
Decomposition Methods for Large Scale LP Decoding

Siddharth Barman∗, Xishuo Liu†, Stark C. Draper‡, Benjamin Recht §

March 2012

Abstract

When binary linear error-correcting codes are used over symmetric channels, a relaxed ver-
sion of the maximum likelihood decoding problem can be stated as a linear program (LP).
This LP decoder can be used to decode at bit-error-rates comparable to state-of-the-art belief
propagation (BP) decoders, but with significantly stronger theoretical guarantees. However, LP
decoding when implemented with standard LP solvers does not easily scale to the block lengths
of modern error correcting codes. In this paper we draw on decomposition methods from op-
timization theory, specifically the Alternating Directions Method of Multipliers (ADMM), to
develop efficient distributed algorithms for LP decoding. The key enabling technical result is
a nearly linear time algorithm for two-norm projection onto the parity polytope. This allows
us to use LP decoding, with all its theoretical guarantees, to decode large-scale error correcting
codes efficiently.

We present numerical results for two LDPC codes. The first is the rate-0.5 [2640, 1320]
“Margulis” code, the second a rate-0.77 [1057.244] code. The “waterfall” region of LP decoding
is seen to initiate at a slightly higher signal-to-noise ratio than for sum-product BP, however
an error-floor is not observed for either code, which is not the case for BP. Our implementation
of LP decoding using ADMM executes as quickly as our baseline sum-product BP decoder, is
fully parallelizable, and can be seen to implement a type of message-passing with a particularly
simple schedule.

Keywords. LP Decoding. Alternating Direction Method of Multipliers.

1 Introduction

While the problem of error correction decoding dates back at least to Richard Hamming’s seminal
work in the 1940s [19], the idea of drawing upon techniques of convex optimization to solve such
problems apparently dates only to Jon Feldman’s 2003 Ph.D. thesis [13, 15]. Feldman and his
collaborators showed that, for binary codes used over symmetric channels, a relaxed version of the
maximum likelihood (ML) decoding problem can be stated as a linear program (LP). Considering
graph-based low-density parity-check (LDPC) codes, work by Feldman et al. and later authors [42]
[44] [37] [49] demonstrates that the bit-error-rate performance of LP decoding is competitive with

∗S. Barman is with the Dept. of Computer Sciences, University of Wisconsin, Madison WI 53706 (sid@cs.wisc.edu).
†X. Liu is with the Dept. of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706

(xliu94@wisc.edu).
‡S. C. Draper is with the Dept. of Electrical and Computer Engineering, University of Wisconsin, Madison, WI

53706 (sdraper@ece.wisc.edu).
§B. Recht is with the Dept. of Computer Sciences, University of Wisconsin, Madison, WI 53706

(brecht@cs.wisc.edu).

1

that of standard sum-product (and min-sum) belief propagation (BP) decoding. Furthermore, LP
decoding comes with a certificate of correctness (ML certificate) [15] – verifying with probability
one when the decoder has found the ML codeword. And, if a high-quality expander [10, 14] or
high-girth [2] code is used, LP decoding is guaranteed to correct a constant number of bit flips.

A barrier to the adoption of LP decoding is that solving Feldman’s relaxation using generic LP
algorithms is not computationally competitive with BP. This is because standard LP solvers do
not automatically exploit the rich structure inherent to the linear program. Furthermore, unlike
BP, standard solvers do not have a distributed nature, limiting their scalability via parallelized
(and hardware-compatible) implementation. In this paper we draw upon large-scale decomposition
methods from convex optimization to develop an efficient, scalable algorithm for LP decoding. The
result is a suite of new techniques for efficient error correction of modern graph-based codes, and
insight into the elegant geometry of a fundamental convex object of error-correction, the parity
polytope.

A real-world motivation for developing efficient LP decoding algorithms comes from applications
that have extreme reliability requirements. While suitably designed LDPC codes decoded using
BP can achieve near-Shannon performance in the “waterfall” regime where the signal-to-noise ratio
(SNR) is close to the code’s threshold, they often suffer from an “error floor” in the high SNR
regime. This limits the use of LDPCs in applications such as magnetic recording and fiber-optic
transport networks. Error floors result from problematic arrangements in the graphical structure of
the code (variously termed “pseudocodewords,” “near-codewords,” “trapping sets,” “instantons,”
“absorbing sets” [18] [22] [27] [33] [11]), from the sub-optimal BP decoding algorithm, and from
the particulars of the implementation of BP. Two natural approaches to improving error floor
performance are to design codes with fewer problematic arrangements [20] [39] [47] [56] [38] [48]. or
to develop improved decoding algorithms. As LP decoders have empirically not yet been observed
to suffer from error floors [49,55], the approach taken herein is the latter.

A second motivation is that an efficient LP decoder can help to develop closer and closer
approximations of ML decoders. This is due to the strong theoretical guarantees associated with
LP solvers. When the optimum vertex identified by an LP decoder is integer, the ML certificate
property ensures that that vertex corresponds to the ML codeword. When the optimum vertex
is non-integer (a “pseudocodeword”), one is motivated to tighten the relaxation to eliminate the
problematic pseudocodeword, and try again. Various methods for tightening LP relaxations have
been proposed [50] [12] [37]. In some settings one can regularly attain ML performance with few
additional constraints [55].

In this paper, we produce a fast decomposition algorithm based on the Alternating Direction
Method of Multipliers [5] (ADMM). This is a classic technique in convex optimization and has
gained a good deal of popularity lately for solving problems in compressed sensing [1] and MAP
inference in graphical models [29]. As we describe below, when we apply the ADMM algorithm to
LP decoding, the algorithm is a message passing algorithm that bears a striking similarity to belief
propagation. Variable update their estimates of the true variable assignment based on information
(messages) from parity check and measurement nodes. The parity check nodes produce estimated
assignments of local variables based on information from the variable nodes.

To an optimization researcher, our application of ADMM would appear quite straight forward.
However, our second contribution, beyond a naive implementation of ADMM, is a very efficient
computation of the estimates at the parity checks. Each check update requires the computation
of a Euclidean projection onto the aforementioned parity polytope. In Section 4, we demonstrate

2

that this projection can be computed in log-linear time in the degree of the check. This in turn
enables us to write LP solvers with wall-clock speeds comparable to (and sometimes much faster)
belief propagation decoders.

The structure of the decoding LP has been examined before in pursuit of efficient implementa-
tion. The first attempt was by Vontobel and Koetter [43,44] where the authors used the coordinate-
ascent method to develop distributed message-passing type algorithms to solve the LP. There is
some delicacy in attaining convergence. But, when their approach is matched with an appropriate
message-passing schedule, as determined by Burshtein in [6,7], converge to the optimal solution can
be attained. Further, interior-point [40] [45] [46] [36] and revised-simplex [24] approaches have also
been applied. In a separate approach Yedida et al in [55] introduced “Difference-Map BP” decoding
which is a simple distributed algorithm that seems to recover the performance of LP decoding, but
does not have convergence guarantees.

In this paper we frame the LP decoding problem in the template of ADMM. ADMM is dis-
tributed, has strong convergence guarantees, simple scheduling, and, in general, has been observed
to be more robust than coordinate ascent. In addition, we do not have to update parameters
(step length) between iterations in ADMM. In Section 2 we introduce the LP decoding problem
and introduce notation. We set up the general formulation of ADMM problems in Section 3 and
specialize the formulation to the LP decoding problem. In Section 4 we present our main technical
contributions wherein we develop the efficient projection algorithm required. We present numerical
results in Section 5 and make some final remarks in Section 6.

2 Background

In this paper we consider a binary linear LDPC code C of length N defined by a M×N parity-check
matrix H. Each of the M parity checks, indexed by J = {1, 2, . . . ,M}, corresponds to a row in
the parity check matrix H. Codeword symbols are indexed by the set I = {1, 2, . . . , N}. The
neighborhood of a check j, denoted by Nc(j), is the set of indices i ∈ I that participate in the jth
parity check, i.e., Nc(j) = {i |Hj,i = 1}. Similarly for a component i ∈ I, Nv(i) = {j | Hj,i = 1}.
Given a vector x ∈ {0, 1}N , the jth parity-check is said to be satisfied if

∑

i∈Nc(j)
xi is even. In

other words, the set of values assigned to the xi for i ∈ Nc(j) have even parity. We say that a
length-n binary vector x is a codeword, x ∈ C, if and only if (iff) all parity checks are satisfied.
In a regular LDPC code there is a fixed constant d, such that for all checks j ∈ J , |Nc(j)| = d.
Also for all components i ∈ I, |Nv(i)| is a fixed constant. For simplicity of exposition we focus
our discussion on regular LDPC codes. Our techniques and results extend immediately to general
LDPC codes and to high density parity check codes as well.

To denote compactly the subset of coordinates of x that participate in the jth check we introduce
the matrix Pj. The matrix Pj is the binary d × N matrix that selects out the d components
of x that participate in the jth check. For example, say the neighborhood of the jth check,
Nc(j) = {i1, i2, . . . id}, where i1 < i2 < . . . < id. Then, for all k ∈ [d] the (k, ik)th entry of Pj is one
and the remaining entries are zero. For any codeword x ∈ C and for any j, Pjx is an even parity
vector of dimension d. In other words we say that Pjx ∈ Pd for all j ∈ J (a “local codeword”
constraint) where Pd is defined as

Pd = {e ∈ {0, 1}d | ‖e‖1 is even}. (2.1)

Thus, Pd is the set of codewords (the codebook) of the length-d single parity-check code.

3

We begin by describing maximum likelihood (ML) decoding and the LP relaxation proposed by
Feldman et al. Say vector x̃ is received over a discrete memoryless channel described by channel
law (conditional probability) W : X × X̃ → R≥0,

∑

x̃∈X̃ W (x̃|x) = 1 for all x ∈ X . Since the devel-

opment is for binary codes |X | = 2. There is no restriction on X̃ . Maximum likelihood decoding
selects a codeword x ∈ C that maximizes p

X̃|X(x̃|x), the probability that x̃ was received given

that x was sent. For discrete memoryless channel W , p
X̃|X(x̃|x) = ∏

i∈I W (x̃i|xi). Equivalently,

we select a codeword that maximizes
∑

i∈I logW (x̃i|xi). Let γi be the negative log-likelihood ratio,
γi := log [W (x̃i|0)/W (x̃i|1)]. Since logW (x̃i|xi) = −γixi + logW (x̃i|0), ML decoding reduces to
determining an x ∈ C that minimizes γTx =

∑

i∈I γixi. Thus, ML decoding requires minimizing a
linear function over the set of codewords.1

Feldman et al. [15] show that ML decoding is equivalent to minimizing a linear cost over the
convex hull of all codewords. In other words, minimize γTx subject to x ∈ conv(C). The feasible
region of this program is termed the “codeword” polytope. However, this polytope cannot be
described tractably. Feldman’s approach is first to relax each local codeword constraint Pjx ∈ Pd

to Pjx ∈ PPd where

PPd = conv(Pd) = conv({e ∈ {0, 1}d | ‖e‖1 is even}). (2.2)

The object PPd is called the “parity polytope”. It is the codeword polytope of the single parity-
check code (of dimension d). Thus, for any codeword x ∈ C, Pjx is a vertex of PPd for all j.
When the constraints Pjx ∈ PPd are intersected for all j ∈ J the resulting feasible space is termed
the “fundamental” polytope. Putting these ingredients together yields the LP relaxation that we
study:

minimize γTx s.t. Pjx ∈ PPd ∀ j ∈ J . (2.3)

The statement of the optimization problem in (2.3) makes it apparent that compact represen-
tation of the parity polytope PPd is crucial for efficient solution of the LP. Study of this polytope
dates back some decades. In [21] Jeroslow gives an explicit representation of the parity polytope
and shows that it has an exponential number of vertices and facets in d. Later, in [51], Yannakakis
shows that the parity polytope has small lift, meaning that it is the projection of a polynomially
faceted polytope in a dimension polynomial in d. Indeed, Yannakakis’ representation requires a
quadratic number of variables and inequalities. This is one of the descriptions discussed in [15] to
state the LP decoding problem.

Yannakakis’ representation of a vector u ∈ PPd consists of variables µs ∈ [0, 1] for all even s ≤ d.
Variable µs indicates the contribution of binary (zero/one) vectors of Hamming weight s to u. Since
u is a convex combination of even-weight binary vectors,

∑d
even s µs = 1. In addition, variables

zi,s are used to indicate the contribution to ui, the ith coordinate of u made by binary vectors of
Hamming weight s. Overall, the following set of inequalities over O(d2) variables characterize the

1This derivation applies to all binary-input DMCs. In the simulations of Section 5 we focus on the binary-input
additive white Gaussian noise (AWGN) channel. To help make the definitions more tangible we now summarize how
they specialize for the binary symmetric channel (BSC) with crossover probability p. For the BSC x̃i ∈ {0, 1}. If
x̃i = 1 then γi = log[W (1|0)/W (1|1)] = log[p/(1− p)] and if x̃i = 0 then γi = log[W (0|0)/W (0|1)] = log[(1− p)/p].

4

parity polytope (see [51] and [15] for a proof).

0 ≤ ui ≤ 1 ∀ i ∈ [d]

0 ≤ zi,s ≤ µs ∀ i ∈ [d]

d∑

even s

µs = 1

ui =
d∑

even s

zi,s ∀ i ∈ [d]

d∑

i=1

zi,s = sµs ∀ s even, s ≤ d.

This LP can be solved with standard solvers in polynomial time. However, the quadratic size of
the LP prohibits its solution with standard solvers in real-time or embedded decoding applications.
In Section 4.2 we show that any vector u ∈ PPd can always be expressed as a convex combination of
binary vectors of Hamming weight r and r+2 for some even integer r. Based on this observation we
develop a new formulation for the parity polytope that consists of O(d) variables and constraints.
This is a key step towards the development of an efficient decoding algorithm. Its smaller description
complexity also makes our formulation particularly well suited for high-density codes whose study
we leave for future work.

3 Decoupled relaxation and optimization algorithms

In this section we present the ADMM formulation of the LP decoding problem and summarize
our contributions. In Section 3.1 we introduce the general ADMM template. We specialize the
template to our problem in Section 3.2. We state the algorithm in Section 3.3 and frame it in the
language of message-passing in Section 3.4.

3.1 ADMM formulation

To make the LP (2.3) fit into the ADMM template we relax x to lie in the hypercube, x ∈ [0, 1]N ,
and add the auxiliary “replica” variables zj ∈ R

d for all j ∈ J . We work with a decoupled
parameterization of the decoding LP.

minimize γTx

subject to Pjx = zj ∀ j ∈ J
zj ∈ PPd ∀ j ∈ J
x ∈ [0, 1]N . (3.1)

The alternating direction method of multiplies works with an augmented Lagrangian which, for
this problem, is

Lµ(x,z,λ) := γTx+
∑

j∈J

λT
j (Pjx− zj)

+
µ

2

∑

j∈J

‖Pjx− zj‖22. (3.2)

5

Here λj ∈ R
d for j ∈ J are the Lagrange multipliers and µ > 0 is a fixed penalty parameter.

We use λ and z to succinctly represent the collection of λjs and zjs respectively. Note that the
augmented Lagrangian is obtained by adding the two-norm term of the residual to the ordinary
Lagrangian. The Lagrangian without the augmentation can be optimized via a dual subgradient
ascent method [4], but our experiments with this approach required far too many message passing
iterations for practical implementation. The augmented Lagrangian smoothes the dual problem
leading to much faster convergence rates in practice [31]. For the interested reader, we provide a
discussion of the standard dual ascent method in the appendix.

Let X and Z denote the feasible regions for variables x and z respectively: X = [0, 1]N and we
use z ∈ Z to mean that z1 × z2 × . . .× z|J | ∈ PPd × PPd × . . .× PPd, the |J |-fold product of PPd.
Then we can succinctly write the iterations of ADMM as

xk+1 := argminx∈X Lµ(x,z
k,λk)

zk+1 := argminz∈Z Lµ(x
k+1,z,λk)

λk+1
j := λk

j + µ
(

Pjx
k+1 − zk+1

j

)

.

The ADMM update steps involve fixing one variable and minimizing the other. In particular, xk

and zk are the kth iterate and the updates to the x and z variable are performed in an alternating
fashion. We use this framework to solve the LP relaxation proposed by Feldman et al. and hence
develop a distributed decoding algorithm.

3.2 ADMM Update Steps

The x-update corresponds to fixing z and λ (obtained from the previous iteration or initialization)
and minimizing Lµ(x,z,λ) subject to x ∈ [0, 1]N . Taking the gradient of (3.2), setting the result
to zero, and limiting the result to the hypercube X = [0, 1]N , the x-update simplifies to

x = Π[0,1]N



P−1 ×




∑

j

P T
j

(

zj −
1

µ
λj

)

− 1

µ
γ







 ,

where P =
∑

j P
T
j Pj and Π[0,1]N (·) corresponds to projecting onto the hypercube [0, 1]N . The

latter can easily be accomplished by independently projecting the components onto [0, 1]: setting
the components that are greater than 1 equal to 1, the components less than 0 equal to 0, and
leaving the remaining coordinates unchanged. Note that for any j, P T

j Pj is aN×N diagonal binary
matrix with non-zero entries at (i, i) if and only if i participates in the jth parity check (i ∈ Nc(j)).
This implies that

∑

j P
T
j Pj is a diagonal matrix with the (i, i)th entry equal to |Nv(i)|. Hence

P−1 = (
∑

j P
T
j Pj)

−1 is a diagonal matrix with 1/|Nv(i)| as the ith diagonal entry.
Component-wise, the update rule corresponds to taking the average of the corresponding replica

values, zj , adjusted by the the scaled dual variable, λj/µ, and taking a step in the negative log-

likelihood direction. For any j ∈ Nv(i) let z
(i)
j denote the component of zj that corresponds to

the ith component of x, in other words the ith component of P T
j zj . Similarly let λ

(i)
j be the ith

component of P T
j λj . With this notation the update rule for the ith component of x is

xi = Π[0,1]




1

|Nv(i)|




∑

j∈Nv(i)

(

z
(i)
j −

1

µ
λ
(i)
j

)

− 1

µ
γi







 .

6

Each variable update can be done in parallel.
The z-update corresponds to fixing x and λ and minimizing Lµ(x,λ,z) subject to zj ∈ PPd

for all j ∈ J . The relevant observation here is that the augmented Lagrangian is separable with
respect to the zjs and hence the minimization step can be decomposed (or “factored”) into |J |
separate problems, each of which be solved independently. This decouples the overall problem,
making the approach scalable.

We start from (3.2) and concentrate on the terms that involve zj . For each j ∈ J the update
is to find the zj that minimizes

µ

2
‖Pjx− zj‖22 − λT

j zj s.t. zj ∈ PPd.

Since the values of x and λ are fixed, so are Pjx and λj/µ. Setting v = Pjx+λj/µ and completing
the square we get that the desired update z∗

j is

z∗
j = argminz̃∈PPd

‖v − z̃‖22.

The z-update thus corresponds to |J | projections onto the parity polytope.

3.3 ADMM Decoding Algorithm

The complete ADMM-based algorithm is specified in the Algorithm 1 box. We declare convergence
when the replicas differ from the x variables by less than some tolerance ǫ > 0.

Algorithm 1 Given a binary N -dimensional vector x̃ ∈ {0, 1}N , parity check matrix H, and
parameters µ and ǫ, solve the decoding LP specified in (3.1)

1: Construct the negative log-likelihood vector γ based on received word x̃.
2: Construct the d×N matrix Pj for all j ∈ J .
3: Initialize zj and λj as the all zeros vector for all j ∈ J .
4: repeat

5: Update xi←
∏

[0,1]

(
1

|Nv(i)|

(
∑

j∈Nv(i)

(

z
(i)
j −1

µλ
(i)
j

)

−1
µγi

))

for all i ∈ I.
6: for all j ∈ J do

7: Set vj = Pjx+ λj/µ.
8: Update zj ← ΠPPd

(vj) where ΠPPd
(·) means project onto the parity polytope.

9: Update λj ← λj + µ (Pjx− zj).
10: end for

11: until maxj ‖Pjx− zj‖∞ < ǫ return x.

3.4 ADMM Decoding as Message Passing Algorithm

We now present a message-passing interpretation of the ADMM decoding algorithm, Algorithm 1.2

We establish this interpretation using the “normal” factor graph representation [16] (sometimes also
called “Forney-style” factor graphs). One key difference between normal factor graphs and ordinary
factor graphs is that the variables in normal factor graph representation are associated with the

2See [53] for another recent interpretation of ADMM as a message-passing algorithm.

7

edges of a regular factor graphs [23], and the constraints of the normal graph representation are
associated with both factor and variable nodes of the regular representation. See [16,25] for details.
In representing the ADMM algorithm as a message-passing algorithm the x and the replicas z are
the variables in the normal graph.

We denote by xij(k) the replica associated with the edge joining node i ∈ I and node j ∈ J ,
where k indicates the kth iteration. Note that xij1(k) = xij2(k) = xki for all j1, j2 ∈ J , where xki is
the value of xi at kth iteration in Algorithm 1. The “message” mi→j(k) := xij(k) is passed from
node i to node j at the beginning of the kth iteration. Incoming messages to check node j are
denoted asm→j(k) := {mi→j(k) : i ∈ Nc(j)}. The zj can also be interpreted as the messages passed
from check node j to the variable nodes in Nc(j), denoted as mj→(k) := {mj→i(k) : i ∈ Nc(j)}.
Let λ′

j := λj/µ and λ′
j,i := λ

(i)
j /µ. Then, for all j ∈ Nv(i)

mi→j(k + 1) =

Π[0,1]




1

|Nv(i)|
∑

j∈Nc(j)

[
mj→i(k)− λ′

j,i(k)
]
− γi

µ



 .

The z-update can be rewritten as

m j→(k + 1) = ΠPPd

(
m→j(k) + λ′

j(k)
)
.

The λ′
j updated is

λ′

j(k + 1) = λ′

j(k) + (m→j(k)−mj→(k)) .

With this interpretation, it is clear that the ADMM algorithm decouples the decoding problem and
can be performed in a distributed manner.

4 The geometric structure of PPd, and efficient projection onto

PPd

In this section we develop our efficient projection algorithm. Recall that Pd =
{
e ∈ {0, 1}d | ‖e‖1 is even

}

and that PPd = conv(Pd). Generically we say that a point v ∈ PPd if and only if there exist a
set of ei ∈ Pd such that v =

∑

i αiei where
∑

i αi = 1 and αi ≥ 0. In contrast to this generic
representation, the initial objective of this section is to develop a novel “two-slice” representation of
any point v ∈ PPd: namely that any such vector can be written as a convex combination of vectors
with Hamming weight r and r+2 for some even integer r. We will then use this representation to
construct an efficient projection.

We open the section in Section 4.1 by describing the structured geometry of PPd that we
leverage, and laying out the results that will follow in ensuing sections. In Section 4.2, we prove
a few necessary lemmas illustrating some of the symmetry structure of the parity polytope. In
Section 4.3 we develop the two-slice representation and connect the ℓ1-norm of the projection of
any v ∈ R

d onto PPd to the (easily computed) “constituent parity” of the projection of v onto the
unit hypercube. In Section 4.4 we present the projection algorithm.

4.1 Introduction to the geometry of PPd

In this section we discuss the geometry of PPd. We develop intuition and foreshadow the results to
come. We start by making a few observations about PPd.

8

• First, we can classify the vertices of PPd by their weight. We do this by defining P
r
d, the

constant-weight analog of Pd, to be the set of weight-r vertices of PPd:

P
r
d = {e ∈ {0, 1}d | ‖e‖1 = r}, (4.1)

i.e., the constant-weight-r subcode of Pd. Since all elements of Pd are in some P
r
d for some

even r, Pd = ∪0≤r≤d : r evenP
r
d. This gives us a new way to think about characterizing the

parity polytope,
PPd = conv(∪0≤r≤d : r even P

r
d).

• Second, we define PP
r
d to be the convex hull of Pr

d,

PP
r
d = conv(Pr

d) = conv({e∈{0, 1}d | ‖e‖1=r}). (4.2)

This object is a “permutahedron”, so termed because it is the convex hull of all permutations
of a single vector; in this case a length-d binary vector with r ones. Of course,

PPd = conv(∪0≤r≤d : r evenPP
r
d).

• Third, define the affine hyper-plane consisting of all vectors whose components sum to r as

Hr
d = {x ∈ R

d|1Tx = r}

where 1 is the length-d all-ones vector. We can visualize PP
r
d as a “slice” through the the

parity polytope defined as the intersection of Hr
d with PPd. In other words, a definition of

PP
r
d equivalent to (4.2) is

PP
r
d = PPd ∩Hr

d,

for r an even integer.

• Finally, we note that the PP
r
d are all parallel. This follows since all vectors lying in any of

these permutahedra are orthogonal to 1. We can think of the line segment that connects the
origin to 1 as the major axis of the parity polytope with each “slice” orthogonal to the axis.

The above observations regarding the geometry of PPd are illustrated in Fig. 1. Our development
will be as follows. First, in Sec. 4.2 we draw on a theorem from [28] about the geometry of
permutahedra to assert that a point v ∈ R

d is in PP
r
d if and only if a sorted version of v is

majorized (see Definition 4.3) by the length-d vector consisting of r ones followed by d − r zeros
(the sorted version of any vertex of PPr

d). This allows us to characterize the PP
r
d easily.

Second, we rewrite any point u ∈ PPd as, per our second bullet above, a convex combination
of points in slices of different weights r. In other words u =

∑

0≤r≤d : r even αrur where ur ∈ PP
r
d

and the αr are the convex weightings. We develop a useful characterization of PPd, the “two-
slice” Lemma 4.6, that shows that two slices always suffices. In other words we can always write
u = αur+(1−α)ur+2 where ur ∈ PP

r
d, ur+2 ∈ PP

r+2
d , 0 ≤ α ≤ 1, and r = ⌊‖u‖⌋even, where ⌊a⌋even

is the largest even integer less than or equal to a. We term the lower weight, r, the “constituent”
parity of the vector.

Third, in Sec. 4.3 we show that given a point v ∈ R
d that we wish to project onto PPd, it is

easy to identify the constituent parity of the projection. To express this formally, let ΠPPd
(v) be

9

(11111)

(10111)(01111)

PP
4
5

PP
2
5

(
2
5
2
5
2
5
2
5
2
5

)

(11000)

(10100)

(00000)

(
4
5
4
5
4
5
4
5
4
5

)

(11011)

(11101)

(11100)

Figure 1: The parity polytope PPd can be expressed as the convex hull of “slices” through
PPd, each of which contains all weight-r vertices. These sets, PPr

d
are permutahedra. They are

all orthogonal to the line segment connecting the origin to the all-ones vector. The geometry
is sketched for d = 5.

the projection of v onto PPd. Then, our statement is that we can easily find the even integer r
such that ΠPPd

(v) can be expressed as a convex combination of vectors in PP
r
d and PP

r+2
d .

Finally, in Sec. 4.4 we develop our projection algorithm. Roughly, our approach is as follows.
Given a vector v ∈ R

d we first compute r, the constituent parity of its projection. Given the
two-slice representation, projecting onto PPd is equivalent to determining an α ∈ [0, 1], a vector
a ∈ PP

r
d, and a vector b ∈ PP

r+2
d such that the ℓ2 norm of v − αa− (1− α)b is minimized.

In [3] we showed that, given α, this projection can be accomplished in two steps. We first
project v onto αPPr

d = {x ∈ R
d|0 ≤ xi ≤ α,

∑d
i=1 xi = αr} a scaled version of PPr

d, scaled by
the convex weighting parameter. Then we project the residual onto (1− α)PPr

d. The object αPPr
d

is an ℓ1 ball with box constraints. Projection onto αPPr
d can be done efficiently using a type of

waterfilling. Since the function min
a∈PPr

d, b∈PP
r+2

d
‖v−αa−(1−α)b‖22 is convex in α we can perform

perform a one-dimensional line search (using, for example, the secant method) to determine the
optimal value for α and thence the desired projection.

In contrast to the original approach, in Section 4.4 we develop a far more efficient algorithm that
avoids the pair of projections and the search for α. In particular, taking advantage of the convexity
in α we use majorization to characterize the convex hull of PPr

d and PP
r+2
d in terms of a few linear

constraints (inequalities). As projecting onto the parity polytope is equivalent to projecting onto
the convex hull of the two slices, we use the characterization to express the projection problem as
a quadratic program, and develop an efficient method that directly solves the quadratic program.
Avoiding the search over α yields a considerable speed-up over the original approach taken in [3].

10

4.2 Permutation Invariance of the Parity Polytope and Its Consequences

Let us first describe some of the essential features of the parity polytope that are critical to the
development of our efficient projection algorithm. First, note the following

Proposition 4.1 u ∈ PPd if and only if Σu is in the parity polytope for every permutation matrix
Σ.

This proposition follows immediately because the vertex set Pd is invariant under permutations
of the coordinate axes.

Since we will be primarily concerned with projections onto the parity polytope, let us consider
the optimization problem

minimizez‖v − z‖2 subject to z ∈ PPd . (4.3)

The optimal z∗ of this problem is the Euclidean projection of v onto PPd, which we denote by
z∗ = ΠPPd

(v). Again using the symmetric nature of PPd, we can show the useful fact that if v is
sorted in descending order, then so is ΠPPd

(v).

Proposition 4.2 Given a vector v ∈ R
d, the component-wise ordering of ΠPPd

(v) is same as that
of v.

Proof We prove the claim by contradiction. Write z∗ = ΠPPd
(v) and suppose that for indices i

and j we have vi > vj but z
∗
i < z∗j . Since all permutations of z∗ are in the parity polytope, we can

swap components i and j of z∗ to obtain another vector in PPd. Under the assumption z∗j > z∗i and

vi − vj > 0 we have z∗j (vi − vj) > z∗i (vi − vj). This inequality implies that (vi − z∗i)
2 + (vj − z∗j)

2 >

(vi − z∗j)
2 + (vj − z∗i)

2, and hence we get that the Euclidean distance between v and z∗ is greater
than the Euclidean distance between v and the vector obtained by swapping the components.

These two propositions allow us assume through the remainder of this section that our vectors
are presented sorted in descending order unless explicitly stated otherwise.

The permutation invariance of the parity polytope also lets us also employ powerful tools
from the theory of majorization to simplify membership testing and projection. The fundamental
theorem we exploit is based on the following definition.

Definition 4.3 Let u and w be d-vectors sorted in decreasing order. The vector w majorizes u if

q
∑

k=1

uk ≤
q

∑

k=1

wk ∀ 1 ≤ q < d,

d∑

k=1

uk =
d∑

k=1

wk .

Our results rely on the following Theorem, which states that a vector lies in the convex hull of
all permutations of another vector if and only if the former is majorized by the latter (see [28] and
references therein).

Theorem 4.4 Suppose u and w are d-vectors sorted in decreasing order. Then u is in the convex
hull of all permutations of w if and only if w majorizes u.

11

To gain intuition for why this theorem might hold, suppose that u is in the convex hull of all
of the permutations of w. Then u =

∑n
i=1 piΣiw with Σi being permutation matrices, pi ≥ 0, and

1Tp = 1. The matrix Q =
∑n

i=1 piΣi is doubly stochastic, and one can immediately check that if
u = Qw and Q is doubly stochastic, then w majorizes u.

To apply majorization theory to the parity polytope, begin with one of the permutahedra PP
s
d.

We recall that PPs
d is equal to the convex hull of all binary vectors with weight s, equivalently the

convex hull of all permutations of the vector consisting of s ones followed by d− s zeros. Thus, by
Theorem 4.4, u ∈ [0, 1]d is in PP

s
d if and only if

q
∑

k=1

uk ≤ min(q, s) ∀ 1 ≤ q < d, (4.4)

d∑

k=1

uk = s. (4.5)

The parity polytope PPd is simply the convex hull of all of the PP
s
d with s even. Thus, we

can use majorization to provide an alternative characterization of the parity polytope to that of
Yannakakis or Jeroslow.

Lemma 4.5 A sorted vector u ∈ PPd if and only if there exist non-negative coefficients {µs}even s≤d

such that

d∑

s even

µs = 1, µs ≥ 0. (4.6)

q
∑

k=1

uk ≤
d∑

s even

µsmin(q, s) ∀ 1 ≤ q < d (4.7)

d∑

k=1

uk =

d∑

s even

µss. (4.8)

Proof First, note that every vertex of PPd of weight s satisfies these inequalities with µs = 1 and
µs′ = 0 for s′ 6= s. Thus u ∈ PPd must satisfy (4.6)-(4.8). Conversely, if u satisfies (4.6)-(4.8), then
u is majorized by the vector

w =

d∑

s even

µsbs

where bs is a vector consisting of s ones followed by d − s zeros. w is contained in PPd as are all
of its permutations. Thus, we conclude that u is also contained in PPd.

While Lemma 4.5 characterizes the containment of a vector in PPd, the relationship is not one-
to-one; for a particular u ∈ PPd there can be many sets {µs} that satisfy the lemma. We will next
show that there is always one assignment of µs with only two non-zero µs.

12

4.3 Constituent Parity of the Projection

For a ∈ R, let ⌊a⌋even denote the “even-floor” of a, i.e., the largest even integer r such that r ≤ a.
Define the “even-ceiling,” ⌈a⌉even similarly. For a vector u we term ⌊‖u‖1⌋even the constituent parity
of vector u. In this section we will show that if u ∈ PPd has constituent parity r, then it can be
written as a convex combination of binary vectors with weight equal to r and r + 2. This result is
summarized by the following

Lemma 4.6 (“Two-slice” lemma) A vector u ∈ PPd iff u can be expressed as a convex combination
of vectors in PP

r
d and PP

r+2
d where r = ⌊‖u‖1⌋even.

Proof Consider any (sorted) u ∈ PPd. Lemma 4.5 tells us that there is always (at least one) set
{µs} that satisfy (4.6)–(4.8). Letting r be defined as in the lemma statement, we define α to be
the unique scalar between zero and one that satisfies the relation ‖u‖1 = αr + (1− α)(r + 2):

α =
2 + r − ‖u‖1

2
. (4.9)

Then, we choose the following candidate assignment: µr = α, µr+2 = 1− α, and all other µs = 0.
We show that this choice satisfies (4.6)–(4.8) which will in turn imply that there is a ur ∈ PP

r
d and

a ur+2 ∈ PP
r+2
d such that u = αur + (1− α)ur+2.

First, by the definition of α, (4.6) and (4.8) are both satisfied. Further, for the candidate set
the relations (4.7) and (4.8) simplify to

q
∑

k=1

uk ≤ αmin(q, r)+(1−α)min(q, r+2), ∀ 1≤q<d, (4.10)

d∑

k=1

uk = αr + (1− α)(r + 2). (4.11)

To show that (4.10) is satisfied is straightforward for the cases q ≤ r and q ≥ r+2. First consider any
q ≤ r. Since min(q, r) = min(q, r+2) = q, uk ≤ 1 for all k, and there are only q terms, (4.10) must
hold. Second, consider any q ≥ r+2. We use (4.11) to write

∑q
k=1 uk = αr+(1−α)(r+2)−∑d

q+1 uk.
Since uk ≥ 0 this is upper bounded by αr + (1 − α)(r + 2) which we recognize as the right-hand
side of (4.10) since r = min(q, r) and r + 2 = min(q, r + 2).

It remains to verify only one more inequality in (4.10) namely the case when q = r+1, which is

r+1∑

k=1

uk ≤ αr + (1− α)(r + 1) = r + 1− α.

To show that the above inequality holds, we maximize the right-hand-side of (4.7) across all valid
choices of {µs} and show that the resulting maximum is exactly r+ 1− α. Since this maximum is
attainable by some choice of {µs} and our choice meets that bound, our choice is a valid choice.

The logic is as follows. Since u ∈ PPd any valid choice for {µs} must satisfy (4.6) which, for
q = r + 1, is

r+1∑

k=1

uk ≤
d∑

s even

µsmin(s, r + 1). (4.12)

13

To see that across all valid choice of {µs} the largest value attainable for the right hand side is
precisely r + 1− α consider the linear program

maximize
∑

s even µsmin(s, r + 1)
subject to

∑

s even µs = 1
∑

s even µss = αr + (1− α)(r + 2)
µs ≥ 0.

The first two constraints are simply (4.6) and (4.8). Recognizing αr+ (1− α)(r+2) = r+2− 2α,
the dual program is

minimize (r + 2− 2α)λ1 + λ2

subject to λ1s+ λ2 ≥ min(s, r + 1) ∀ s even.

Setting µr = α, µr+2 = (1 − α), the other primal variable to zero, λ1 = 1/2, and λ2 = r/2, satis-
fies the Karush-Kuhn-Tucker (KKT) conditions for this primal/dual pair of LPs. The associated
optimal cost is r + 1− α. Thus, the right hand side of (4.12) is at most r + 1− α.

We have proved that if u ∈ PPd then the choice of r = ⌊‖u‖1⌋even and α as in (4.9) satisfies the
requirements of Lemma 4.5 and so we can express u as u = αur + (1 − α)ur+2. The converse—
given a vector u that is a convex combination of vectors in PP

r
d and PP

r+2
d it is in PPd—holds

becauseconv(PPr
d ∪ PP

r+2
d) ⊆ PPd.

A useful consequence of Theorem 4.4 is the following corollary.

Corollary 4.7 Let u be a vector in [0, 1]d. If
∑d

k=1 uk is an even integer then u ∈ PPd.

Proof Let
∑d

k=1 uk = s. Since u is majorized by a sorted binary vector of weight s then, by
Theorem 4.4, u ∈ PP

s
d which, in turn, implies u ∈ PPd.

We conclude this section by showing that we can easily compute the constituent parity of
ΠPPd

(v) without explicitly computing the projection of v.

Lemma 4.8 For any vector v ∈ R
d, let z = Π[0,1]d(v), the projection of v onto [0, 1]d and denote

by ΠPPd
(v) the projection of v onto the parity polytope. Then

⌊‖z‖1⌋even ≤ ‖ΠPPd
(v)‖1 ≤ ⌈‖z‖1⌉even .

That is, we can compute the constituent parity of the projection of v by projecting v onto [0, 1]d

and computing the even floor.
Proof Let ρU = ⌈‖z‖1⌉even and ρL = ⌊‖z‖1⌋even. We prove the following fact: given any y′ ∈ PPd

with ‖y′‖1 > ρU there exits a vector y ∈ [0, 1]d such that ‖y‖1 = ρU , y ∈ PPd, and ‖v − y‖22 <
‖v − y′‖22. The implication of this fact will be that any vector in the parity polytope with ℓ1 norm
strictly greater that ρU cannot be the projection of v. Similarly we can also show that any vector
with ℓ1 norm strictly less than ρL cannot be the projection on the parity polytope.

First we construct the vector y based on y′ and z. Define the set of “high” values to be the
coordinates on which y′i is greater than zi, i.e., H := {i ∈ [d] | y′i > zi}. Since by assumption
‖y′‖1 > ρU ≥ ‖z‖1 we know that |H| ≥ 1. Consider the test vector t defined component-wise as

ti =

{

zi if i ∈ H,
y′i otherwise.

14

Note that ‖t‖1 ≤ ‖z‖1 ≤ ρU < ‖y′‖1. The vector t differs from y′ only in H. Thus, by changing
(reducing) components of y′ in the set H we can obtain a vector y such that ‖y‖1 = ρU . In
particular there exists a vector y with ‖y‖1 = ρU such that y′i ≥ yi ≥ zi for i ∈ H and yi = y′i for
i /∈ H. Since the ℓ1 norm of y is even and it is in [0, 1]d we have by Corollary 4.7 that y ∈ PPd.

We next show that for all i ∈ H, |vi − yi| ≤ |vi − y′i|. The inequality will be strict for at least
one i yielding ‖v − y‖22 < ‖v − y′‖22 and thereby proving the claim.

We start by noting that y′ ∈ PPd so y′i ∈ [0, 1] for all i. Hence, if zi < y′i for some i we must
also have zi < 1, in which case vi ≤ zi since zi is the projection of vi onto [0, 1]. In summary, zi < 1
iff vi < 1 and when zi < 1 then vi ≤ zi. Therefore, if y′i > zi then zi ≥ vi. Thus for all i ∈ H
we get y′i ≥ yi ≥ zi ≥ vi where the first inequality is strict for at least one i. Since yi = y′i for
i /∈ H this means that |vi − yi| ≤ |vi − y′i| for all i where the inequality is strict for at least one
value of i. Overall, ‖v − y‖22 < ‖v − y′‖22 and both y ∈ PPd (by construction) and y′ ∈ PPd (by
assumption). Thus, y′ cannot be the projection of v onto PPd. Thus the ℓ1 norm of the projection
of v, ‖ΠPPd

(v)‖1 ≤ ρU . A similar argument shows that ‖ΠPPd
(v)‖1 ≥ ρL and so ‖ΠPPd

(v)‖1 must
lie in [ρL, ρU]

4.4 Projection Algorithm

In this section we formulate a quadratic program (Problem PQP) for the projection problem and
then develop an algorithm (Algorithm 2) that efficiently solves the quadratic program.

Given a vector v ∈ R
d, set r = ⌊‖Π[0,1]d(v)‖1⌋even. From Lemma 4.8 we know that the con-

stituent parity of z∗ := ΠPPd
(v) is r. We also know that z∗ is sorted in descending order if v is.

Let S be a (d − 1) × d matrix with diagonal entries set to 1, Si,i+1 = −1 for 1 ≤ i ≤ d − 1, and
zero everywhere else:

S =












1 −1 0 0 . . . 0 0
0 1 −1 0 . . . 0 0
0 0 1 −1 . . . 0 0
...

. . .
. . .

...
0 0 0 0 . . . −1 0
0 0 0 0 . . . 1 −1












.

The constraint that z∗ has to be sorted in decreasing order can be stated as Sz∗ ≥ 0, where 0 is
the all-zeros vector.

In addition, Lemma 4.6 implies that z∗ is a convex combination of vectors of Hamming weight
r and r + 2. Using inequality (4.10) we get that a d-vector z ∈ [0, 1]d, with

d∑

i=1

zi = αr + (1− α)(r + 2), (4.13)

is a convex combination of vectors of weight r and r + 2 iff it satisfies the following bounds:

q
∑

k=1

z(k) ≤ αmin(q, r) + (1−α)min(q, r+2) ∀ 1 ≤ q < d, (4.14)

where z(k) denotes the kth largest component of z. As we saw in the proof of Lemma 4.5, the
fact that the components of z are no more than one implies that inequalities (4.14) are satisfied

15

for all q ≤ r. Also, (4.13) enforces the inequalities for q ≥ r + 2. Therefore, inequalities in (4.14)
for q ≤ r and q ≥ r + 2 are redundant. Note that in addition we can eliminate the variable α by

solving (4.13) giving α = 1 +
r−

∑d
k=1

zk
2 (see also (4.9)). Therefore, for a sorted vector v, we can

write the projection onto PPd as the optimization problem

minimize
1

2
‖v − z‖22

subject to 0 ≤ zi ≤ 1 ∀ i

Sz ≥ 0

0 ≤ 1 +
r −∑d

k=1 zk
2

≤ 1 (4.15)

r+1∑

k=1

zk ≤ r − r −∑d
k=1 zk
2

. (4.16)

The last two constraints can be simplified as follows. First, constraint (4.15) simplifies to
r ≤∑d

k=1 zk ≤ r + 2. Next, defining the vector

fr = (1, 1, . . . , 1
︸ ︷︷ ︸

r+1

,−1,−1, . . . ,−1
︸ ︷︷ ︸

d−r−1

)T . (4.17)

we can rewrite inequality (4.16) as fT
r z ≤ r. Using these simplifications yields the final form of

our quadratic program:
Problem PQP:

minimize
1

2
‖v − z‖22

subject to 0 ≤ zi ≤ 1 ∀ i (4.18)

Sz ≥ 0 (4.19)

r ≤ 1Tz ≤ r + 2 (4.20)

fT
r z ≤ r. (4.21)

The projection algorithm we develop efficiently solves the KKT conditions of PQP. The objective
function is strongly convex and the constraints are linear. Hence, the KKT conditions are not only
necessary but also sufficient for optimality. To formulate the KKT conditions, we first construct
the Lagrangian with dual variables β, µ, γ, ξ, θ, and ζ:

L =
1

2
‖v − z‖22 − β

(
r − fT

r z
)
− µT (1− z)− γTz

− ξ
(
r + 2− 1Tz

)
− ζ(1Tz − r)− θTSz .

The KKT conditions are then given by stationarity of the Lagrangian, complementary slackness,

16

and feasibility.

z = v − βfr − µ+ γ − (ξ − ζ)1+ STθ. (4.22)

0 ≤ β ⊥ fT
r z − r ≤ 0

0 ≤ µ ⊥ z ≤ 1

0 ≤ γ ⊥ z ≥ 0

0 ≤ θ ⊥ Sz ≥ 0

0 ≤ ξ ⊥ 1Tz − r − 2 ≤ 0

0 ≤ ζ ⊥ 1Tz − r ≥ 0.

A vector z that satisfies (4.22) and the following orthogonality conditions is equal to the projection
of v onto PPd.

To proceed, set βmax = 1
2 [vr+1 − vr+2] and define the parameterized vector

z(β) := Π[0,1]d(v − βfr) . (4.23)

The following lemma implies that the optimizer of PQP, i.e., z∗ = ΠPPd
(v), is z(βopt) for some

βopt ∈ [0, βmax].

Lemma 4.9 There exists a βopt ∈ [0, βmax] such that z(βopt) satisfies the KKT conditions of the
quadratic program PQP.

Proof Note that when β > βmax we have that zr+1(β) < zr+2(β) and z(β) is ordered differently
from v and fT

r z(β) < r. Consequently z(β) cannot be the projection onto PPd for β > βmax. At
the other boundary of the interval, when β = 0 we have z(0) = Π[0,1]d(v). If fT

r z(0) = r, then

z(0) ∈ PPd by Corollary 4.7. But since z(0) is the closest point in [0, 1]d to v, it must also be the
closest point in PPd.

Assume now that fT
r z(0) > r. Taking the directional derivative with respect to β increasing,

we obtain the following:

∂fT
r z(β)

∂β
= fT

r

∂z(β)

∂β

=
∑

k: 0<zk(β)<1

−f2
r,k

= −
∣
∣{k | 1 ≤ k ≤ d, 0 < zk(β) < 1}

∣
∣ (4.24)

< 0.

proving that fT
r z(β) is a decreasing function of β. Therefore, by the mean value theorem, there

exists a βopt ∈ [0, βmax] such that fT
r z(βopt) = r.

First note that z(βopt) is feasible for Problem PQP. We need only verify (4.20). Recalling that
r is defined as r = ⌊‖Π[0,1]d(v)‖1⌋even, we get the lower bound:

1Tz(βopt) ≥ fT
r z(βopt) = r.

The components of z(βopt) are all less than one, so
∑r+1

k=1 zk(βopt) ≤ r + 1. Combining this with

the equality fT
r z(βopt) = r tells us that

∑d
k=r+2 zk(βopt) ≤ 1. We therefore find that 1Tz(βopt) is

no more than r + 2.

17

To complete the proof, we need only find dual variables to certify the optimality. Setting ξ, ζ,
and θ to zero, and µ and γ to the values required to satisfy (4.22) provides the necessary assignments
to satisfy the KKT conditions.

Lemma 4.9 thus certifies that all we need to do to compute the projection is to compute the
optimal β. To do so, we use the fact that the function fT

r z(β) is a piecewise linear function of β.
For a fixed β, define the active set to be the indices where z(β) is strictly between 0 and 1

A(β) := {k | 1 ≤ k ≤ d, 0 < zk(β) < 1} . (4.25)

Let the clipped set be the indices where z(β) is equal to 1.

C(β) := {k | 1 ≤ k ≤ d, zk(β) = 1} . (4.26)

Let the zero set be the indices where z(β) is equal to zero

Z(β) := {k | 1 ≤ k ≤ d, zk(β) = 0} . (4.27)

Note that with these definitions, we have

fT
r z(β) = |C(β)| +

∑

j∈A(β)

(zj − β)

= |C(β)| − β|A(β)|+
∑

j∈A(β)

zj (4.28)

Our algorithm simply increases beta until the active set changes, keeping track of the sets A(β),
C(β), and Z(β). We break the interval [0, βmax] into the locations where the active set changes,
and compute the value of fT

r z(β) at each of these breakpoints until fT
r z(β) < r. At this point,

we have located the appropriate active set for optimality and can find βopt by solving the linear
equation (4.28).

The breakpoints themselves are easy to find: they are the values of β where an index is set
equal to one or equal to zero. First, define the following sets

B1 := {vi − 1 | 1 ≤ i ≤ r + 1},
B2 := {vi | 1 ≤ i ≤ r + 1},
B3 := {−vi | r + 2 ≤ i ≤ d},
B4 := {−vi + 1 | r + 2 ≤ i ≤ d}.

The sets B1 and B2 concern the r+1 largest components of v; B3 and B4 the smallest components.
The set of breakpoints is

B :=






β ∈

4⋃

j=1

Bj

∣
∣
∣
∣
∣
∣

0 ≤ β ≤ βmax






∪ {0, βmax}.

There are thus at most 2d+ 2 breakpoints.
To summarize, our Algorithm 2 sorts the input vector, computes the set of breakpoints, and

then marches through the breakpoints until it finds a value of βi ∈ B with fT
r z(βi) ≤ r. Since we

18

fT
r z(β)

r

0 βi−1 βopt βi+1 βmax

β

Figure 2: Since there are a finite number of breakpoints (at most 2d + 2) and the function
fT
r z(β) is linear between breakpoints, we can solve for βopt in linear time. See (4.17) and

(4.23) for definitions of fr and z(β) respectively.

will also have fT
r z(βi−1) > r, the optimal β will lie in [βi−1, βi] and can be found by solving (4.28).

In the algorithm box for Algorithm 2, b is the largest and a is the smallest index in the active set.
We use V to denote the sum of the elements in the active set and Λ the total sum of the vector at
the current break point. Some of the awkward if statements in the main for loop take care of the
cases when the input vector has many repeated entries.

Algorithm 2 requires two sorts (sorting the input vector and sorting the breakpoints), and then
an inspection of at most 2d breakpoints. Thus, the total complexity of the algorithm is linear plus
the time for the two sorts.

5 Numerical results and implementation

In this section, we present simulation results for the ADMM decoder and discuss various aspects
of our implementation. In Section 5.1 we present word-error-rate (WER) results for two LDPC
codes. In Section 5.2 we discuss how the various parameters choices in ADMM affect decoding
performance, as measured by error rate and by decoding time.

5.1 Error-rate performance

In this section we present WER results for the ADMM decoder. We present simulation results for
two codes and compare to sum-product BP decoding. We simulate both codes over the AWGN
channel with binary inputs. The first code is the [2640, 1320] rate-0.5, (3, 6)-regular Margulis LDPC
code [35]. The second is a [1057, 244] rate-0.77, (3, 13)-regular LDPC code obtained from [26]. This
code is also studied by Yedidia et al. [55]. We choose both codes as they have been chosen in the
past to study error-floor performance.

In Fig. 3 we plot the WER performance of the Margulis code for the ADMM decoder and
various implementations of sum-product BP decoding. As mentioned, this code has been extensively
studied in the literature due to its error floor behavior (see, e.g., [8, 27, 35]). Recently it has been

19

Algorithm 2 Given u ∈ R
d determine its projection on PPd, z

∗

1: Permute u to produce a vector v whose components are sorted in decreasing order, i.e., v1 ≥
v2 ≥ . . . ≥ vd. Let Q be the corresponding permutation matrix, i.e., v = Qu.

2: Compute ẑ ← Π[0,1]d(v).

3: Assign r = ⌊‖ẑ‖1⌋even and βmax = 1
2 [ẑr+1 − ẑr+2].

4: Define fr as in (4.17).
5: if fT

r+1ẑ ≤ r then

6: Return z∗ = ẑ.
7: end if

8: Assign E1 = {vi − 1 | 1 ≤ i ≤ r + 1},
L1 = {vi | 1 ≤ i ≤ r + 1},
E2 = {−vi | r + 2 ≤ i ≤ d},
L2 = {−vi + 1 | r + 2 ≤ i ≤ d}.

9: Assign the set of breakpoints:

B :=
{

β ∈ ∪2j=1Ej ∪ Lj) | 0 ≤ β ≤ βmax

}

∪ {0, βmax}.
10: Index the breakpoints in B in a sorted manner to get {βi}i where β1 ≤ β2 ≤ . . . ≤ β|B|.
11: Initialize a as the smallest index such that 0 < ẑa < 1.
12: Initialize b as the largest index such that 0 < ẑb < 1.
13: Initialize sum V = fT

r ẑ.
14: for i = 1 to |B| do

15: Set β0 ← βi.
16: if βi ∈ E1 ∪ E2 then

17: Update a← a− 1.
18: Update V ← V + va.
19: else

20: Update b← b+ 1
21: Update V ← V − vb.
22: end if

23: if i < d and βi 6= βi+1 then

24: Λ← (a− 1) + V − β0(b− a+ 1)
25: if Λ ≤ r then break

26: else if i = d then

27: Λ← (a− 1) + V − β0(b− a+ 1)
28: end if

29: end for

30: if Λ > r then

31: Compute βopt ← β − r−Λ
b−a+1 .

32: else

33: β0 ← βi−1

34: a← |{j | vj − β > 1}|
35: b← r + 2 + |{j | vj + β ≥ 0}|
36: V ←∑r+1

j=b+1 vj −
∑a−1

j=r+2 vj

37: βopt ← r−b−V
b−a+1)

38: end if

39: Return z∗ = QTΠ[0,1]d(z − βoptfr).

20

1 1.5 2 2.5 3

10
−8

10
−6

10
−4

10
−2

10
0

ADMM
BP decoding (Ryan and Lin)
BP decoding (Mackay)
Non-saturating BP

SNR (dB)

w
o
rd

-e
rr
o
r-
ra
te

(W
E
R
)

Figure 3: Word error rate (WER) of the [2540, 1320] “Margulis” LDPC code used on the
AWGN channel plotted as a function of signal-to-noise ratio (SNR). The WER performance
of ADMM is compared to that of non-saturating sum-product BP, as well as to results for
(saturating) sum-product BP from Ryan and Lin [35] and from MacKay and Postol [27].

noted [8, 9] that the previously observed error floor of this code is, at least partially, a result of
saturation in the message LLRs passed by the BP decoder. This issue of implementation can be
greatly mitigated by improving the way large LLRs are handled. Thus, alongside these previous
results we plot results of our own “non-saturating” sum-product BP implementation, which follows
the implementation of [8,9], and which matches the results reported therein. In our simulations of
the ADMM decoder we collect more than 200 errors for all data points other than the highest SNR
(SNR = 2.8dB), for which we collected 10 errors.

The first aspect to note is that the LP decoder has a waterfall behavior, but it occurs at a
slightly higher SNR (about 0.4dB in this example) than that of sum-product BP. This observation
is consistent with earlier simulations of LP decoding for long block lengths, e.g., those presented
in [49, 55]. It is worth mentioning that it was show in [52] that fixed points of sum-product BP
correspond to stationary points of the Bethe approximation of the free energy when the temperature
parameter T = 1. However, when the temperature parameter in the Bethe approximation is reduced
to T = 0 minimizing the Bethe free energy is the same as LP decoding, see, e.g., [41]. While the
objective function in sum-product and LP is thus quite different, both optimization problems are
subject to the same set of constraints – the “local marginal polytope” (equivalent to the fundamental
polytope for LP decoding of binary codes, see [41] for details). Since the objective functions are
different, one should not expect identical performance, as the simulations demonstrate.

The second aspect to note is that, as in the prior work, we do not observe an error floor in
LP decoding. Considering decoding of this code using the non-saturating version of sum-product
we do not observe an abrupt error floor. However, we do see that at WERs of 10−8 the waterfall
of ADMM is continuing to steepen, while that of sum-product BP appears to be dropping at a
constant slope. In this regime we found that the non-saturating BP decoder is not converging to
a trapping set, but is rather oscillating, as discussed in [57] [34]. However, as we see in our next

21

2.5 3 3.5 4 4.5 5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

ADMM
Non-saturating BP
ML lower bound

SNR (dB)

w
o
rd

-e
rr
o
r-
ra
te

(W
E
R
)

Figure 4: Word error rate (WER) of the [1057, 244] LDPC code used on the AWGN channel
plotted as a function of signal-to-noise ratio (SNR). The WER performance of ADMM is
compared to that of non-saturating sum-product BP, as well as to an estimated lower-bound
on ML decoding.

example, there are codes for which ADMM does not display an error floor while non-saturating
sum-product BP does.

Figure 4 presents simulation results for the rate-0.77 length-1057 code. In this simulation, all
data points are based on more than 200 errors except for the ADMM data at SNR = 5dB, where
29 errors are observed. In addition we plot an estimated lower bound on maximum likelihood
(ML) decoding performances. The lower bound is estimated in the following way. In the ADMM
decoding simulations we round any non-integer solution obtained from the ADMM decoder to
produce a codeword estimate. If the decoder produces a decoding error, i.e., if the estimate does
not match the transmitted codeword, we check if the estimate is a valid codeword. If the estimate
satisfies all the parity checks (and is therefore a codeword) we also compare the probability of
the estimate given the channel observations with the that of the transmitted codeword given the
channel observations. If the probability of estimate is greater than that of the transmitted codeword
we know that an ML decoder would also be in error. All other events are counted as ML successes
(hence the estimated lower bound on ML performance). In contrast to the Margulis code, Fig. 4
shows that for this code the ADMM decoder displays no signs of an error floor, while the BP
decoder does. Further, ADMM is approaching the ML error lower bound at high SNRs.

Given the importance of error-floor effects in high reliability applications, and the contrasting
outcomes of our simulations, we now make some observations. One point demonstrated by these
experiments, in particular by the simulation of the Margulis code, (and argued in [8, 9]) is that
numerical precision effects can dramatically affect code performance in the high SNR regime. When
precision is limited, a set of incorrect (flipped) channel symbols connected together in a “trapping
set” can enforce each others’ incorrect beliefs sufficiently so as to outweigh the correct evidence
from the rest of the code. Even though the rest of the code symbols may be much more certain of
themselves, particularly if the magnitude of beliefs are limited, those limits can prevent the correct

22

variables from having sufficient influence on the symbols in the trapping set to correct them. From
a practical point of view, a real-world implementation would use fixed precision arithmetic. Thus,
understanding decoding behavior under finite precision is extremely important.

A second point made by comparing the two codes is that the performance of an algorithm,
e.g., non-saturating BP, can vary dramatically from code to code (Margulis vs. 1057) and the
performance of a code from algorithm to algorithm (BP vs. ADMM). For each algorithm we might
think about three types of codes [54]. The first (type-A) would consist of codes that do not have any
trapping sets, i.e., do not display an error floor, even for low-precision implementations. The second
(type-B) would consist of codes whose behavior changes with precision (e.g., the Margulis code).
The final (type-C) would consist of codes that have trapping sets even under infinite precision (the
length-1057 code may belong to this set). Under this taxonomy there are two natural strategies
to pursue. The first is to design codes that fall in the first class. This is the approach taken in,
e.g., [32] [17] [20] [30] [47], where codes of large-girth are sought. The second is to design improved
algorithms that enlarge the set of codes that fall into the first class. This is the approach taken
in this paper. Since the ADMM decoder has rigorous convergence guarantees, since ADMM has
historically be observed to be quite robust to parameter choices and precision settings, and since
the “messages” passed in ADMM (the replica values) are inherently bounded to the unit interval
(since the parity polytope is contained within the unit hypercube), we expect that the ADMM
decoder will be a strong competitor to BP in applications that demand ultra-high reliabilities.

5.2 Parameter choices

In the ADMM decoding algorithm there are a number of parameters that need to be set. The first
is the stopping tolerance, ǫ, the second is the penalty parameter, µ, and the third is the maximum
allowable number of iterations, tmax. In our experiments we explored the sensitivity of algorithm
behavior, in particular word-error-rate and execution-time statistics, as a function of the settings
of these parameters. In this section we present results that summarize what we learned. We
report results for the [1057, 244] LDPC code. We note that, in contrast to the simulation results
for the AWGN channel presented in the last subsection, in this section we report on simulation
results for the binary symmetric channel (BSC). We assume the BSC results from hard-decision
demodulation of a BPSK ±1 sequence transmitted over an AWGN channel. The resulting relation
between the crossover probability p of the equivalent BSC-p and the SNR of the AWGN channel is

p = Q
(√

2R · 10SNR/10
)

, where R is the rate of the code and Q(·) is the Q-function. We reported

on WER performance of ADMM decoding for this code and channel in [3].
We first explore the effects of the choice of ǫ and µ on the error rate. We comment that as long

as tmax > 300 the choice of tmax does not significantly affect the WER. In Fig. 5 we plot WER as
a function of the number of bits of stopping tolerance, i.e., − log2(ǫ). In Fig. 6 we plot WER as a
function of µ. Each data point is based on more than 200 decoding errors.

From these two figures we conclude that the performance of the ADMM decoder depends only
weakly on the settings of these two parameters, as long as the parameters are chosen sufficiently
large. For instance ǫ ≥ 10−4 and µ ≥ 2 should do. This means that the implementer has great
latitude in the choice of these parameters and can make, e.g., hardware-compatible choices. Fur-
thermore, the results on ending tolerance give hints as to the needed precision of the algorithm. If
algorithmic precision is on the order of the needed ending tolerance we expect to observe similar
error rates.

23

0 5 10 15 20 25
10

−2

10
−1

10
0

µ = 10.5
µ = 4.5
µ = 1.5

− log2(ending tolerance) = − log2(ǫ)

w
o
rd

-e
rr
o
r-
ra
te

(W
E
R
)

Figure 5: Word error rate (WER) of the [1057, 244] LDPC code for the BSC plotted as a
function of error tolerance ǫ for three difference penalty parameters µ. The SNR simulated is
5dB. The maximum number of iterations tmax is set equal to 250.

0 2 4 6 8 10
10

−3

10
−2

10
−1

SNR = 5 dB
SNR = 5.25 dB
SNR = 5.5 dB

penalty parameter, µ

w
o
rd

-e
rr
o
r-
ra
te

(W
E
R
)

Figure 6: Word error rate (WER) of the [1057, 244] LDPC code for the BSC plotted as a
function of penalty parameter µ. Error tolerance ǫ = 10−4, and maximum number of iterations
tmax = 500.

24

0 2 4 6 8 10
0.004

0.006

0.008

0.01

0.012

0.014

0.016

SNR = 5 dB
SNR = 5.25 dB
SNR = 5.2 dB

µ

ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

Figure 7: Average execution time (in seconds) of ADMM decoding the [1057, 244] code
simulated over the BSC plotted as a function of penalty parameter µ for three distinct SNRs.

We next study the effect of parameter section on average decoding time. All time statistics
were collected on a 2GHz Intel(R) Xeon(R) CPU. In Fig. 7 we plot average decoding time as a
function of µ for three SNRs. For all three ending tolerance is fixed at ǫ = 10−4. Note that based
on Fig. 6 we should choose µ > 1.5 for best WER performance. We see some weak variability in
average decoding time as a function of the choice of µ.

Now, understanding the various parameters we can tune, we summarize the choices made for
our simulation results presented in Sec. 5.1. For all simulations we made the following choices: (i)
error tolerance ǫ = 10−5, (ii) penalty µ = 5, (iii) maximum number of iterations tmax = 600 for the
[2540, 1320] code and tmax = 500 for the [1057, 244] code.

Overrelaxation A significant improvement in average decoding time results from implementing
an “over-relaxed” version of ADMM. Over-relaxed ADMM is discussed in [5, section 3.4.3] as a
method for improving convergence speed while retaining convergence guarantees.

The over-relaxation parameter γ must be in the range 1 ≤ γ < 2. If γ ≥ 2 convergence
guarantees are lost. We did simulated γ > 2 and observed an increase in average decoding time. In
Fig. 8 we plot the effect on average decoding time of over-relaxed versions of the ADMM decoder
for 1 ≤ γ ≤ 1.9. These plots are for the length-2640 Margulis code simulated over the AWGN
channel at an SNR of 2.8dB. We observe that the average decoding time drops by a factor of about
50% over the range of γ. The improvement is roughly the same for the set of penalty parameters
studied, µ ∈ {1.5, 2, 2.5, 3}. The take-away is that by choosing over-relaxation parameter γ = 1.9
we can double decoding efficiency without degradation in error-rate.

While we did not use overrelaxation in the previously discussed experiments, we would encourage
interested developers to explore proper settings of γ in their implementations.

25

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0.015

0.02

0.025

0.03

0.035

0.04

µ = 1.5
µ = 2
µ = 2.5
µ = 3

over-relaxation parameter, γ

ex
ec
u
ti
o
n
ti
m
e
(s
ec
)

Figure 8: Average execution time for ADMM decoding the [2640, 1320] Margulis code sim-
ulated over the AWGN channel at SNR = 2.8dB. Execution time (in seconds) is plotted as a
function of over-relaxation parameter γ for four different penalty parameters µ ∈ {1.5, 2, 2.5, 3}.

6 Conclusion

In this paper we apply the ADMM template to the LP decoding problem introduced in [15]. A main
technical hurdle was the development of an efficient method of projecting a point onto the parity
polytope. We accomplished this in two steps. We first introduced a new “two-slice” representation
of points in the parity polytope. We then used the representation to show that the projection via an
efficient waterfilling-type algorithm. We demonstrate the effectiveness of our decoding technique
on two codes, on the rate-0.5 [2640, 1320] “Margulis” LDPC code and the rate-0.77 [1057, 244]
LDPC code studied in [55]. We find that while similar in many aspects there are some significant
difference between the decoding behavior of LP and sum-product BP decoding. On one hand, the
waterfall of LP decoding initiates at slightly higher SNR than that of sum-product BP decoding.
But, on the other, LP decoding does not seem to have an error floor. Fully understanding LP
decoding performance in this high-SNR regime is an important future direction. What we have
seen is that LP decoding, when implemented in a distributed, scalable manner using ADMM is
a strong competitor to BP in the high-SNR regime. It allows LP decoding to be applied to long
block-length codes, to be implemented as a message-passing algorithm using a very simple message
update schedule, and to execute as fast as BP.

Acknowledgements

The authors would like to thank Matthew Anderson, Eric Bach, Brian Butler, Alex Dimakis, Paul
Siegel, Emre Telatar, Yige Wang, Jonathan Yedidia and Dalibor Zelený for useful discussions and
references.

26

References

[1] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo. An augmented Lagrangian approach to
the constrained optimization formulation of imaging inverse problems. IEEE Transactions on Image
Processing, 20(3):681–695, 2011.

[2] A. Arora, D. Steuer, and C. Daskalakis. Message-passing algorithms and improved LP decoding. In
ACM Symposium on Theory of Computing (STOC), May 2009.

[3] S. Barman, X. Liu, S. C. Draper, and B. H. Recht. Decomposition methods for large-scale linear-
programming decoding. In Proc. Allerton Conf. on Communication, Control and Computing, Monti-
cello, IL, Sept. 2011.

[4] D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimization. Athena Scientific,
Belmont, MA, 2003.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Machine Learning, 3(1):1–123, 2010.

[6] D. Burshtein. Linear complexity approximate LP decoding of LDPC codes: generalizations and im-
provements. In Proc. Int. Symp. Turbo Codes and Related Topics, Lausanne, Switzerland, Sept. 2008.

[7] D. Burshtein. Iterative approximate linear programming decoding of LDPC codes with linear complexity.
IEEE Trans. Inform. Theory, 55(11):4835–4859, 2009.

[8] B. K. Butler and P. H. Siegel. Error floor approximation for LDPC codes in the AWGN channel. In
Proc. Allerton Conf. on Communication, Control and Computing, Monticello, IL, Sept. 2011.

[9] B. K. Butler and P. H. Siegel. Error floor approximation for LDPC codes in the AWGN channel. Arxiv
preprint 1202.2826, 2012.

[10] C. Daskalakis, A. G. Dimakis, R. M. Karp, and M. J. Wainwright. Probabilistic analysis of linear
programming decoding. IEEE Trans. Inform. Theory, 54(8):3365–3578, Aug 2008.

[11] L. Dolecek, P. Lee, Z. Zhang, V. Anatharam, B. Nikolic, and M. J. Wainwright. Predicting error
floors of structured LDPC codes: deterministic bounds and estimates. IEEE J. Select. Areas Commun.,
27(6):908–917, Aug. 2009.

[12] S. C. Draper, J. S. Yedidia, and Y. Wang. ML decoding via mixed-integer adaptive linear programming
decoding. In Proc. Int. Symp. Inform. Theory, Nice, France, July 2007.

[13] J. Feldman. Decoding Error-Correcting Codes via Linear Programming. PhD thesis, Mass. Instit. of
Tech., 2003.

[14] J. Feldman, T.Malkin, R. A. Servedio, C. Stein, and M. J. Wainwright. LP decoding corrects a constant
fraction of errors. In Proc. Int. Symp. Inform. Theory, Chicago, IL, June 2004.

[15] J. Feldman, M. J. Wainwright, and D. Karger. Using linear programming to decoding binary linear
codes. IEEE Trans. Inform. Theory, 51:954–972, Mar. 2005.

[16] G. D. Forney. Codes on graphs: normal realizations. IEEE Trans. Inform. Theory, 47(2):520–548, Feb.
2001.

[17] M. P. C. Fossorier. Quasicyclic, low-density parity-check codes from circulant permutation matrices.
IEEE Trans. Inform. Theory, 50(8):1788–1793, Aug. 2004.

[18] B. J. Frey, R. Koetter, and A. Vardy. Signal-space characterization of iterative decoding. IEEE Trans.
Inform. Theory, 47:766–781, Feb. 2001.

[19] R. W. Hamming. Error detecting and error correcting codes. Bell Syst. Tech. J., 29(2):147–160, 1950.

27

[20] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold. Regular and irregular progressive edge-growth Tanner
graphs. IEEE Trans. Inform. Theory, pages 386–398, Jan. 2005.

[21] R. G. Jeroslow. On defining sets of vertices of the hypercube by linear inequalities. Discrete Mathematics,
11(2):119–124, 1975.

[22] R. Koetter and P. O. Vontobel. Graph-covers and iterative decoding of finite length codes. In Proc.
Int. Symp. Turbo Codes and Related Topics, Brest, France, 2003.

[23] F. R. Kschischang, B. J. Frey, and H. Loeliger. Factor graphs and the sum-product algorithm. IEEE
Trans. Inform. Theory, 47:498–519, Feb. 2001.

[24] H. Liu, W. Qu, B. Liu, and J. Chen. On the decomposition method for linear programming decoding
of LDPC codes. IEEE Trans. Commun., 58(12):3448–3458, Dec. 2010.

[25] H.-A. Loeliger. An introduction to factor graphs. IEEE Signal Proc. Mag., 21(1):28 – 41, Jan. 2004.

[26] D. J. C. MacKay. Encyclopedia of sparse graph codes. Available at
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

[27] D. J. C. MacKay and M. S. Postol. Weaknesses of Margulis and Ramanujan-Margulis low-density
parity-check codes. Electronic Notes in Theoretical Computer Science, 74(0):97–104, 2003.

[28] A. Marshall, I. Olkin, and A. B.C. Inequalities: theory of majorization and its applications. Springer,
2009.

[29] A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith, and E. P. Xing. An augmented
Lagrangian approach to constrained MAP inference. In Proceedings of the International Conference on
Machine Learning, 2011.

[30] O. Milenkovic, D. Leyba, and N. Kashyap. Shortened array codes of large girth. IEEE Trans. Inform.
Theory, 52(8):3707–3722, Aug. 2006.

[31] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

[32] M. E. O’Sullivan. Algebraic constructions of sparse matrices with large girth. IEEE Trans. Inform.
Theory, 52(2):718–727, feb 2006.

[33] T. Richardson. Error floors of LDPC codes. In Proc. Allerton Conf. on Communication, Control and
Computing, Monticello, IL, Oct. 2003.

[34] T. Ruozzi, J. Thaler, and S. Tatikonda. Graph covers and quadratic minimization. In Proc. Allerton
Conf. on Communication, Control and Computing, Monticello, IL, Oct. 2009.

[35] W. Ryan and S. Lin. Channel Codes: Classical and Modern. Cambridge University Press, 2009.

[36] M.-H. N. Taghavi, A. Shokrollahi, and P. H. Siegel. Efficient implementation of linear programming
decoding. IEEE Trans. Inform. Theory, 55(9):5960–5982, Sept. 2010.

[37] M.-H. N. Taghavi and P. H. Siegel. Adaptive methods for linear programming decoding. IEEE Trans.
Inform. Theory, 54(12):5396–5410, Dec. 2008.

[38] R. M. Tanner. A recursive approach to low complexity codes. IEEE Trans. Inform. Theory, 27:533–547,
Sept. 1981.

[39] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel. Construction of irregular LDPC codes with low
error floors. In Proc. Int. Conf. Commun., pages 3125–3129, Anchorage, AK, May 2003.

[40] P. Vontobel. Interior-point algorithms for linear-programming decoding. In UCSD Workshop Inform.
Theory Apps., San Diego, CA, Jan. 2008.

[41] P. O. Vontobel. Counting in graph covers: A combinatorial characterization of the Bethe entropy
function. ArXiv e-prints, Nov. 2010.

28

[42] P. O. Vontobel and R. Koetter. On the relationship between linear programming decoding and min-sum
algorithm decodign. In IEEE Int. Symp. Inform. Theory and Apps., Parma, Italy, Oct. 2004.

[43] P. O. Vontobel and R. Koetter. Towards low-complexity linear-programming decoding. In Proc. Int.
Symp. Turbo Codes and Related Topics, Munich, Germany, Apr. 2006.

[44] P. O. Vontobel and R. Koetter. On low-complexity linear-programming decoding of LDPC codes.
European transactions on telecommunications, 18(5):509–517, 2007.

[45] T. Wadayama. Interior point decoding for linear vector channels based on convex optimization. In Proc.
Int. Symp. Inform. Theory, pages 1493–1497, Toronto, CA, July 2008.

[46] T. Wadayama. An LP decoding algorithm based on primal path-following interior point method. In
Proc. Int. Symp. Inform. Theory, pages 389–393, Seoul, Korea, July 2009.

[47] Y. Wang, S. C. Draper, and J. S. Yedidia. Hierarchical and high-girth QC LDPC codes. archive preprint
1111.0711, 2011. submitted to IEEE Trans. Inform. Theory.

[48] Y. Wang and M. Fossorier. Doubly generalized LDPC codes. In Proc. Int. Symp. Inform. Theory, pages
669–673, Seattle, WA, July 2006.

[49] Y. Wang, J. S. Yedidia, and S. C. Draper. Multi-stage decoding of LDPC codes. In Proc. Int. Symp.
Inform. Theory, Seoul, South Korea, July 2009.

[50] K. Yang, J. Feldman, and X. Wang. Nonlinear programming approaches to decoding low-density parity-
check codes. IEEE J. Select. Areas Commun., 24:1603–1613, Aug. 2006.

[51] M. Yannakakis. Expressing combinatorial optimization problems by linear programs. Journal of Com-
puter and System Sciences, 43(3):441–466, 1991.

[52] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized belief
propagation algorithms. IEEE Trans. Inform. Theory, 51(7):2282 – 2312, July 2005.

[53] J. S. Yedidia. The alternating direction method of multipliers as a message-passing algorithms. Talk
delivered at the Princeton Workshop on Counting, Inference and Optimization, Oct 2011.

[54] J. S. Yedidia. A taxonomy suggested by Jonathan Yedidia in personal correspondence, Jan 2012.

[55] J. S. Yedidia, Y. Wang, and S. C. Draper. Divide and concur and difference-map BP decoders for LDPC
codes. IEEE Trans. Inform. Theory, 57(2):786–802, 2011.

[56] J. Zhang, J. S. Yedidia, and M. P. C. Fossorier. Low-latency decoding of EG LDPC codes. Journal of
Lightwave Technology, 25:2879–2886, Sept. 2007.

[57] Z. Zhang, L. Dolecek, B. Nikolic, V. Anantharam, and M. J. Wainwright. Design of LDPC decoder
for improved low error rate performance: Quantization and algorithm choices. IEEE Trans. Commun.,
57(11):3258–3268, Nov. 2009.

A Dual Subgradient Ascent

If we work with an (un-augmented) Lagrangian

L0(x,z,λ) := γTx+
∑

j∈J

λT
j (Pjx− zj)

29

the dual subgradient ascent method consists of the iterations:

xk+1 := argminx∈X L0(x,z
k,λk)

zk+1 := argminz∈Z L0(x
k,z,λk)

λk+1
j := λk

j + µ
(

Pjx
k+1 − zk+1

j

)

.

Note here that the x and z updates are run with respect to the k iterates of the other variables,
and can be run completely in parallel.

The x-update corresponds to solving the very simple LP:

minimize
(

γ +
∑

j∈J P T
j λk

j

)T
x

subject to x ∈ [0, 1]N .

This results in the assignment:

xk+1 = θ



−γ −
∑

j∈J

P T
j λk

j





where

θ(t) =

{

1 t > 0

0 t ≤ 0

is the Heaviside function.
For the z-update, we have to solve the following LP for each j ∈ J :

maximize λk
j
T
zj

subject to zj ∈ PPd.
(A.1)

Maximizing a linear function over the parity polytope can be performed in linear time. First,
note that the optimal solution necessarily occurs at a vertex, which is a binary vector with an
even hamming weight. Let r be the number of positive components in the cost vector λk

j . If r is

even, the vector v ∈ PPd which is equal to 1 where λk
j is positive and zero elsewhere is a solution

of (A.1), as making any additional components nonzero decreases the cost as does making any of
the components equal to 1 smaller. If r is odd, we only need to compare the cost of the vector
equal to 1 in the r − 1 largest components and zero elsewhere to the cost of the vector equal to 1
in the r + 1 largest components and equal to zero elsewhere.

The procedure to solve (A.1) is summarized in Algorithm 3. Note that finding the smallest
positive element and largest nonnegative element can be done in linear time. Hence, the complexity
of Algorithm 3 is O(d).

While this subgradient ascent method is quite simple, it is requires vastly more iterations than
the ADMM method, and thus we did not pursue this any further.

30

Algorithm 3 Given a binary d-dimensional vector c, maximize cTz subject to z ∈ PPd.

1: Let r be the number of positive elements in c.
2: if r is even then

3: Return z∗ where z∗i = 1 if ci > 0 and z∗i = 0 otherwise.
4: else

5: Find index ip of the smallest positive element of c.
6: Find index in of the largest non-positive element of c.
7: if cip > cin then

8: Return z∗ where z∗
i = 1 if ci > 0, z∗in = 1, and z∗i = 0 otherwise.

9: else

10: Return z∗ where z∗
i = 1 if ci > 0 and i 6= ip, z

∗
ip
= 0, and z∗i = 0 for all other i.

11: end if

12: end if

31

