Multiple Aspect Ranking
Using the Good Grief
Algorithm

Benjamin Snyder and Regina Barzilay
MIT



From One Opinion To Many

® Much previous work assumes one opinion per text.
(Turney 2002; Pang et al 2002; Pang & Lee 2005)

® Real texts contain multiple, related, opinions.
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The food was a little greasy,
Our only complaint was the service
after our order was taken.

Food Service
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Multiple Aspect Opinion
Analysis

® The Task:

Predict writer’s opinion on a fixed set of
aspects (e.g. food, service, price etc) using
a fixed scale (e.g. from |-5).

® Simple Approach:

Treat each aspect as an independent
ranking (rating) problem.



Shortcomings of
Independent Ranking

® Multiple opinions in a single text are correlated.

® Real text relates opinions in coherent,
meaningful ways.
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after our order was taken.
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Shortcomings of
Independent Ranking

® Multiple opinions in a single text are correlated.

® Real text relates opinions in coherent,
meaningful ways.
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after our order was taken.
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» Independent ranking fails to model correlations
and to exploit discourse cues.




Key Goals

® Build on previous success of simple linear
models trained with Perceptron in NLP:

p Simple, fast training
p Exact, fast decoding
p High performance

® Extend framework to tasks with complex
label dependencies:

p Task-specific dependency space
p Label dependencies sensitive to input features

p Factorization of label prediction and dependency
models



Our ldea: The Model

® |ndividual ranking model for each aspect.

® Add a“meta-model” which predicts
discourse relations between aspects. e.g.,

Service < Food < (order)
Service = Food = (agreement)
~[Service = Food = ]  (disagreement)
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Our ldea: Learning and
Inference

® Resolve differences between individual
rankers and meta-model using overall
confidence of all model components.

® Meta-model “glues together” individual
ranking decisions in coherent way.

® Optimize individual ranker parameters to
operate with meta-model through joint
Perceptron updates.
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“The restaurant was a bit uneven. Although the
food was tasty, the window curtains blocked out
all sunlight.”




Basic Ranking Framework
(Crammer & Singer 2001)

Goal:
Assign each input x € R™ arankin{l, ..., k}
Model:

weight vector: w € R"

boundaries divide real line into £ segments:

b= (by,....b5_1)



Rank Decoding




Rank Decoding

score(X) = w - X




Rank Decoding

score(X) = w - X

Output: ¢y = 3



Multiple Aspect Ranking

® Each input X has m aspects.

® e.g. reviews rate products for different
qualities -- food, service, ambience etc.

® Associated with each input X is a rank
vector r. (The component”; € {1, ..., k}
is the rank for aspect 1.)

(r=<5,3,4,4,4>"

-

food service ...
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Joint Ranking Mode|

® Ranking model for each aspect 7 :

(wli], bli])
Component
® Linear agreement model a € R" to Models
predict unanimity across aspects:
sign(a - x)
® Combine predictions of individual rankers
and agreement model:

~~ Introduce “grief terms” and choose
joint rank which minimizes their sum.



Grief of Component

gi (X7 Ti) .

Ja(X,T) 3

Models

Measure of dissatisfaction of ithaSPect

ranking model with rank 7; for
input X.

Measure of dissatisfaction of agreement
model with rank vector r for
iInput X.



Grief of i*"Ranking
Model

gi(x,7) = min ||
S.t.
bli|—1 < score;(x) + ¢ < b|i,

.

score;(X)




Grief of i*"Ranking
Model

gi(x,7) = min ||
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bli|—1 < score;(x) + ¢ < b|i,




Grief of Agreement
Model

Jo(X,r) = min |c

S.t.
(a-x+c>0) A (rm=ro=..=1r,)]
V
(a-x+c<0) A a(ri=r9=...=1p)]
< l} I > rH =79 = ... =T

disagree 0 agree



Grief of Agreement
Model

Jo(X,r) = min |c

S.T.

(a-x+c>0) A (rm=ro=..=1r,)]
V

(a-x+c<0) A a(ri=r9=...=1p)]




“Good Grief” Decoding

e Selectjointrank r € {1,...,k}

minimizes total grief:

H(x) = j
(x) = arg min

™ which

ga(x,1) + 3 gi(x, )
L 1=1 _

® Exact search is linear in number of

aspects: (OJ(m)



Disagreement with high confidence

food: < | |

ambience: < | |

A S

disagree 0 agree

Agreement model
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Joint Learning

|dea: optimize individual ranker parameters for
Good Grief Decoding.

|. Train agreement model on corpus.

2. Incorporate Grief Minimization into online
learning procedure for rankers:

» Jointly decode each training instance.
» Simultaneously update all rankers.



Joint Online Learning

Input : (x!,y!),...,(x1,y!), Agreement model a, Decoder defintion H (x).

Initialize : Set w[i|' =0, b[d]],...,b[i];_, =0, b[i]; = oo, Vi € 1...m.

Loop : Fort=1,2,...,7T :
1. Get a new instance X e R".
2. Predict §* H(X w’ b’ a).
3. Get a new label y
4. For aspect 1 =1,...,m:

If g[i]t # yli ] update model:

4daforr=1,....k—1: If y[i]* <frtheny[] = —1
else y[i]t = 1.
4bForr=1,...k—1: If (g[i]* — r)y[i]t < 0 then 7[i]L = y[i]k
else 7[i]%. = 0.
4.c Update wli]'tt «— w[i|* + (>, 7[i]L)x".
For r =1,...,k — 1 update : bla]itt « bli]t — T[d]t.
Output : H(x;wliTl bl*l a).

Update rule based on (Crammer & Singer 2001)
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Feature Representation

® Each review represented as binary feature
vector.

» Features track presence or absence of words
and word bigrames.

» About 30,000 total features.

® | exical features previously found effective
for:

» Sentiment Analysis (Wiebe 2000; Pang et al 2004)
» Discourse Analysis (Marcu & Echihabi 2002)



Evaluation

® 4,500 restaurant reviews (www.we8there.com)

e 3,500/ 500/ 500 random split into training,
development, and test data.

® Average review length: |15 words.

® Each review ranks restaurant with respect
to: food, service, ambience, value, and overall
experience on a scale of |-5.

T
Average Rank Loss : Z Pt )T
t=1
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Performance of
Agreement Model

® Majority Baseline (disagreement): 58%
® Agreement Model accuracy: 67%

® According to Good Grief Criterion:

Raw accuracy not what matters, rather
accuracy as function of confidence.

» As confidence goes up, so does accuracy
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Accuracy of Agreement Model
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® 33% of data with highest confidence classified at 80% accuracy.
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Baselines

PRANK: Independent rankers for each

aspect trained using PRank algorithm
(Crammer & Singer 2001)

MAJORITY: < 9,9,9,9,0 >

SIM: Joint model using cosine similarity
between aspects (Basilico & Hofmann 2004)

score;(x) = wli] - x + Z sim(i, j)(w|j] - x)

GG DECODE: “Good Grief” decoding but
independent training



Average Rank Loss on
Test Set

* = Statistically Significant improvement over closest rival
using Fisher Sign Test.

Food Service Value Atmosphere | Experience Total
MAJORITY 0.848 1.056 1.030 1.044 1.028 1.001
PRANK 0.606 0.676 0.700 0.776 0.618 0.675
SIM 0.562 0.648 0.706 0.798 0.600 0.663
GG DECODE 0.544 0.648 0.704 0.798 0.584* 0.656
GG train+decode




Average Rank Loss

PRANK
(GG TRAIN+DECODE

Agreement
0.414
0.324

Disagreement
0.864
0.854

® Cases of Disagreement:

» 58% of corpus

» relative reduction in error: 1%

® Cases of Agreement:

» 42% of corpus

» relative reduction in error: 22%




Technical Contributions

® Novel framework for tasks with complex
label dependencies:

» simple, fast, exact, and accurate

® Explicit Meta-Model:

» task-specific dependency spaces
» features tailored for dependency prediction

» joint Perceptron updates for label predictors



Conclusions & Future
Work

® Applied Good Grief framework to Multiple
Aspect Sentiment Analysis:

» Agreement Model guides aspect rank
predictions

® Outperform all baseline models.

® Future Work: apply GG framework to other
tasks
» classification, regression etc

» more complex label dependency spaces



Data and Code available:

http://people.csail.mit.edu/bsnyder

Thank You!
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Model Expressivity



Model Expressivity

—> | Ambience

e Fully Implicit Opinions:

“Our only complaint was the service after our
order was taken”
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® One Opinion expressed in terms of another:

“The food was good, but not the ambience”
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“The food was good, but not the ambience”



Decoding

“The restaurant was a bit uneven. Although the food

was tasty, the window curtains blocked out all sunlight.”

Ambience
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“The restaurant was a bit uneven. Although the food
was tasty, the window curtains blocked out all sunlight.”

e 2

Ambience




Decoding
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Decoding
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Online Training

“The restaurant was a bit uneven. Although the food
was tasty, the blocked out all sunlight.”
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