction

Manipulating and processing large, incomplete data-matrices constitutes a large component of
contemporary data analysis. Recent results in matrix completion have demonstrated that if the
underlying data-matrix is low rank, then the missing entries can be inferred from a vanishingly
small fraction of the entries [9, 32]. This body of work demonstrates that the low-rank matrix
can be determined as the minimizer of a convex programming problem. These theoretical results
have spawned a surge of interest in data-processing algorithms for solving the associated convex
programs [8, 17, 23, 26, 39], but none of these methods can currently operate on the scale of data
commonly acquired by internet retailers and social networking websites. In response, we present
Jellyfish, a parallel incremental gradient algorithm, which can solve problems with millions of
rows and columns in minutes on commodity multicore technology.

For moderately sized matrix completion problems (less than 5000 columns), first-order methods
based on convex programming are both fast and effective. However, these algorithms require
computation of singular values at every iteration and become prohibitively expensive to run when
the size of the matrices and number of observations grows beyond a few thousand. To scale
to larger data sets, a different paradigm of algorithms is required. Recently, there have been a
variety of techniques proposed to factor large scale matrices using incremental, non-convex heuristics
[14,21,22,33,35]. These algorithms obviate the singular value decomposition by explicitly factoring
the decision variable and use incremental gradient methods that operate upon very small batches of
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data at each iteration. Non-convex methods have been quite successful on real problems, including
the Netflix Prize problem, and theoretical analyses suggest that these heuristics succeed in similar
sampling regimes as their convex programming counterparts [18,32].

In this paper, we demonstrate how to implement high-dimensional matrix factorization heuris-
tics in parallel using incremental gradient descent on multicore processors. In particular, using a
specially biased ordering of the incremental gradients, we can achieve paralellization with no fine-
grained memory locking. This in turn results in speed-ups that are nearly linear in the number of
processors assigned to the problem.

We describe the elements of our algorithm, Jellyfish, in Section 2 and describe the algorithm
in full detail in Section 3. Here we also describe certain aspects of multicore technology that we
can take full advantage of in our framework. For instance, we devote an entire core just to ordering
and partitioning the problem data for each pass over the matrix. We demonstrate experimentally
that our biased orders do not introduce any reduction in speed or accuracy over standard sampling
schemes and show that we get nearly linear speed-up with the number of cores.

Our experiments demonstrate that on small-scale problems, Jellyfish is competitive with
existing matrix completion algorithms in accuracy but is 5 to 20 times faster. On large-scale
matrix completion tasks, Jellyfish is orders of magnitude more efficient than existing codes. We
show that on a multicore workstation, we can solve for matrices with millions of rows and columns
in under 18 minutes. On the Netflix Prize data set, Jellyfish solves the associated inference
problem in under 3 minutes while prior art required hours.

2 Algorithmic Framework

We briefly review the mathematical foundations of our algorithmic approach. In Section 2.1, we
begin by defining the main optimization problems we seek to solve, and describe several convex
penalty functions that encourage low-rank matrix solutions. We proceed to show in Section 2.2
that these matrix regularizers can be implemented by explicitly factoring the decision variable into
a product of two low-dimensional matrices. This factorization results in a dramatic reduction in
the dimension of the search space. In Section 2.3, we then summarize the elements of the projected
incremental gradient method which we will employ in the sequel to solve our factored matrix
regularization problems.

2.1 Factorization norms and matrix regularizers

Our focus is on a particular class of optimization problems that have a separable cost and constraint
structure. Our decision variable X will be a matrix with nr rows and nc columns. Without loss of
generality, we will assume nr ≤ nc throughout. We consider problems of the form

minimize
∑

(i,j)∈Ω

fij(Xij) + P (X)

Here Ω is a subset of {1, . . . , nr} × {1, . . . , nc} denoting pairs of entries to process. fij will be
a convex function of a scalar. For example, fij could measure the squared distance from Xij to
another scalar Mij , i.e., fij(Xij) = (Xij −Mij)

2.
P : Rnr×nc → R will be a matrix regularizer which will control some measure of complexity

of the matrix X. We will be particularly interested in matrix regularizers that promote low-rank
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decompositions, motivating our heuristic factorization of X. The first regularizer we will study is
the nuclear norm

‖X‖∗ =

nr∑
k=1

σk(X) (1)

where σk are the singular values of X. The nuclear norm (also known as the Schatten 1-norm, the
Ky Fan 1-norm, and the trace-norm) forms the foundation for the work on matrix completion, and
has been demonstrated to recover low-rank matrices from highly incomplete, noisy data in both
theory and practice [9, 10,15,31,32].

A particularly attractive feature of the nuclear norm is that it can be reformulated as a penalty
over all possible factorizations of X:

‖X‖∗ = inf
{

1
2 ‖L‖

2
F + 1

2 ‖R‖
2
F : X = LR∗

}
(2)

where

‖A‖F =

 nr∑
i=1

nc∑
j=1

A2
ij

1/2

is the Frobenius or Euclidean norm of A [32]. That is, the nuclear norm is equal to the minimum
Frobenius norm factorization of X. This minimum is achieved by the singular value decomposition:
if X = UΣV ∗, then L = UΣ1/2 and R = V Σ1/2 achieve the minimum value of (2). A quick
calculation reveals that the pair (L,R) satisfies ‖X‖∗ = 1

2‖L‖
2
F + 1

2‖R‖
2
F . To see that no lower

value is achievable requires an appeal to semidefinite programming and is proven in Recht et al [32].
The other main regularizer of interest is the γ2-norm [16] (also known as the max-norm [22,36,

37]). Like the nuclear norm, the γ2-norm is defined as a minimization over all possible factorizations
of X:

‖X‖γ2 := inf
{

max
(
‖L‖22,∞ , ‖R‖

2
2,∞

)
: X = LR∗

}
(3)

where ‖·‖2,∞ denotes the maximum-row-norm of a matrix:

‖A‖2,∞ := maxj

(∑
k
A2
jk

)1/2
.

To compute a factorization LR∗ which minimizes (3), one can solve the semidefinite program

‖X‖γ2 := inf t subject to

[
A X
X∗ B

]
� 0 , diag(A) ≤ t , diag(B) ≤ t ,

and factor the optimizer using an eigenvalue decomposition. Such γ2-norm regularized problems
appear in applications in collaborative filtering [37], genetic networks [38], and combinatorial opti-
mization [1].

We can thus interpret both the nuclear norm and γ2-norm as penalties on the rows of factor-
izations of X. The nuclear norm penalizes the average squared Euclidean norm of the rows of L
and R while the γ2-norm penalizes the maximum row-norm. The techniques we detail below can
be generalized to any convex function of the row-norms of the factors of X.
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2.2 Low rank approximations

The first approximation that we make is to assume the decision variable X has rank at most r. If
this is the case then X can be written as LR∗ where L is nr × r, R is nc × r. This reformulation
dramatically reduces the number of primal decision variables from nrnc to (nr + nc)r. With this
reduction, we can store the entire decision variable in memory even if nr and nc are in the millions.

Using this explicit factorization, we can approximate the nuclear norm problem

minimize
∑

(i,j)∈Ω

fij(Xij) + µ‖X‖∗ (4)

with the optimization problem

minimize
∑

(i,j)∈Ω

fij(LiR
∗
j ) + µ

2 ‖L‖
2
F + µ

2 ‖R‖
2
F (5)

and Li (resp. Rj) denotes the ith (resp. jth) row of L (resp. R).
Similarly, the γ2-norm constrained problem

minimize
∑

(i,j)∈Ω

fij(Xij) subject to ‖X‖γ2 ≤ B , (6)

is approximated by the factored problem

minimize
∑

(i,j)∈Ω

fij(LiR
∗
j ) subject to ‖L‖22,∞ ≤ B, ‖R‖

2
2,∞ ≤ B . (7)

These factored optimization problems have fewer explicit decision variables than their coun-
terparts in Section 2.1. However, the new formulations are nonconvex and potentially subject to
stationary points that are not globally optimal. Fortunately, under relatively mild assumptions,
one can show that the optimal values of (5) and (7) coincide with the optimal values of (4) and (6)
respectively. For instance, Proposition 4 of Bach et al implies that if fij in (4) are twice differen-
tiable, and (L,R) is a local minimum of (5) where both L and R are rank deficient, then LR∗ is
a global minima of (4) [2].

More generally, using the analysis of Burer and Monteiro, all of the local minima of (5) and (7)
are global solutions provided the fij are quadratic and that r is chosen to be larger than the rank of
the optimal solution of (4) and (6) respectively [7]. This follows because when the fij are quadratic,
both (4) and (6) can be written as semidefinite programming problems. Applying the factorization-
heuristic of Burer and Monteiro to the associated semidefinite programs result in the optimization
problems (5) and (7) (see [22,32] for more details).

2.3 Projected incremental gradient methods

Shifting gears for a moment, consider a general optimization problem of the form

min
x∈Rd

N∑
i=1

fi(x) + P (x) (8)
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where the fi are differentiable and P is a convex extended-real valued function. P could be the
indicator function of a set C,

P (x) =

{
0 x ∈ C
∞ otherwise

,

P (x) might also be a regularization penalty such as a norm, total-variation, or negative entropy.
Projected incremental gradient methods are a class of optimization algorithms ideally suited to

solve (8). These methods are summarized by the following iterative rule that describes how one
produces the (k + 1)-th iterate, x(k+1), given x(k).

x(k+1) = ΠαP

(
x(k) − αk∇fη(k)(x

(k))
)

(9)

In this expression, η(k) is a subset of {1, . . . , N}, chosen at each iteration. fη(k) is the approximation
fη(k)(x) =

∑
j∈η(k) fj(x). αk is a positive step-size parameter. The function ΠαP is given by the

expression
ΠαP (x) = arg min

w

1
2‖x−w‖22 + αP (w)

ΠαP is called a proximal-point operator. When P is an indicator function, ΠαP is simply the Eu-
clidean projection onto C [34]. When P is the squared `2-norm, ΠαP (x) = (1+2α)−1x. A variety of
other functions P , including the `1-norm, the nuclear norm, and the negative logarithm, have simple
closed form expressions for ΠαP [11]. These methods are called incremental because they minimize
an objective function by examining an item or a small subset of items, modifying the model, and
then fixing (projecting) the model to satisfy priors or constraints (e.g., norm constraints).

In incremental methods, one tries to improve the cost function by following an approximate
gradient constructed from a very small subset of the summands. When the functions

∑n
i=1 fi(x)

and P (x) are both convex, the incremental projected gradient method is guaranteed to converge
to a globally optimal solution [29]. Commonly, the set η is chosen by sampling a subset of a given
size, but the method converges even if ηk is chosen deterministically, although at a possibly slower
rate [4, 24,25,27,40].

Many authors have proposed using projected subgradient methods on problems (5) and (7)
[14, 21, 22, 35]. Indeed, one of the first publicly announced methods for attacking the Netflix Prize
minimized (5) with fij(LiRj) = (LiRj −Mij)

2 [14]. In what follows, we describe a novel sampling
scheme for problems (5) and (7) that allow for dramatic speed-ups over this prior art.

3 Algorithm Description and Implementation Details

The basic operation of our algorithm is that of incremental projected gradient sampling one pair
(i,j) from Ω at each iteration. We sample a term (i, j) according to some distribution and then apply
step (9). Our main contribution lies in exactly how we sample the entries. As we now describe, we
choose a biased permutation of the set Ω which allows for massive parallelization of the gradient
computations. In Section 4, we demonstrate that on large data sets, this bias introduces minimal
loss in the convergence rate while enabling eleven-fold speed-ups on a twelve-core machine.
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3.1 Elements of individual iterations

For (5), we write the problem as

minimize
∑

(i,j)∈Ω

{
fij(LiR

∗
j ) + µ

2|Ωi−|‖Li‖
2
F + µ

2|Ω−j |‖Rj‖2F
}

(10)

where Ωi− = {j : (i, j) ∈ Ω} and Ω−j = {i : (i, j) ∈ Ω}|. That is, we weight penalty of Li by
the number of terms involving the ith row of the decision variable and the penalty of Rj by the
number of terms involving the jth column of the decision variable. Under this reformulation, (10)
is a of the form (8) with P = 0. In this case, step (9) with |η(k)| = 1 becomes

L
(k+1)
ik

=
(

1− µαk
|Ωik−|

)
L

(k)
ik
− αkf ′ikjk

(
L

(k)
ik

R
(k)
jk

∗)
R

(k)
jk

R
(k+1)
jk

=
(

1− µαk
|Ω−jk

|

)
R

(k)
jk
− αkf ′ikjk

(
L

(k)
ik

R
(k)
jk

∗)
L

(k)
ik

(11)

and all the other entries in L and R are unchanged.
For (7), step (9) becomes

L
(k+1)
ik

= ΠB

(
L

(k)
ik
− αkf ′ikjk

(
L

(k)
ik

R
(k)
jk

∗)
R

(k)
jk

)
R

(k+1)
jk

= ΠB

(
R

(k)
jk
− αkf ′ikjk

(
L

(k)
ik

R
(k)
jk

∗)
L

(k)
ik

) (12)

where

ΠB(v) =

{√
B·v
‖v‖ ‖v‖2 ≥ B
v otherwise

.

Again, all of the other rows of L and R are unchanged. Each of these iterations can be computed
in time linear in r and the time it takes to compute the gradient of the univariate function fikjk .

3.2 Epochs

Computing a solution to desired tolerance typically requires several passes over the data set. We
call each of these passes an epoch. Classically, incremental gradient schemes are described as a two-
part process: (1) given a data set, perform a with-replacement sample from that data set to obtain
a single data item, and (2) take an (incremental) gradient step with respect to that data item. As
we discussed in Section 2.3, part (1) of this procedure is unnecessary to guarantee convergence as
any ordering of the elements of Ω will converge.

On the other hand, with-replacement sampling currently admits the best provable convergence
rates. In fact, the provable rates for without-replacement sampling are significantly slower: for
example, Nedic and Bertsekas show that one cannot guarantee closer proximity to the optimal
solution than after a full gradient step [28]. However, there are reasons to suspect that without-
replacement sampling is actually better on large data sets [6]. One reason is related to the coupon
collector phenomenon. Informally, the coupon collector phenomenon says that if there are a large
number of data values, say N , then it will require on average N logN samples to simply see each
data item once (collect each coupon). Obviously, in without replacement sampling, all of the items
will have been touched after exactly N samples. On small data sets, this logN is discrepancy
not an issue. However, on the Netflix Prize data set analyzed in our experiments logN ≈ 18.
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Figure 1: Cyclic Partitioning. There are 9 Chunks in 3 rounds. Chunks in the same round are
highlighted in the same way. Here, πrow and πcol are identity permutations.

One can construct instances, where with-replacement sampling would need 18 times more passes
over a similarly sized data set to reach the same convergence as a without-replacement sample.
Estimating the discrepancy between with and without-replacement sampling is a long-standing
problem in numerical optimization and machine learning [5, pg. 628] and is out of the scope of this
paper. We defer such theoretical investigations to future work.

3.3 Parallelization via cyclic partitioning

We now describe our biased, without-replacement, sample ordering that allows us to parallelize
stochastic gradient descent while obviating fine-grained locking. We describe our scheme, called
cyclic partitioning, that achieves these goals.

Note that both of the basic iterations (11) and (12) act on very local portions of the matrix
L and R. Indeed, if we knew in advance that we were going to first take a gradient of fi1j1 and
then of fi2j2 , i1 6= i2, j1 6= j2, then we could calculate these two steps in parallel. Neither has
any bearing on each other. More aggressively, if we were going to run a series of gradient steps
from a set S1 = {(i, j) : i ∈ I1, j ∈ J1} and S2{(i, j) : i ∈ I2, j ∈ J2} with I1 ∩ I2 = ∅ and
J1 ∩ J2 = ∅, we could run these operations completely in parallel. This observation underlies our
main contribution.

Suppose we have access to p parallel processors. First, Jellyfish generates a permutation the
rows and columns of the matrix, i.e., generates two (random) permutations of integers: πrow, a
permutation on the row indexes, and πcol, a permutation on the column indexes. We then partition
Ω into p2 sets Ca,b for a, b = 1, . . . , p. Each Ca,b is called a chunk. We define the contents of a
chunk by the following rule. Given (i, j) ∈ Ω it is put in chunk Ca,b where

a =

⌊
p

nr
(πrow(i)− 1)

⌋
+ 1 and b =

⌊
p

nc
(πcol(j)− 1)

⌋
+ 1

This partitioning can be done using our without-replacement sampler: first select an element (i, j)
from the remaining pool, then determine which chunk to assign it to.

We say that two chunks Cab and Ca′b′ overlap if a = a′ or b = b′. For example, C11 overlaps C12

but C11 does not overlap C22. Our scheme groups non-overlapping chunks into rounds. Figure 1
shows an example: chunks in the same round are shaded in the same way.

For each round, Jellyfish processes each chunk in that round in a separate process. Fine-
grained locks are not needed on either L or R. Figure 1 illustrates the case p = 3. Suppose that
two different processes both need to update the same row of L or R. From the update rule, this
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Algorithm 1 Given (L,R) and data a training set, update (L,R) using p partitions

1: (πrow, πcol) ← generate perms()
2: [C1,1, C1,2, . . . , Cp,p]← permute data(πrow, πcol, data)
3: Round[u] = [Ca,b s.t. b = a+ u mod p for a = 1, . . . , p]
4: for ` = 0, . . . , p− 1 do
5: for Ca,b in Round[`] in parallel do
6: for (i, j) in Ca,b do
7: apply (11) for the nuclear norm or (12) for the max norm to the (L,R) pair.
8: end for
9: end for

10: end for

implies that there is a data item (i, j) in one chunk and there is a data item (i′, j′) in a different
chunk such that either i = i′ or j = j′. This is contradiction: the chunks in a given round do
not overlap. Thus, we are able to process all the chunks in a given round without fine-grained
locking. Algorithm 1 summarizes the preceding discussion giving the execution of one epoch of the
Jellyfish algorithm.

3.4 Permutations

As one can see, much of the effort of the computation is devoted to permuting and arranging
the data. Such data arrangement gives rise to the lock-free parallelism that is fundamental to
our approach. Consequently, to maximize the benefits of parallelism, it is imperative that the
movement and permutation of the data also be as efficient as possible.

We keep two copies of the data necessary to compute the gradients of the fij in memory. Our
permutation of this data proceeds in two phases. First, the data set, row order, and column order is
shuffled in place (the subroutine generate perms() in Algorithm 1). Next, the data is moved in its
shuffled order into collocated parts of memory corresponding to the block partition defined by the
row and column permutations. That is, the data is collected into the appropriate chunks, and the
ordering inside these chunks is that of the global data set order assigned by the generate perms()
subroutine. The data is only moved when it is put in the appropriate bucket for the next iteration.
This is executed as permute data() in Algorithm 1.

Our permutations are implemented using the Knuth shuffle [19, pg. 145]. An entry is selected at
random from {1, . . . ,m} and is swapped with the first element in the list. Then an entry is selected
at random from {2, . . . ,m} and swapped with the second element in the list. Proceeding in this
fashion, a uniform permutation is generated after a single pass over the indices. Importantly, this
operator does not require a sort of any kind. This allows us to avoid use of excess random bits or
superlinear time algorithms.

3.5 Pipeline data parallelism

A straightforward optimization is to overlap the gradient computations of the current epoch with
the determinations of the row, column, and data permutations for the subsequent epoch. Suppose
the data shuffling takes time s, and an epoch of gradient steps takes time G. In this case, one can see
that executing m epochs sequentially (assuming linear speedup) on p processors takes m(G/p+ s)
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since the shuffling and permutations cannot be partitioned per epoch.
In contrast, suppose we run an interleaved plan where we devote k processors to permuting the

data and p−k to computing gradients. Each permutation thread operates on an independent copy
of the data, and thus this will require a k-fold increase in memory. However, it can also result in a
dramatic increase in speed.

Suppose, for instance, that the time to compute one epoch of gradient calculations, G/(p− k)
is greater than s/k. In this case, the interleaved plan will require a total time of mG/(p− k) + s:
we wait a total time s for the initial permutation, but then never wait for the permutation during
the gradient computations. Hence, the interleaved plan has lower end-to-end time whenever(

1
p ·

m
m−1 ·

k
p−k

)
G ≤ s ≤ k

p−k ·G .

The optimal value for k can be computed automatically by running a few sample epochs, computing
G and s empirically, and then solving a discrete optimization problem. In our experiments, we set
k = 2 on a 12 core machine.

3.6 Choosing the rank

Our algorithm requires an estimate for the rank of the decision variable. This rank can be used as
an algorithm parameter and tuned by the user. However, it is often times advantageous to have the
rank selected automatically. For such an automatic rank selection, we use the following heuristic
algorithm.

Ideally, we would like to guarantee that the optimal solution is a local minimum of our cost
function. In particular, we would like to guarantee that the Hessian at the optimal solution is
strictly positive definite. For an individual fij , we have

∇2fij(Li,Rj) = f ′′ij(LiR
∗
j )
[
Rj Li

]∗ [
Rj Li

]
+ f ′ij(LiR

∗
j )

[
0 I
I 0

]
The global Hessian is thus the sum of |Ω| rank one matrices plus a rank indefinite matrix. In order
for the Hessian to have any chance of being full rank about the optimal solution, the sum of rank
one matrices must be positive definite, and the number of summands thus must exceed r(nr + nc).

Using this intuition, Jellyfish begins with an initial guess of the rank to be r = b |Ω|
3(nr+nc)c. The

additional factor of 3 is used to guaranteed a sufficient amount of redundancy in the data terms to
encourage local strong convexity.

Jellyfish prunes this initial guess of the rank by running for a few epochs, and then estimating
the singular values of the individual factors. If a significant gap in the singular values is detected,
the rank is reduced and the algorithm is rerun from scratch with this smaller rank. We note that
in our implementation, rather than computing an exact SVD of L and R, we sample 2r log r rows
of L and compute the SVD of this considerably smaller matrix. This sampling scheme has been
shown by many authors to provide high quality estimates of the true spectrum of the larger matrix
(see, for example, [13]). The main advantage of this approximate SVD is that it can be computed
in time O(r3 log(r)), which is nearly instantaneuous when compared to the other subroutines of
Jellyfish.
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4 Experiments

We first verify our most important conceptual claim: that our parallel incremental gradient algo-
rithm can achieve state-of-the-art performance on large scale matrix factorization problems orders
of magnitudes faster than existing techniques. We then validate our technical contributions using
scalability, scale-up, and lesion studies.

Experimental setup: All experiments are run on an identical configuration: a dual Xeon X650
CPUs (6 cores each x 2 hyperthreading) machine with 24GB of RAM and a software RAID-0 over
4 2TB Seagate Constellation 7200RPM disks. The kernel is Linux 2.6.18-128. All experiments were
run using a random seed generated by the machine clock, and experiments were repeated several
times (as described below) to emphasize that there was little dependence on the random number
generator.

4.1 Random low-rank matrices

In our first batch of experiments, we generated hundreds of different problem instances. We exper-
imented with different sizes of matrices, different ranks, and different amounts of noise. For a fixed
choice of the number of rows nr, number of columns nc, rank r, and noise level σ2, we generated a
low-rank matrix M = YLY

∗
R where YL and YR have i.i.d. Gaussian entries and are normalized so

the average squared magnitude of M is 1.
A train set was generated by sampling βr(nr + nc − r) entries from M and adding noise with

variance σ2. β is a parameter and chosen to be either 3, 5, or 10. These entries were provided to
Jellyfish and used to fit the unknown low-rank matrix. The number of samples is chosen to be
a multiple of the number of parameters in the hidden low-rank model, r(nr + nc − r). A test set
was generated with 1% of the number of examples as in the training set and created without any
additive noise. This set is used to validate that the algorithm does not overfit the train set and
provides evidence that we correctly reconstruct M .

The goal of these experiments was to minimize the nuclear norm regularized problem

minimizeX
∑

(i,j)∈Ω

(Xij −Mij)
2 + µ‖X‖∗

where Ω denotes the training set. On each instance ran Jellyfish for 40 epochs using the rank
detection heuristic described in Section 3.6. We always dedicated 10 cores to gradient computations
and 2 cores to permuting and organizing the data. We chose the gradient step-size to start at 0.1
and then reduced this step-size by a factor of 0.9 after each epoch. We found empirically that
when we used our rank identification heuristic, Jellyfish was very insensitive to the choice of the
regularization parameter µ. That is, we were able to achieve the same error on the validation set
for all sufficiently small µ. See Figure 2. We conjecture that this is because our explicit matrix
factorization serves to regularize the problem by reducing the size of the parameter space. We
emphasize that this insensitivity to the rank appears special to these random gaussian problems,
and is not a general feature. Here, we report results with µ = 1e-5.

The total CPU time and the root-mean-square error (RMSE) achieved on both the train and
test sets were recorded at each epoch. The results are tabulated in the appendix, scanning 243
different instances.

We compared our Jellyfish implementation to the fastest freely distributed code that we
could find NNLS [39]. While there are many codes for matrix completion, NNLS consistently
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Figure 2: Sensitivity to µ in random matrix completion experiments. This is for a fixed sampling
of a fixed 1000× 5000, rank 10 matrix (β = 5, σ2 = 10−2). The same experiment was run 5 times
for each value of µ. We plot the average test error here.

returns the fastest results most accurately (see [3] for a comparison of several different matrix
completion codes). NNLS runs an implementation of Nesterov’s accelerated method for composite
gradient descent [30]. The code employs several heuristics to accelerate the individual iterations
which use iterative singular value decompositions and implements a continuation scheme for the
regularization parameter µ. NNLS was written in Matlab, and some of the functions are available
as mex files to speed up processing time. Unfortunately, the mex version is somewhat unstable and
frequently crashes. Though we have been in contact with the authors, we have not been able to
get a consistent build of NNLS with mex optimizations at the time of this submission. Hence, we
compare Jellyfish against the non-mex version of NNLS, compiled using Matlab’s mcc compiler.1

We plot performance profiles comparing NNLS and Jellyfish in Figure 3 [12]. Recall that a
performance profile is an empirical cumulative distribution comparing some statistic α(s, i) indexed
by a set of solvers (s) and a set of instances (i). For a fixed solver, s, the performance profile fs is
given by

fs(τ) =
|{i : α(s, i) < τ mins α(s, i)}|

number of instances

That is, how frequently is α less than τ times the minimum achievable value of the test statistic.
We plot the profiles of train RMSE, test RMSE, and total computation time. Jellyfish is always
faster than NNLS, and is up to 25 times faster even on these small problems. On over 86% of the
instances, the Jellyfish returns either lower test RMSE than NNLS or at most a factor of 2 worse.

The discrepancy in the performance profiles for RMSE can be explained by four instances
where Jellyfish yields test RMSE more than 10 times worse than NNLS. However, when we
rerun all of these instances, the minimum training error is always better than NNLS. That is,
Jellyfish converges to a local optimum in some instances, but the quality of this solution can
always be improved by running with a different random seed. We demonstrate this phenomenon
in Figure 4. Since Jellyfish is always at least 5 times faster than NNLS, it makes sense to restart
the computation if a suspiciously high RMSE is acquired. Moreover, such a restart is trivially

1We were also unable to find any implementations of similar algorithms written in a low-level language such as
C. While coding directly in C or Fortran would likely yield a version of NNLS which is considerably faster than the
Matlab version, we doubt that it would yield the hundred-fold speedups necessary to be competitive with Jellyfish.
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Figure 3: Performance profiles for (A) train RMSE (B) test RMSE (C) and solver time. In all
graphs, Jellyfish is plotted with a solid line and NNLS is plotted with a dashed line.

NNLS initial final
nc rank β σ2 train test train test train test

RMSE RMSE RMSE RMSE RMSE RMSE

1000 20 3 1e-3 2.59e-2 2.39e-2 1.58e-1 2.41e-1 2.56e-2 2.39e-2
1000 20 3 1e-4 8.18e-3 7.33e-2 1.52e-1 2.42e-1 8.18e-2 7.35e-2
5000 10 3 1e-4 8.18e-3 7.47e-3 2.45e-1 3.59e-1 8.73e-3 1.11e-2
10000 10 3 1e-4 8.21e-3 9.32e-3 2.35e-1 3.44e-1 8.55e-3 1.72e-2

Figure 4: Demonstrating that bad results can be fixed by running again. Here we show 4 instances
where Jellyfish returned an solution with error more than 10x larger than NNLS. When we rerun
from a different starting position, the difference between our old and new results evaporate.

parallelizable, as we can run from different starting points on completely different machines or on
disjoint sets of cores.

Note that the performance profiles are for only for very small problems (1000 rows). On larger
problems, the speedups are far more dramatic. For instance, on a problem with 100K rows and 500K
columns, NNLS takes 8 hours to complete, while Jellyfish takes a mere 3 minutes. Even with
the mex optimization, NNLS will always be at least an order of magnitude slower than Jellyfish.
We were even able to run Jellyfish on an instance with 1 million rows and columns, with rank
10 and β = 5. This instance required less than 18 minutes to run.

Dataset Dim #Example Size

F
a
c
t. Movielens1M 6k × 4k 1M 24M

Movielens10M 72k × 65k 10M 225M
Netflix 480k × 18k 100M 1.4G

Figure 5: Recommendation data set statistics.
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Figure 6: Low-Rank Factorization Graph on (A) Movielens1M and (B) Movielens10M.

4.2 Collaborative filtering experiments

Recommendation Tasks. We also tested our formulation at solving movie recommendation tasks
on the Movielens (1M and 10M rating data sets) and Netflix Prize data sets. In these sets, tables
indexed by movie id and user id are provided, and the goal is to infer the values in an unseen test
set. The ratings are on an integer scale from 1 to 5. While it is not clear that matrix factorization
is the only solution to this problem, several researchers have shown that this approach can yield
high quality predictions [14,21]. In our experiments, we test a γ2-norm formulation

minimize
∑

(i,j)∈Ω

(Xij −Mij − c)2 subject to ‖X‖γ2 ≤ B .

with B = 1.5 and c set to be the mean of Mij on Ω. In Figure 6, we plot on the x-axis the
time during execution (in log scale) and the y-axis the current quality of the solution. We run all
algorithms for a total of 20 epochs. The gradient stepsize is initialized at 5e-2 and is reduced by
a factor of 0.8 after each epoch. The rank 30 is chosen throughout as it provides a nearly optimal
test error on all data sets. The rank selection heuristic suggested in Section 3.6 did not provide an
improvement over the fixed rank of 30.

We compare against implementations in Matlab that we hand tuned to be as fast as possible
and then compiled using mcc. This same Matlab code was used to perform the experiments in Lee
et al [22]. Rather than using one example per incremental gradient step, this code uses randomly
sampled batches of size 100, 000 to estimate the gradient of the least-squares costs and additionally
implements a “momentum” parameter for over-relaxation. This method is referred to in the figures
as ML-RBS (MatLab, Regularized, Batch Stochastic). We also compare against a straightforward
implementation with only modest tuning called ML-PFS (Projected Fully Stochastic). Jellyfish
is much faster than all competitor implementations. Figure 7(A) shows that the trend continues
as we scale up to the larger Netflix data set. This suggests that the gap between our algorithms
and the competitors will increase with the data set size.

4.3 Sampling and scheduling

We validate the technical details of contributions.
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Figure 7: (A) Low-rank Netflix. (B) Time-per-epoch for Jellyfish for varying number of threads.

Thread scaling . We validate our scheduling algorithms with a thread scale-up experiment. In
Figure 7(B), we force the scheduler to use the number of worker threads (i.e., threads running
gradients) indicated on the x axis and measure the average time per single epoch for Jellyfish
on MovieLens1M (reported on the y axis). We also verify that the worker threads do not wait
on shuffling. Moving from left-to-right in the graph, we see that as we add threads, the running
time decreases to a sweet spot around 11 threads. This downward trend verifies our claim that our
approach to factored models provides a large improvement over the sequential approach (which is
1-thread on this graph). Recall that our experiment machine has 12 physical cores. Since we use
1 core for shuffling, this gives evidence that our scheduling algorithm of saturating the available
cores can provide substantial improvement. Continuing after 11, the graph starts to trend upward
indicating longer epochs (although the operating system reports 24 processors). If our scheduling
algorithm were to use these processors, our performance would substantially degrade. This suggests
that our performance is essentially data access bound (hyperthreading splits the caches between
the two threads that operate on the same core).

This experiment also confirms that it is worthwhile, if available, to dedicate a core to shuffling.
If we do not use that core then each epoch is lengthened here on average by almost 0.1 seconds
which is approximately 90% of an epoch. That is, a sequential shuffle would almost double the
time of a single epoch (we separately confirmed this assertion).

Without-replacement sampling . We validate that without-replacement sampling allows
faster rates of convergence (we describe this in theoretical detail in the next section). To ver-
ify this assertion, we run the Netflix data set in Jellyfish and force it to shuffle the data in three
ways: (1) without-replacement at each epoch (WO), (2) with-replacement shuffling (WR), and (3)
a deterministic order (No Shuffle). In the No Shuffle approach, since there is no need to shuffle
data, we can and do use an additional core for computation. The other two approaches use 11
cores to compute the gradient and 1 core for shuffling using the appropriate shuffling algorithm.
Figure 8(B) shows the running time (x-axis) versus the RMSE while (A) plots each epoch versus
RMSE. We can see is that No Shuffle converges substantially slower than either random order in
terms of epochs. Moreover, without-replacement shuffle converges notably faster per epoch. The
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Figure 8: Effect of Order on Epochs v. RMSE on Netflix.

reported runs above are averaged, but on every run, without-replacement sampling had a lower
RMSE than with-replacement sampling on every epoch. We also observed that the shuffle phase
for with-replacement shuffling took significantly more time than without-replacement shuffling (al-
most 20s to shuffle Netflix). This further justifies our decision to pursue without-replacement
sampling.

5 Discussion and Open Questions

Our stochastic block partitioning scheme should have many applications to different model geome-
tries that arise in data analysis. Our techniques could be applied to different matrix factorization
techniques, such as the over-relaxation scheme proposed by Wen et al [41]. Another straightforward
extension would be to data mining of low-rank tensors [20] where the block partitioning would be
over high dimensional data cubes. We are also interested in adapting our code to enable near-real
time updating of factor models under changing conditions. Such an adaptation could be useful
in recommender systems where users are constantly updating their preferences and could also be
extended to finding anomalies in network traffic behavior [3].

The success of our stochastic parallelization heuristic also raises several interesting theoretical
questions. A key insight that underlies our algorithm is that we can constrain the ordering of the
steps in the incremental gradient method to yield parallelism. But, this begs a simpler (and far
deeper) question: What effect does the ordering have on the convergence rate of the incremental
gradient method? To answer this question, we first need to understand the discrepancy in con-
vergence rate between with- and without-replacement sampling for incremental gradients (which,
as mentioned above, is long-standing open problem in optimization [5, pg. 628]). Certainly, with-
replacement sampling may suffer from a coupon collector’s penalty, i.e., with-replacement sampling
may require a logarithmic factor more samples just to touch all of the summands in the objective
function. When the number of terms is in the billions, the log factor is substantial and can lead to
significant slow-downs. However without-replacement sampling is an empirically superior sampling
regime even for small numbers of summands. Is there a straightforward analysis that can explain
such a discrepancy? We believe an answer to such a question would provide a first step toward
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understanding how to trade quality and runtime performance in sampling for gradient methods.
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Jellyfish NNLS
rank σ2 β time (s) train RMSE test RMSE time (s) train RMSE test RMSE

5

0.01
3 0.39 1.115e-01 1.723e-01 5.89 5.857e-02 2.280e-01
5 0.54 8.820e-02 5.666e-02 4.03 8.942e-02 5.099e-02
10 0.73 9.489e-02 3.397e-02 4.45 9.489e-02 3.417e-02

0.001
3 0.39 4.770e-02 8.482e-02 5.63 2.416e-02 1.361e-01
5 0.55 2.805e-02 7.075e-02 3.62 2.819e-02 1.572e-02
10 0.71 3.025e-02 1.169e-02 4.56 3.017e-02 1.076e-02

0.0001
3 0.38 3.745e-02 1.063e-01 5.78 1.524e-02 3.188e-01
5 0.52 1.225e-02 6.431e-02 4.15 8.966e-03 5.347e-03
10 0.71 9.507e-03 3.496e-03 4.44 9.499e-03 3.415e-03

10

0.01
3 0.62 8.154e-02 7.264e-02 4.53 8.128e-02 7.165e-02
5 0.86 8.954e-02 5.286e-02 5.35 8.952e-02 5.319e-02
10 1.32 9.482e-02 3.431e-02 6.25 9.482e-02 3.424e-02

0.001
3 0.63 2.664e-02 2.709e-02 4.37 2.588e-02 2.332e-02
5 0.88 2.831e-02 1.620e-02 4.99 2.829e-02 1.615e-02
10 1.28 2.999e-02 1.057e-02 6.53 2.999e-02 1.058e-02

0.0001
3 0.63 1.087e-02 2.058e-02 4.21 8.156e-03 7.410e-03
5 0.88 8.917e-03 4.909e-03 5.29 8.918e-03 4.937e-03
10 1.28 9.674e-03 3.723e-03 6.44 9.505e-03 3.304e-03

20

0.01
3 1.17 8.156e-02 6.917e-02 7.57 8.155e-02 6.940e-02
5 1.61 8.926e-02 5.166e-02 7.46 8.926e-02 5.164e-02
10 2.58 9.486e-02 3.308e-02 11.27 9.485e-02 3.306e-02

0.001
3 1.17 1.581e-01 2.406e-01 7.82 2.585e-02 2.390e-02
5 1.59 2.832e-02 1.594e-02 7.21 2.830e-02 1.593e-02
10 2.55 3.004e-02 1.096e-02 10.67 3.002e-02 1.083e-02

0.0001
3 1.16 1.519e-01 2.418e-01 8.11 8.183e-03 7.328e-03
5 1.63 9.077e-03 5.069e-03 8.27 8.949e-03 4.963e-03
10 2.52 9.496e-03 3.320e-03 11.09 9.497e-03 3.331e-03

Figure 9: 1000× 1000.
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Jellyfish NNLS
rank σ2 β time (s) train RMSE test RMSE time (s) train RMSE test RMSE

5

0.01
3 0.79 8.461e-02 9.522e-02 14.37 6.438e-02 2.702e-01
5 1.07 8.941e-02 5.521e-02 10.86 8.934e-02 5.267e-02
10 1.42 9.470e-02 3.403e-02 11.44 9.470e-02 3.410e-02

0.001
3 0.81 3.501e-02 8.706e-02 13.00 2.827e-02 2.087e-01
5 1.04 2.846e-02 3.656e-02 11.01 2.820e-02 1.665e-02
10 1.53 3.001e-02 1.060e-02 11.53 3.001e-02 1.062e-02

0.0001
3 0.80 2.057e-02 6.312e-02 12.90 1.642e-02 2.396e-01
5 1.05 9.643e-03 1.052e-02 10.88 8.973e-03 5.429e-03
10 1.41 9.582e-03 4.225e-03 11.47 9.501e-03 3.361e-03

10

0.01
3 1.31 8.186e-02 7.205e-02 12.22 8.171e-02 7.141e-02
5 1.69 8.946e-02 4.991e-02 13.38 8.946e-02 4.990e-02
10 2.68 9.486e-02 3.387e-02 18.70 9.486e-02 3.387e-02

0.001
3 1.35 2.622e-02 2.578e-02 13.65 2.577e-02 2.284e-02
5 1.78 2.832e-02 1.615e-02 14.03 2.832e-02 1.615e-02
10 2.72 2.998e-02 1.043e-02 19.55 2.998e-02 1.043e-02

0.0001
3 1.33 2.448e-01 3.593e-01 14.44 8.181e-03 7.465e-03
5 1.63 8.950e-03 5.321e-03 12.88 8.958e-03 5.270e-03
10 2.71 9.472e-03 3.350e-03 19.15 9.467e-03 3.350e-03

20

0.01
3 2.50 8.178e-02 7.376e-02 19.77 8.178e-02 7.374e-02
5 3.30 8.936e-02 4.988e-02 21.63 8.936e-02 4.986e-02
10 6.05 9.483e-02 3.327e-02 34.66 9.483e-02 3.327e-02

0.001
3 2.34 1.579e-01 2.261e-01 21.65 2.582e-02 2.279e-02
5 3.37 2.830e-02 1.587e-02 24.20 2.829e-02 1.587e-02
10 6.12 3.003e-02 1.037e-02 34.87 3.003e-02 1.036e-02

0.0001
3 2.53 8.173e-03 7.307e-03 20.86 8.194e-03 7.537e-03
5 3.41 8.972e-03 5.217e-03 24.56 8.943e-03 5.083e-03
10 6.06 9.498e-03 3.363e-03 39.07 9.494e-03 3.361e-03

Figure 10: 1000× 5000.
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Jellyfish NNLS
rank σ2 β time (s) train RMSE test RMSE time (s) train RMSE test RMSE

5

0.01
3 1.35 8.363e-02 1.128e-01 24.12 6.860e-02 2.758e-01
5 1.51 8.937e-02 5.662e-02 16.82 8.934e-02 5.517e-02
10 3.23 8.570e-02 4.904e-02 20.71 9.481e-02 3.437e-02

0.001
3 1.33 3.557e-01 4.700e-01 21.88 2.900e-02 2.270e-01
5 1.62 2.837e-02 2.202e-02 19.16 2.831e-02 1.718e-02
10 3.43 2.936e-02 1.194e-02 21.61 2.998e-02 1.096e-02

0.0001
3 1.36 1.515e-02 6.241e-02 22.36 1.383e-02 2.365e-01
5 1.61 9.638e-03 2.357e-02 18.96 8.969e-03 5.482e-03
10 2.39 9.500e-03 3.461e-03 22.03 9.500e-03 3.461e-03

10

0.01
3 2.16 8.180e-02 7.908e-02 26.60 8.174e-02 7.728e-02
5 2.69 8.929e-02 5.131e-02 25.03 8.928e-02 5.132e-02
10 4.80 9.497e-02 3.342e-02 36.15 9.496e-02 3.343e-02

0.001
3 2.11 2.592e-02 2.423e-02 22.08 2.583e-02 2.360e-02
5 2.72 2.830e-02 1.613e-02 24.57 2.830e-02 1.620e-02
10 4.81 3.004e-02 1.076e-02 37.01 3.003e-02 1.076e-02

0.0001
3 1.92 2.346e-01 3.444e-01 23.61 8.208e-03 9.318e-03
5 2.75 8.954e-03 5.148e-03 24.35 8.953e-03 5.213e-03
10 4.74 9.498e-03 3.431e-03 35.88 9.480e-03 3.431e-03

20

0.01
3 4.17 8.162e-02 7.156e-02 34.25 8.161e-02 7.175e-02
5 5.58 8.944e-02 5.100e-02 41.86 8.944e-02 5.101e-02
10 11.25 9.475e-02 3.359e-02 65.64 9.474e-02 3.359e-02

0.001
3 3.98 2.580e-02 2.311e-02 46.80 2.579e-02 2.310e-02
5 5.59 2.827e-02 1.609e-02 44.71 2.829e-02 1.616e-02
10 11.11 3.000e-02 1.064e-02 67.52 3.000e-02 1.064e-02

0.0001
3 4.12 8.172e-03 7.430e-03 43.90 8.183e-03 7.463e-03
5 5.58 8.956e-03 5.128e-03 47.44 8.957e-03 5.177e-03
10 11.18 9.490e-03 3.379e-03 65.22 9.491e-03 3.389e-03

Figure 11: 1000× 10000.

21



rank σ2 β time (s) train RMSE test RMSE

5

0.01
3 2.38 3.515e-01 6.062e-01
5 2.79 9.148e-02 6.325e-02
10 4.56 9.502e-02 3.393e-02

0.001
3 2.03 1.724e-01 3.326e-01
5 2.83 2.816e-02 1.966e-02
10 4.50 2.999e-02 1.072e-02

0.0001
3 2.15 6.353e-02 1.361e-01
5 2.87 9.715e-03 1.261e-02
10 4.44 9.495e-03 3.344e-03

10

0.01
3 3.52 8.251e-02 7.626e-02
5 4.93 8.954e-02 4.977e-02
10 9.44 9.479e-02 3.354e-02

0.001
3 3.46 2.680e-02 2.896e-02
5 4.72 2.828e-02 1.608e-02
10 9.38 3.002e-02 1.059e-02

0.0001
3 3.45 1.913e-02 4.333e-02
5 4.80 9.047e-03 5.113e-03
10 9.53 9.480e-03 3.354e-03

20

0.01
3 7.01 8.157e-02 7.104e-02
5 10.36 8.943e-02 5.086e-02
10 20.02 9.491e-02 3.339e-02

0.001
3 7.05 2.585e-02 2.280e-02
5 10.43 2.826e-02 1.588e-02
10 20.47 3.000e-02 1.050e-02

0.0001
3 7.52 8.177e-03 7.235e-03
5 10.26 8.952e-03 5.037e-03
10 20.67 9.484e-03 3.339e-03

Figure 12: 10000× 10000.
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rank σ2 β time (s) train RMSE test RMSE

5

0.01
3 5.55 8.511e-02 1.054e-01
5 8.35 8.949e-02 5.410e-02
10 13.94 9.488e-02 3.394e-02

0.001
3 5.67 3.751e-02 9.244e-02
5 7.89 2.845e-02 2.004e-02
10 14.03 3.000e-02 1.071e-02

0.0001
3 5.45 2.679e-02 8.276e-02
5 8.06 9.610e-03 1.362e-02
10 14.40 9.482e-03 3.415e-03

10

0.01
3 9.59 8.179e-02 7.559e-02
5 14.92 8.952e-02 5.156e-02
10 27.07 9.492e-02 3.363e-02

0.001
3 9.88 2.621e-02 2.688e-02
5 14.59 2.829e-02 1.607e-02
10 26.58 3.000e-02 1.059e-02

0.0001
3 9.57 8.978e-03 1.412e-02
5 14.81 8.964e-03 5.211e-03
10 28.06 9.485e-03 3.358e-03

20

0.01
3 20.09 8.164e-02 7.262e-02
5 29.55 8.944e-02 5.083e-02
10 61.80 9.488e-02 3.358e-02

0.001
3 19.89 2.582e-02 2.291e-02
5 32.48 2.828e-02 1.606e-02
10 60.96 2.999e-02 1.059e-02

0.0001
3 20.16 8.176e-03 7.345e-03
5 28.40 8.945e-03 5.125e-03
10 61.74 9.491e-03 3.361e-03

Figure 13: 10000× 50000.
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rank σ2 β time (s) train RMSE test RMSE

5

0.01
3 10.24 8.279e-02 9.575e-02
5 14.35 8.948e-02 5.309e-02
10 25.38 9.485e-02 3.402e-02

0.001
3 9.86 2.871e-02 6.618e-02
5 14.19 2.837e-02 1.857e-02
10 24.69 3.001e-02 1.083e-02

0.0001
3 9.85 1.762e-02 6.379e-02
5 14.56 9.097e-03 7.485e-03
10 23.92 9.490e-03 3.409e-03

10

0.01
3 17.30 8.175e-02 7.566e-02
5 26.73 8.947e-02 5.120e-02
10 52.41 9.488e-02 3.359e-02

0.001
3 17.41 2.593e-02 2.543e-02
5 26.26 2.828e-02 1.612e-02
10 52.56 3.000e-02 1.067e-02

0.0001
3 17.07 2.577e-01 3.922e-01
5 27.03 8.947e-03 5.150e-03
10 52.52 9.484e-03 3.366e-03

20

0.01
3 36.16 8.167e-02 7.267e-02
5 56.20 8.947e-02 5.053e-02
10 117.45 9.487e-02 3.350e-02

0.001
3 36.78 2.583e-02 2.304e-02
5 56.51 2.830e-02 1.602e-02
10 121.01 3.000e-02 1.060e-02

0.0001
3 35.01 8.172e-03 7.403e-03
5 56.06 8.949e-03 5.131e-03
10 119.00 9.486e-03 3.351e-03

Figure 14: 10000× 100000. We ran NNLS on a problem of this size with rank 10, β = 5 and noise
variance equalling 0.01. This took 600s to run, and resulted in a train RMSE of 8.948e-02 and a
test RMSE of 5.119e-02.
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rank σ2 β time (s) train RMSE test RMSE

5

0.01
3 19.21 3.794e-01 6.862e-01
5 28.25 8.644e-02 5.900e-02
10 49.32 9.486e-02 3.362e-02

0.001
3 18.55 3.343e-01 6.264e-01
5 28.57 2.890e-02 3.004e-02
10 48.65 3.000e-02 1.067e-02

0.0001
3 18.80 3.450e-01 6.397e-01
5 29.76 1.369e-02 2.762e-02
10 49.43 9.491e-03 3.409e-03

10

0.01
3 35.44 8.299e-02 8.007e-02
5 54.22 8.944e-02 5.089e-02
10 108.55 9.487e-02 3.347e-02

0.001
3 34.66 4.761e-02 8.908e-02
5 53.94 2.829e-02 1.602e-02
10 110.67 2.999e-02 1.063e-02

0.0001
3 34.16 2.212e-02 4.912e-02
5 54.44 8.949e-03 5.141e-03
10 107.48 9.489e-03 3.345e-03

20

0.01
3 78.44 8.162e-02 7.173e-02
5 123.82 8.943e-02 5.024e-02
10 265.34 9.487e-02 3.342e-02

0.001
3 78.54 2.585e-02 2.275e-02
5 122.92 2.829e-02 1.593e-02
10 264.24 3.000e-02 1.057e-02

0.0001
3 76.53 8.195e-03 7.348e-03
5 123.94 8.947e-03 5.044e-03
10 263.33 9.486e-03 3.344e-03

Figure 15: 100000× 100000.
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rank σ2 β time (s) train RMSE test RMSE

5

0.01
3 63.71 9.903e-02 1.617e-01
5 96.31 8.950e-02 5.290e-02
10 180.82 9.485e-02 3.388e-02

0.001
3 60.46 1.132e-01 2.535e-01
5 101.16 2.834e-02 2.611e-02
10 176.20 3.000e-02 1.072e-02

0.0001
3 62.91 7.936e-02 1.963e-01
5 93.44 9.716e-03 1.278e-02
10 175.51 9.486e-03 3.388e-03

10

0.01
3 117.82 8.184e-02 7.545e-02
5 193.13 8.944e-02 5.122e-02
10 388.60 9.488e-02 3.365e-02

0.001
3 126.78 2.634e-02 2.870e-02
5 195.01 2.829e-02 1.616e-02
10 383.14 3.000e-02 1.064e-02

0.0001
3 122.82 9.265e-03 1.723e-02
5 192.44 8.950e-03 5.160e-03
10 385.14 9.488e-03 3.362e-03

20

0.01
3 252.25 8.162e-02 7.229e-02
5 434.56 8.945e-02 5.053e-02
10 924.28 9.488e-02 3.352e-02

0.001
3 253.23 2.582e-02 2.287e-02
5 447.77 2.828e-02 1.596e-02
10 945.28 3.000e-02 1.059e-02

0.0001
3 246.46 8.174e-03 7.318e-03
5 432.81 8.945e-03 5.050e-03
10 931.65 9.487e-03 3.348e-03

Figure 16: 100000× 500000. We ran NNLS on a problem of this size with rank 10, β = 5 and noise
variance equalling 0.01. This took 28500s to run, and resulted in a train RMSE of 8.944e-02 and a
test RMSE of 5.121e-02.
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rank σ2 β time (s) train RMSE test RMSE

5

0.01
3 125.21 8.330e-02 9.998e-02
5 193.23 8.945e-02 5.323e-02
10 364.40 9.487e-02 3.405e-02

0.001
3 119.62 3.087e-02 7.229e-02
5 190.04 2.836e-02 1.888e-02
10 367.14 3.000e-02 1.075e-02

0.0001
3 122.64 1.642e-02 6.248e-02
5 191.49 9.160e-03 9.191e-03
10 363.12 9.486e-03 3.403e-03

10

0.01
3 246.36 8.167e-02 7.563e-02
5 390.54 8.944e-02 5.116e-02
10 784.25 9.487e-02 3.368e-02

0.001
3 239.93 2.611e-02 2.849e-02
5 394.65 2.829e-02 1.618e-02
10 799.48 3.000e-02 1.064e-02

0.0001
3 236.44 9.054e-03 1.746e-02
5 392.01 8.948e-03 5.159e-03
10 772.97 9.488e-03 3.370e-03

20

0.01
3 508.30 8.167e-02 7.272e-02
5 890.34 8.944e-02 5.060e-02
10 1910.87 9.488e-02 3.352e-02

0.001
3 502.64 2.583e-02 2.303e-02
5 872.89 2.828e-02 1.599e-02
10 1922.64 3.000e-02 1.060e-02

0.0001
3 505.03 8.175e-03 7.408e-03
5 858.09 8.945e-03 5.060e-03
10 2187.10 9.488e-03 3.350e-03

Figure 17: 100000× 1000000
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