Memory Ordering: A Value-Based Approach

Harold W. Cain
Computer Sciences Dept.
Univ. of Wisconsin-Madison
cain@cs.wisc.edu

Abstract

Conventional out-of-order processors employ a multi-
ported, fully-associative load queue to guarantee correct
memory reference order both within a single thread of exe-
cution and across threads in a multiprocessor system. As
improvements in process technology and pipelining lead to
higher clock frequencies, scaling this complex structure to
accommodate a larger number of in-flight loads becomes
difficult if not impossible. Furthermore, each access to this
complex structure consumes excessive amounts of energy.
In this paper, we solve the associative load queue scalabil-
ity problem by completely eliminating the associative load
queue. Instead, data dependences and memory consistency
constraints are enforced by simply re-executing load
instructions in program order prior to retirement. Using
heuristics to filter the set of loads that must be re-executed,
we show that our replay-based mechanism enables a sim-
ple, scalable, and energy-efficient FIFO load queue design
with no associative lookup functionality, while sacrificing
only a negligible amount of performance and cache band-

width.
1. Introduction

Computer architects have striven to build faster
machines by improving the three terms of the fundamental
performance equation: CPU time = instructions/program x
cycles/instruction x clock cycle time. Unless a new instruc-
tion set is in development, improving the instructions/pro-
gram term is largely beyond the architect’s reach, and
instead depends on the application developer or compiler
writer. Hardware designers have therefore focused much
energy on optimizing the latter two terms of the perfor-
mance equation. Instructions-per-cycle (IPC) has increased
by building out-of-order instruction windows that dynami-
cally extract independent operations from the sequential
instruction stream which are then executed in a dataflow
fashion. Meanwhile, architects have also attempted to mini-
mize clock cycle time through increased pipelining and
careful logic and circuit design. Unfortunately, IPC and
clock frequency are not independent terms. The hardware
structures (issue queue, physical register file, load/store

Mikko H. Lipasti
Dept. of Elec. and Comp. Engr.
Univ. of Wisconsin-Madison
mikko@engr.wisc.edu

queues, etc.) used to find independent operations and cor-
rectly execute them out of program order are often con-
strained by clock cycle time. In order to decrease clock
cycle time, the size of these conventional structures must
usually decrease, also decreasing IPC. Conversely, IPC
may be increased by increasing their size, but this also
increases their access time and may degrade clock fre-
quency.

There has been much recent research on mitigating this
negative feedback loop by scaling structures in ways that
are amenable to high clock frequencies without negatively
affecting IPC. Much of this work has focused on the
instruction issue queue, physical register file, and bypass
paths, but very little has focused on the load queue or store
queue [1][18][21]. Load and store queues are usually built
using content-addressable memories that provide an
address matching mechanism for enforcing the correct
dependences among memory instructions. When a load
instruction issues, the store queue CAM is searched for a
matching address. When a store address is generated, the
load queue CAM is searched for prior loads that incorrectly
speculatively issued before the store instruction. Depending
on the supported consistency model, the load queue may
also be searched when every load issues [7], upon the
arrival of an external invalidation request [10][25], or both
[23]. As the instruction window grows, so does the number
of in-flight loads and stores, resulting in each of these
searches being delayed by an increased CAM access time.

To prevent this access time from affecting a proces-
sor’s overall clock cycle time, recent research has explored
variations of conventional load/store queues that reduce the
size of the CAM structure through a combination of filter-
ing, caching, or segmentation. Sethumadhaven et al.
employ bloom filtering of LSQ searches to reduce the fre-
quency of accesses that must search the entire queue [21].
Bloom filters are also combined with an address matching
predictor to filter the number of instructions that must
reside in the LSQ, resulting in a smaller effective LSQ size.
Akkary et al. explore a hierarchical store queue organiza-
tion where a level-one store queue contains the most recent
n stores, while prior stores are contained in a larger, slower
level-two buffer [1]. A fast filtering mechanism reduces
level-two lookups, resulting in a common-case load queue

lookup that is the larger of the level-one store queue lookup
latency and filter lookup latency. Their research does not
address the scalability of the load queue. Park et al. explore
the use of a store-set predictor to reduce store queue search
bandwidth by filtering those loads that are predicted to be
independent of prior stores. Load queue CAM size is
reduced by removing loads that were not reordered with
respect to other loads, and a variable-latency segmented
LSQ is also explored [18]. Although each of these propos-
als offers a promising solution to the load or store queue
scalability problem, their augmentative approach results in
a faster search but also adds significant complexities to an
already complex part of the machine. Ponomorev et al.
explore the power-saving potential of a segmented load
queue design where certain portions of the load/store queue
are disabled when occupancy is low, but do not address the
load queue scalability problem [19].

In this paper, we study a mechanism called value-
based replay that completely eliminates the associative
search functionality requirement from the load queue in an
attempt to simplify the execution core. Instead, memory
dependences are enforced by simply re-executing load
operations in program order prior to commit, and compar-
ing the new value to the value obtained when the load first
executed. We refer to the original load execution as the
premature load and the re-execution as the replay load. If
the two values are the same, then the premature load cor-
rectly resolved its memory dependences. If the two values
differ, then we know that a violation occurred either due to
an incorrect reordering with respect to a prior store or a
potential violation of the memory consistency model.
Instructions that have already consumed the premature
load’s incorrect value must be squashed. By eliminating
the associative search from the load queue, we remove one
of the factors that limits the size of a processor’s instruc-
tion window. Instead, loads can reside in a simple FIFO
either separately or as part of the processor’s reorder
buffer. In Section 3, we describe in detail value-based
replay’s impact on the processor core implementation.

In order to mitigate the costs associated with replay
(increased cache bandwidth and resource occupancy), we
evaluate several heuristics that filter the set of loads that
must be replayed. These filters reduce the percentage of
loads that must be replayed exceptionally well (to 0.02
replay loads per committed instruction on average), and as
a result, there is little degradation in performance when
using load replay compared to a machine whose load queue
includes a fully associative address CAM. Section 5 pre-
sents a thorough performance evaluation of value-based
memory ordering using these filtering mechanisms.

Although the focus of this work is eliminating associa-
tive lookup hardware from the load queue, the store queue
also requires an associative lookup that will suffer similar

scalability problems in large-instruction window machines.
We focus on the load queue for three primary reasons: 1)
because loads occur more frequently than store instructions
(loads and stores constitute 30% and 14%, respectively, of
dynamic instructions for the workloads in this paper), the
load queue in a balanced-resource machine should be
larger than the store queue and therefore its scalability is
more of a concern; 2) the store-to-load data forwarding
facility implemented by the store queue is more critical to
performance than the rare-error checking facility imple-
mented by the load queue, and therefore the store queue’s
use of a fast search function is more appropriate; and 3) in
some microarchitectures [7][23], the load queue is
searched more frequently than the store queue, thus con-
suming more power and requiring additional read ports.

To summarize, this paper makes the following contri-
butions:

* Elimination of associative search logic from the
load queue via value-based replay: We demon-
strate a value-based replay mechanism for enforcing
uniprocessor and multiprocessor ordering con-
straints that eliminates the need for associative look-
ups in the load queue.

* Replay-reduction heuristics: We introduce several

novel heuristics that reduce the cache bandwidth
required by the load-replay mechanism to a negligi-
ble amount.
Consistency model checking: we define the con-
straints necessary for implementing a back-end
memory consistency checker. These constraints are
also useful in the domain of other checking mecha-
nisms such as DIVA [3]. Recent work has exposed a
subtle interaction between memory consistency and
value prediction that results in consistency viola-
tions under different forms of weak consistency
[15]. Our value-based replay implementation may be
used to detect such errors.

In the next section, we describe the microarchitecture
of conventional associative load queues. Section 3 presents
our alternative memory ordering scheme, value-based
replay, including the description of our replay filtering
heuristics. Our experimental methodology is described in
Section 4, followed by a detailed performance study of the
value-based replay mechanism relative to an aggressive
conventional load queue design.

2. Associative Load Queue Design

We believe that an inordinate amount of complexity in
an out-of-order microprocessor’s design stems from the
load queue, mainly due to an associative search function
whose primary function is to detect rare errors. In this sec-
tion, we examine the source of this complexity through an

1. (1) store A Processor p1

2. (3) store ?
3. (2) load A
(@ (b)

Processor p2

1. (2) store A % »1. (4) load B
2. (3) store B~ 2. (1) load A

Processor p1 Processor p2

1. (3) load A<+ 1. (2) store A
2. (1) load A —war

()

Figure 1. Correctly supporting out-of-order loads: Examples (a) uniprocessor RAW hazard, (b) multi-
processor violation of sequential consistency (c) multiprocessor violation of coherence

overview of the functional requirements of the load queue
structures, and a description of their logical and physical
design.

2.1. Functional Requirements and Logical Design

The correctness requirements enforced by the load
queue are two-fold: loads that are speculatively reordered
with respect to a prior store that has an unresolved address
must be checked for correctness, and violations of the mul-
tiprocessor memory consistency model caused by incorrect
reorderings must be disallowed. Figure 2(a) contains a
code segment illustrating a potential violation of a unipro-
cessor RAW hazard. Each operation is labeled by its pro-
gram order and by issue order (in parentheses). In this
example, the load instruction speculatively issues before
the previous store’s address has been computed. Conven-
tional memory ordering implementations enforce correct-
ness by associatively searching the load queue each time a
store address is computed. If the queue contains an
already-issued prior load whose address overlaps the store,
the load is squashed and re-executed. In this example, if the
second store overlaps address A, the scan of the load queue
will result in a match and the load of A will be squashed.

Some microarchitectures delay issuing a load instruc-
tion until all prior store addresses are known, altogether
avoiding the need to detect RAW dependence violations.
Unfortunately this solution is not sufficient to prevent vio-
lations of the memory consistency model, which can occur
if any memory operations are reordered. Forcing all mem-
ory operations to execute in program order is too restric-
tive, so associative lookup hardware is still necessary even
if loads are delayed until all prior store addresses are
known.

In terms of enforcing the memory consistency model,
load queue implementations can be categorized into two
basic types: those in which external invalidation requests
search the load queue, and those in which the queue is not
searched. We refer to these types as snooping load queues
and insulated load queues. In a processor with a snooping
load queue, originally described by Gharachorloo et al., the
memory system forwards external write requests (i.e.
invalidate messages from other processors or I/O devices)
to the load queue, which searches for already-issued loads
whose addresses match the invalidation address [9],
squashing any overlapping load. If inclusion is enforced

between the load queue and any cache, replacements from
that cache will also result in an external load queue search.
Insulated load queues enforce the memory consistency
model without processing external invalidations, by
squashing and replaying loads that may have violated the
consistency model. The exact load queue implementation
will depend on the memory consistency model supported
by the processor, although either of these two types may be
used to support any consistency model, as described
shortly.

Figure 1(b) illustrates a multiprocessor code segment
where processor p2 has reordered two loads to different
memory locations that are both written by processor pl in
the interim. In a sequentially consistent system, this execu-
tion is illegal because all of the operations cannot be placed
in a total order. A snooping load queue detects this error by
comparing the invalidation address corresponding to pl’s
store A to the load queue addresses, and squashing any
instructions that have already issued to address A, in this
case p2’s second load. An insulated load queue prevents
this error by observing at load B’s completion that the load
A instruction has already completed, potentially violating
consistency, and the load A is subsequently squashed.
Loads at the head of the load queue are inherently correct
with respect to the memory consistency model, and are
therefore never squashed due to external invalidation.
Avoiding these squashes is important in order to ensure
forward progress.

Processors that support strict consistency models such
as sequential consistency and processor consistency do not
usually use insulated load queues, due to the large number
of operations that must be ordered with respect to one
another (i.e. all loads). Insulated load queues are more
prevalent in weaker consistency models, where there are
few consistency constraints ordering instructions. For
example, in weak ordering, only those operations that are
separated by a memory barrier instruction, or those opera-
tions that read or write the same address, must be ordered.
The Alpha 21264 supports weak ordering by stalling dis-
patch at every memory barrier instruction (enforcing the
first requirement), and uses an insulated load buffer to
order those instructions that read the same address [7].
Using the example in Figure 1(c), if processor pl’s first
load A reads the value written by p2, then p1’s second load
A must also observe that value. An insulated load buffer

queue management

|

> —t
—>| — _8
external request B [§
external address . Ll Z
store address —— address load | z
store age CAM |o{meta-data | 2
> -~ 5
load address — N 1] 2
load age S
g -

L

—|)

Figure 2. A simplified hybrid load queue

enforces this requirement by searching the load queue
when each load issues and squashing any subsequent load
to the same address that has already issued. Snooping load
queues in sequentially consistent systems are simpler in
this respect, because it is not necessary for load instruc-
tions to search the load queue, however this additional sim-
plicity is offset by requiring support for external
invalidation searches. In order to reduce the frequency of
load squashes, the IBM Power4 uses a hybrid approach
that snoops the load queue, marking (instead of squashing)
conflicting loads. Every load must still search the load
queue at issue time for prior loads to the same address,
however only those that have been marked by a snoop hit
must be squashed [23].

Obviously, both the snooping and insulated load queue
implementations are conservative in terms of enforcing
correctness. Due to false sharing and silent stores [14], it is
not absolutely necessary to squash a load simply because
its address matches the address of an external invalidation.
The premature load may have actually read the correct
value. Likewise, due to store value locality, when a store’s
address is computed, all subsequent loads to the same
address that have already executed do not necessarily need
to be squashed, many may have actually observed the cor-
rect value. These observations expose one benefit of the
value-based ordering scheme, which has been exploited by
other store-set predictor designs: a subset of squashes that
occur in conventional designs are eliminated [17][26]. We
quantify the frequency of unnecessary squashes in Section
5.

2.2. Physical Design

Load queues are usually implemented using two main
data structures: a RAM structure containing a set of entries
organized as a circular queue, and an associated CAM used
to search for queue entries with a matching address. The
RAM contains meta-data pertaining to each dynamic load
(e.g. PC, destination register id, etc.), and is indexed by
instruction age (assigned in-order by the front-end of the

Table 1: Load queue attributes for current
dynamically scheduled processors

Processor Est. # read ports Est. # write ports

Compaq Alpha 21364{|2 (1 per load/store|2 (1 per load
(32-entry load queue,||issued/cycle) issued/cycle)
max 2 load or store agens
per cycle)

HAL SPARC64 V (size||3 (2 for stores, 1 for|2
unknown, max 2 loads||external invalidations)
and 2 store agens per
cycle)

IBM Power 4 (32-entry||3 (2 for loads and |2
load queue, max 2 load||stores, 1 for external
or store agens per cycle) ||invalidations)

Intel Pentium 4 (48-entry||2 (1 for stores, 1 for |2
load queue, max 1 load||external invalidations)
and 1 store agen per
cycle)

pipeline). Figure 2 illustrates a simplified hybrid load
queue with a lookup initiated by each load or store address
generation (agen) and external invalidation. For address
generation lookups, an associated age input is used by the
squash logic to distinguish those loads that follow the load
or store. The latency of searching the load queue CAM is a
function of its size and the number of read/write ports.
Write port size is determined by the processor’s load issue
width; each issued load must store its newly generated
address into the appropriate CAM entry. The CAM must
contain a read port for each issued store, each issued load
(in weakly ordered implementations), and usually an extra
port for external accesses in snooping load queues. A sum-
mary of their size in current generation processors with
separate load queues (as opposed to integrated load/store
queues) and an estimation of their read/write port require-
ments is found in Table 1. Typical current-generation
dynamically scheduled processors use load queues with
sizes in the range of 32-48 entries, and allow some combi-
nation of two loads or stores to be issued per cycle, result-
ing in a queue with two or three read ports and two write
ports.

Using Cacti v. 3.2 [22], we estimate the access latency
and energy per access for several CAM configurations in a
0.09 micron technology, varying the number of entries and
the number of read/write ports, as shown in Table 2.
Although this data may not represent a lower bound on
each configuration’s access latency or energy (human engi-
neers can be surprisingly crafty), we expect the trends to be
accurate. The energy expended by each load queue search
increases linearly with the number of entries, and the
latency increases logarithmically. Increasing load queue
bandwidth through multiporting also penalizes these terms:

Table 2: Associative Load queue search latency
(nanoseconds), energy (nanojoules)

entries

Read/Write Ports (ns, nJ)

2/2

3/2

4/4

6/6

0.6 ns, 0.03 nJ

0.68 ns, 0.04 nJ

0.72 ns, 0.07 nJ

0.79 ns, 0.12 nJ

32

0.75 ns, 0.05 nJ

0.77 ns, 0.06 nJ

0.85ns,0.12 nJ

0.94 ns, 0.20 nJ

64

0.78 ns, 0.12 nJ

0.80 ns, 0.15 nJ|

0.87 ns, 0.27 nJ

0.97 ns, 0.45 nJ|

128

0.78 ns, 0.22 nJ

0.80 ns, 0.28 nJ|

0.88 ns, 0.50 nJ

0.97 ns, 0.85 nJ|

256 (10.97 ns, 0.37 nJ| 1.01 ns, 0.48 nJ|1.13 ns, 0.87 nJ|1.28 ns, 1.51 nJ

512 {{1.00 ns, 0.80 nJ|{ 1.04 ns, 1.03 nJ|1.16 ns, 1.87 nJ{1.32 ns, 3.22 nJ|

doubling the number of ports more than doubles the energy
expended per access, and increases latency by approxi-
mately 15%. Based on these measurements, it is clear that
neither the size nor bandwidth of conventional load queues
scale well, in terms of latency or energy. These scaling
problems will motivate significant design changes in future
machines that attempt to exploit higher ILP through
increased issue width or load queue size. In the next sec-
tion, we present one alternative to associative load queues,
which eliminates this CAM overhead.

3. Value-based Memory Ordering

The driving principle behind our design is to shift
complexity from the timing critical components of the
pipeline (scheduler/functional units/bypass paths) to the
back-end of the pipeline. During a load’s premature execu-
tion, the load is performed identically to how it would per-
form in a conventional machine: at issue, the store queue is
searched for a matching address, if none is found and a
dependence predictor indicates that there will not be a con-
flict, the load proceeds, otherwise it is stalled. After issue,
there is no need for loads or stores to search the load queue
for incorrectly reordered loads (likewise for external inval-
idations). Instead, we shift complexity to the rear of the
pipeline, where loads are re-executed and their results
checked against the premature load result. To support this
load replay mechanism, two pipeline stages have been
added at the back-end of the pipeline preceding the commit
stage, labeled replay and compare and shown in Figure 3.
For simplicity, all instructions flow through the replay and
compare stages, with action only being taken for load
instructions.

During the replay stage, certain load instructions
access the level-one data cache a second time. We do not
support forwarding from prior stores to replay loads, so
load instructions that are replayed stall the pipeline until all
prior stores have written their data to the cache. Because

EEONIEEIY

Figure 3. Pipeline diagram, replay stages highlighted

each replay load was also executed prematurely, this replay
is less costly in terms of latency and power consumption
than its corresponding premature load. For example, the
replay access can reuse the effective address calculated
during the premature load’s execution, and in systems with
a physically indexed cache the TLB need not be accessed a
second time. In the absence of rare events such as an inter-
vening cast-out or external invalidate to the referenced
cache block between the premature load and replay load,
the replay load will always be a cache hit, resulting in a
low-latency replay operation. Because stores must perform
their cache access at commit, the tail of the pipeline
already contains datapath for store access. For the purposes
of this work, we assume that this cache port may also be
used for loads during the replay stage, which compete with
stores in the commit stage for access to the cache port, pri-
ority being given to stores.

During the compare stage, the replay load value is
compared to the premature load value. If the values match,
the premature load was correct and the instruction proceeds
to the commit stage where it is subsequently retired. If the
values differ, the premature load’s speculative execution is
deemed incorrect, and a recovery mechanism is invoked.
The use of a selective recovery mechanism is most likely
precluded due to the variable latency and large distance
between the processor’s scheduling stage and replay stage,
so we assume that a heavy-weight machine squash mecha-
nism is used that squashes and re-executes all subsequent
instructions, dependent and independent.

Because the replay mechanism enforces correctness,
the associative load queue is replaced with a simple FIFO
buffer that contains the premature load’s address and data
(used during the replay and compare stages), in addition to
the usual meta-data stored in the load queue. To ensure a
correct execution, however, care must be taken in design-
ing the replay stage. The following three constraints guar-
antee any ordering violations are caught:

1) All prior stores must have committed their data
to the L1 cache. This requirement ensures that RAW
dependences are correctly satisfied for all loads. As a side-
effect, it also eliminates the need for arbitration between
the replay mechanism and store queue for access to the
shared cache port; if there are prior uncommitted loads in
the pipeline, the store queue will not retire stores to the
cache (due to typical handling of precise exceptions), and
conversely, when there are prior uncommitted stores in the
pipeline, the replay stage will not attempt to issue loads.

2) All loads must be replayed in program order. To

enforce consistency constraints, the local processor must
not observe the writes of other processors out of their pro-
gram order, which could happen if replayed loads are reor-
dered. For the machine configuration used in this paper, we
find that limiting replay to one instruction per cycle pro-
vides adequate replay bandwidth. Consequently, all loads
are in-order because only one may be issued per clock
cycle. In very aggressive machines, multiple load replays
per cycle may be necessary. If all the replays performed in
a single cycle are cache hits, their execution will appear
atomic to other processors, and the writes of other proces-
sors will be observed in the correct order. In cases where a
replay load causes a cache miss, correctness is ensured by
forcing subsequent loads to replay after the cache miss is
resolved.

3) A dynamic load instruction that causes a replay
squash should not be replayed a second time after
squash-recovery. This rule is necessary to ensure forward
progress in pathological cases where contention for a piece
of shared data can persistently cause a premature load and
replay load to return different values.

One drawback to the value-based replay mechanism is
its inability to correlate a misspeculated load dependency
with the store on which it depends. In a conventional
design, store addresses search the load queue as they are
computed to find dependent loads that erroneously issued
prematurely. When a match is found, there is no ambiguity
concerning the identity of the store on which the load
depends. However, when a load incurs a memory ordering
violation in the value-based scheme, it is unclear which
store caused the misspeculation, and therefore training a
dependence predictor is not possible if the predictor
requires knowledge of the specific store instruction that
caused the replay (e.g. a store set predictor [6]).

Consequently, when evaluating value-based replay,
we use a simpler predictor functionally equivalent to the
dependence predictor used in the Alpha 21264, where a
PC-indexed table maintains a single bit indicating whether
the load at that PC has been a victim of a previous depen-
dence misprediction [7]. If this bit is set, corresponding
loads are prevented from issuing until the addresses of all
prior stores are computed. For fairness, our evaluation of
value-based replay in Section 5.1 includes a performance
comparison to a baseline machine incorporating a store-set
predictor.

Naively, all loads (except those satisfying rule 3)
should be replayed to guarantee a correct execution. Unfor-
tunately there are two primary costs associated with replay-
ing loads, which we would like to avoid: 1) load replay can
become a performance bottleneck given insufficient cache
bandwidth for replays or due to the additional resource
occupancy and 2) each replayed load causes an extra cache
access and word-sized compare operation, consuming

Processor p1 Processor p2

load

A® war ~® Store C
load B ‘ /‘ store B
load C x/
load D é
load E @©

Figure 4. Constraint Graph Example

energy. In order to mitigate these penalties, we have inves-
tigated methods of eliminating the replay operation for cer-
tain load instructions. In the next two subsections, we
define four filtering heuristics that are used to filter the set
of loads that must be replayed while ensuring a correct exe-
cution. Filtered loads continue to flow through the replay
and compare pipeline stages before reaching commit, how-
ever they do not incur cache accesses, value comparisons,
or machine squashes. The first three filtering heuristics
eliminate load replays while ensuring the execution’s cor-
rectness with respect to memory consistency constraints.
The final replay heuristic filters replays while preserving
uniprocessor RAW dependences.

3.1. Filtering Replays While Enforcing Memory
Consistency

The issues associated with avoiding replays while also
enforcing memory consistency constraints are fairly subtle.
To assist with our reasoning, we employ an abstract model
of a multithreaded execution called a constraint graph
[8][13]. The constraint graph is a directed graph consisting
of a set of nodes representing dynamic instructions in a
multithreaded execution, connected by edges that dictate
constraints on the correct ordering of those instructions.
For the purposes of this work, we assume a sequentially
consistent system, where there are four edge types: pro-
gram order edges that order all memory operations exe-
cuted by a single processor, and the standard RAW, WAR,
and WAW dependence edges that order all memory opera-
tions that read or write the same memory location. The key
idea behind the constraint graph that makes it a powerful
tool for reasoning about parallel executions is that it can be
used to test the correctness of an execution by simply test-
ing the graph for a cycle. The presence of a cycle indicates
that there is not a total order of instructions, thereby violat-
ing sequential consistency. Figure 4 provides an example
constraint graph for a small multithreaded execution,
where processor pl incorrectly reads the original value of
C.

The following three replay filters detect those load
operations that should be replayed to ensure correctness.

The first two are based on the observation that any cycle in
the constraint graph must include dependence edges that
connect instructions executed by two different processors.
If an instruction is not reordered with respect to another
instruction whose edge spans two processors, then there is
no potential for consistency violation.

No-Recent-Miss Filter: One method of inferring the
lack of a constraint graph cycle is to monitor the occur-
rence of cache misses in the cache hierarchy. If no cache
blocks have entered a processor’s local cache hierarchy
from an external source (i.e. another processor’s cache)
while an instruction is in the instruction window, then there
must not exist an incoming edge (RAW, WAW, or WAR)
from any other processor in the system to any instruction in
the window. Consequently, we can infer that no cycle can
exist, and therefore there is no need to replay loads to
check consistency constraints. Using the example from
Figure 4, the load B would incur a cache miss in an invali-
dation-based coherence protocol, requiring pl to fetch the
block from p2’s cache. When the block returns, pl would
need to replay any load instructions currently in its instruc-
tion window. This filter may be implemented as follows:
each time a new cache block enters a processor’s local
cache, the cache unit asserts a signal monitored by the
replay stage. When this signal is asserted, a “recent
miss/need-replay” flag is set true and an age register is
assigned the age index of the most-recently fetched load
instruction in the instruction window. During each cycle
that the flag is set to true, load instructions in the replay
stage are forced to replay. After the flagged load instruc-
tion replays, if the age register still contains its age index,
the flag is reset to zero.

No-Recent-Snoop Filter: The no-recent-snoop filter
is conceptually similar to the no-recent-miss filter, only it
detects the absence of an outgoing constraint graph edge,
rather than an incoming edge. Outgoing edges can be
detected by monitoring the occurrence of external write
requests. If no blocks are written by other processors while
a load instruction is in the out-of-order window, then there
must not exist an outgoing WAR edge from any load
instruction at this processor to any other processor. Reor-
derings across outgoing WAW and RAW edges are pre-
vented by the in-order commitment of store data to the
cache. When the no-recent-snoop filter is used, loads are
only replayed if they were in the out-of-order instruction
window at the time an external invalidation (to any
address) was observed by the core. In terms of implemen-
tation, a mechanism similar to the no-recent-miss filter can
be used. This heuristic will perform best in systems that
utilize inclusive cache hierarchies, which filter the stream
of invalidates observed by the processor. Because fewer
invalidates reach the processor, fewer loads will need to be
replayed, although care must be taken to ensure that visi-

bility of external invalidates is not lost due to castouts.

No-Reorder Filter: The no-reorder filter is based on
the observation that the processor often executes memory
operations in program order. If so, the instructions must be
correct with respect to the consistency model, therefore
there is no need to replay any load. We can detect opera-
tions that were originally executed in-order using the
instruction scheduler, by marking loads that issue while
there are prior incomplete loads or stores.

3.2. Filtering Replays While Enforcing Uniproces-
sor RAW Dependences

In order to minimize the number of replays necessary
to enforce uniprocessor RAW dependences, we use the
observation that most load instructions do not issue out of
order with respect to prior unresolved store addresses. The
no-unresolved-store filter identifies loads that did not
bypass any stores with unresolved addresses when issued
prematurely. These loads are identified and marked at issue
time, when the store queue is searched for conflicting
writes from which to forward data. A similar filter was
used by Park et al. to reduce the number of load instruc-
tions that must be inserted into the load queue [18].

3.3. The Interaction of Filters

Of the four filters described above, only the no-reorder
filter can be used in isolation; each of the other three are
too aggressive. The no-recent-snoop and no-recent-miss
filters eliminate all replays other than those that can be
used to infer the correctness of memory consistency, at the
risk of breaking uniprocessor dependences. Likewise, the
no-unresolved-store filter eliminates all replays except
those necessary to preserve uniprocessor RAW depen-
dences, at the risk of violating the memory consistency
model.

Consequently, the no-unresolved-store filter should be
paired with either the no-recent-snoop or no-recent-miss
filters to ensure correctness. If the no-unresolved-store fil-
ter indicates that a load should be replayed, it is replayed
irrespective of the consistency filter output. Likewise, if
the consistency filter indicates that a load should be
replayed, it is replayed irrespective of the no-unresolved-
store filter. For further improvement, the no-recent-snoop
filter and no-recent-miss filter can be used simultaneously,
however we find that these filters work well enough in iso-
lation that we do not explore this option. In the next sub-
section, we evaluate the value-based replay mechanism
using these filters.

4. Experimental Methodology

The experimental data presented in this paper was col-
lected using PHARMsim [4], an out-of-order superscalar

Table 3: Baseline Machine Configuration

Out-of-order
execution

5.0 GHZ, 15-stage 8-wide pipeline, 256 entry reor-
der buffer, 128 entry load/store queue, 32 entry
issue queue, store-set predictor with 4k entry SSIT
and 128 entry LFST (baseline only), 4k entry sim-
ple Alpha-style dependence predictor [7] (replay-
based only).

Functional 8 integer ALUs (1), 3 integer MULT/DIV (3/12), 4
Units (latency) ||floating point ALUs (4), 4 floating point
MULT/DIV (4, 4), 4 L1D load ports in OoO win-
dow, 1 commit stage L1D load/store port

Front-end fetch stops at first taken branch in cycle, combined
bimodal (16k entry)/gshare (16k entry) with selec-
tor (16k entry) branch prediction, 64 entry RAS, 8k

entry 4-way BTB

Memory system|[32k direct-mapped IL1 (1), 32k direct-mapped
(latency) DLI (1), 256k 8-way DL2 (7), 256k 8-way IL2 (7),
Unified 8MB 8-way L3 (15), 64 byte cache lines,
Memory (400 cycles/100 ns best-case latency, 10
GB/S bandwidth), Stride-based prefetcher modeled
after Power4

processor model integrated into the SimOS-PPC full sys-
tem simulator [11][20], which simulates PowerPC-based
systems (uniprocessor and multiprocessor) running the
AIX 4.3.1 operating system. The PHARMsim timing
model is quite detailed, including full support for all user
and system-level instructions in the PowerPC ISA, mem-
ory barrier semantics, asynchronous interrupts, I/O devices
(disk, console, and network adapter) including cache-
coherent memory-mapped 1/O, and all aspects of address
translation including hardware page table walks and page
faults.

We evaluate value-based replay in the context of both
a uniprocessor system and a 16-processor shared-memory
multiprocessor. Details of the machine configuration used
for the uniprocessor experiments are found in Table 3. We
use a fairly aggressive machine model in order to demon-
strate the value-based replay mechanism’s ability to per-
form ordering checks without hindering performance.

For the multiprocessor performance data, we assume
an identical machine configuration, augmented with a Sun
Gigaplane-XB-like interconnection network for communi-
cation among processors and memory [5] that incurs an
extra 32 cycle latency penalty for address messages and 20
cycle latency penalty for data messages. We assume a
point-to-point data network in which bandwidth scales
with the number of processors.

For uniprocessor experiments, we use the
SPECINT2000 benchmark suite, three SPECFP2000
benchmarks (apsi, art, and wupwise), and a few commer-
cial workloads (TPC-B, TPC-H, and SPECjbb2000). The
three floating-point benchmarks were selected due to their
high reorder buffer utilization [16], a trait with which the

Table 4: Other Benchmark Descriptions

Benchmark Comments

barnes SPLASH-2 N-body simulation (8K particles)

ocean SPLASH-2 Ocean simulation (514x514)

radiosity SPLASH-2 light interaction application (-room -ae
5000.0 -en -0.050 -bf 0.10)

raytrace SPLASH-2 raytracing application (car)

SPECjbb2000 Server-side Java benchmark (IBM jdk 1.1.8 w/ JIT, 400
operations)

SPECweb99 Zeus Web Server 3.3.7 servicing 300 HTTP requests

TPC-B Transaction Processing Council’s Original OLTP
Benchmark Benchmark (IBM DB2 v 6.1)

TPC-H Transaction Processing Council’s Decision Support
Benchmark (IBM DB2 v 6.1, running query 12 ona 512
MB database)

value-based replay mechanism may negatively interact.
For multiprocessor experiments, we use the SPLASH-2
parallel benchmark suite [24], SPECweb99, SPECjbb2000,
and TPC-H. The SPEC integer and SPLASH-2 bench-
marks were compiled with the IBM xlc optimizing C com-
piler, except for the C++ benchmark eon, which was
compiled using g++ version 2.95.2. The SPECFP bench-
marks were compiled using the IBM xIf optimizing Fortran
compiler. The SPECCPU benchmarks were run to comple-
tion using the MinneSpec reduced input sets [12]. Setup
parameters for the other benchmarks are specified in
Table 4. Due to the variability inherent to multithreaded
workloads, we use the statistical methods recommended by
Alameldeen and Wood to collect several samples for each
multiprocessor data point, adding errors bars signifying
95% statistical confidence [2].

5. Experimental Evaluation

The experimental evaluation of value-based replay is
divided into three sections. In the first, we present a
detailed comparison of the value-based replay mechanism
to a baseline machine containing a large unified load/store
queue subject to no size-limiting physical constraints. In
the second subsection we present a comparison of the best
configuration evaluated in Section 5.1 (no-recent-
snoop/no-unresolved-store) to a baseline machine whose
conventional load queue size is constrained by clock cycle
time. The third subsection presents a simple power model
describing the parameters under which an implementation
using value-based replay is more power-efficient than a
traditional load queue implementation.

5.1. Performance Comparison

Figure 5 presents the performance of value-based

D Replay All

] [No-Reorder Filter

Normalized Execution Time

I No-Recent-Miss Filter

Z No-Recent-Snoop Filter

e |
~o |
e s s e sl

N
15
a
&
i
R
My
o
x
W

Figure 5. Value-based replay performance, relative to baseline

100

2 -
=
% 80
0
8 r
<
1]
& 60 — 0
9 - A RAW Replays
o}
9
JE) 20 n DConslslency Replays
B
[
1]
-
3
- \l: 1
e L
abcd‘ T T T T T T T T T T T T T T T -L\ T
. N & :
SR TR LTI FESSSS SR
© € & * K & F ¥ & S
< RS & F & &S
K Y & & Q‘& &
& K

Figure 6. Increased data cache bandwidth due to replay: (a) replay all, (b) no-reorder filter, (c) no-recent-miss filter,

(d) no-recent-snoop filter

replay using four different filter configurations: no filters
enabled (labeled replay all), the no-reorder filter in isola-
tion, the no-recent-miss and no-unresolved-store filters in
tandem, and the no-recent-snoop and no-unresolved-store
filters in tandem. This data is normalized to the baseline
IPC shown at the bottom of each set of bars.

The value-based replay mechanism is very competi-
tive to the baseline machine despite the use of a simpler
dependence predictor. Without the use of any filtering
mechanism, value-based replay incurs a performance pen-
alty of only 3% on average. The primary cause of this per-
formance degradation is an increase in reorder buffer
occupancy. Figure 6 shows the increase in L1 data cache
references for each of the value-based configurations. Each
bar is broken into two segments: replays that are necessary
because the load issued before a prior store’s address was
resolved, and replays that were performed irrespective of
uniprocessor constraints. Without filtering any replays,
accesses to the L1 data cache increase by 49% on average,

ranging from 32% to 87% depending on the percentage of
cache accesses that are caused by wrong-path speculative
instructions and the fraction of accesses that are stores.
This machine configuration is limited to a single replay per
cycle due to the single back-end load/store port, which
leads to an increase in average reorder buffer utilization
due to cache port contention (most dramatically in apsi and
vortex, as shown in Figure 7). This contention results in
performance degradation due to an increase in reorder
buffer occupancy and subsequent reorder buffer allocation
stalls. Although this performance degradation is small on
average, there are a few applications where performance
loss is significant.

When the no-reorder filter is enabled, the performance
of value-based replay improves, although not dramatically.
The no-reorder filter is not a very good filter of replays,
reducing the average cache bandwidth replay overhead
from 49% to 30.6%, indicating that most loads do execute
out-of-order with respect to at least one other load or store.

256

H Baseline

Avg ROB Utilization

H Replay All

I No-Reorder Filter

u No-Recent-Miss Filter

I No-Recent-Snoop Filter

Figure 7. Average reorder buffer utilization

14
[0} E3)
£ 13 =
B
a 12 —
S]
511 M T Tt T
0 “ |:|16-entry
(0]
K 10 ‘ H .
32-entr
T 09 \ B Y
N
-
< 08+ \ \7
£
o 07— -
Z
0.6 - \ \ \—
05 TO4TZAITT.83T093T L6/ T1.70T0.66 T 1.85TT.30T I.50T 3.32T 1.72T Z04 T T.62T 1.94T0.96 T T.00 T T.28T 27.79 34.04 30.33 32.63 23.55 14.67 I8.12 replay IPC
q Q IR & X N Y + $ > 3 N Y] X
ST LRI TS ¢ & FFFF S
S F L K K &g & é}é & QQQ & S
N S N & ° «i‘& & Q\éo &
K A & & L
& =

Figure 8. Performance of constrained load queue sizes, relative to value-based replay with no-recent-snoop/no-unre-

solved-store filters

The no-recent-snoop and no-recent-miss filters, when used
in conjunction with the no-unresolved-store filter, solve
this problem. For the single-processor machine configura-
tions, there are no snoop requests observed by the proces-
sor other than coherent I/O operations issued by the DMA
controller, which are relatively rare for these applications.
Consequently, the no-recent-snoop filter does a better job
of filtering replays than the no-recent-miss filter. This is
also true in the 16-processor machine configuration, where
an inclusive cache hierarchy shields the processor from
most snoop requests. As shown in Figure 6, the extra band-
width consumed by both configurations is small, 4.3% and
3.4% on average for the no-recent-miss and no-recent-
snoop filters respectively. The large reduction in replays
leads to a reduction in average reorder buffer utilization
(shown in Figure 7), which leads to an improvement in per-
formance for those applications that were negatively

affected in the replay-all configuration. For the single pro-
cessor results, value-based replay with the no-recent-snoop
filter is only 1% slower than the baseline configuration on
average. For the multiprocessor configuration, the differ-
ence is within the margin of error caused by workload non-
determinism.

The benchmark suffering the largest performance deg-
radation (apsi), is actually less affected by resource occu-
pancy than by the switch from a store-set predictor to a
simple dependence predictor. Neither predictor incurs
many memory order violations, however for this bench-
mark the simple predictor more frequently stalls loads due
to incorrectly identified dependences, ultimately decreas-
ing IPC. The reverse is true for the benchmark art, where
the baseline machine’s store-set predictor stalls a signifi-
cant fraction of loads unnecessarily, resulting in a perfor-
mance improvement in the value-based replay

configurations. We attempted to exacerbate the negative
effects of the simple dependence predictor relative to the
store-set predictor by repeating these experiments using a
larger 256-entry issue queue, but found that the results do
not differ materially for this machine configuration.

One advantage of the value-based replay mechanism
is its ability to filter dependence misspeculation squashes if
the misspeculated load happens to return the value of the
conflicting store. Due to this value locality, we find that the
value based mechanism on average eliminates 59% of the
dependence misspeculation squashes caused by RAW uni-
processor violations, because the replay load happens to
receive the same value as the premature load, even though
the premature load should have had its data forwarded by
an intermediate store. However, the frequency of squashes
for these applications is so low (on the order of 1 per 100
million instructions), this reduction has little effect on
overall performance.

The results are similar for consistency violations. In
the multiprocessor machine configuration, value-based
replay is extremely successful at avoiding consistency
squashes, eliminating 95% on average. However we once
again find that such machine squashes occur so infre-
quently (4 per 10,000 instructions in the most frequent
case, SPECjbb2000) their impact on performance is insig-
nificant. Should consistency squashes be a problem with
larger machine configurations or applications where there
is a greater level of contention for shared data structures,
value-based replay is a good means of improvement.

5.2. Constrained Load Queue Size

The previous set of performance data uses a baseline
machine configuration with a large, unified load/store
queue. The primary motivation for value-based replay is to
eliminate the large associative load queue structure from
the processor, which does not scale as clock frequencies
increase. Figure 8 presents a performance comparison of
the best value-based replay configuration (the no-recent-
snoop and no-unresolved store filters) to a baseline
machine configuration that uses a separate smaller load
queue, for two different sizes, 16-entries and 32-entries. A
32-entry load queue is representative of current generation
load queue sizes, and makes a fairly even performance
comparison to the value-based replay configuration. On
average, the value-based replay configuration is 1.0%
faster, with art and ocean being significantly faster due to
their sensitivity to load queue size (7% and 15% respec-
tively). In future technology generations, a 32-entry load
queue CAM lookup will not fit into a single clock cycle.
When the load queue size is constrained to 16 entries,
value-based replay offers a significant advantage, at most
34% and averaging 8% performance improvement.

5.3. A Simple Power Model

Of course, performance is not the only metric, we
would also like to minimize the amount of power con-
sumed by this memory ordering scheme. Extrapolating any
quantitative power estimates would be unreliable without
using a detailed underlying power model. Instead, one can
get a rough estimate of the difference in dynamic energy
using a simple model:

AEnergy = ((Ecacheaccess + Ewordcomparison) x replays)

- (Eldqsearch X ldgsearches) + overheadreplay

The primary energy cost for the value-based replay
mechanism is the energy consumed by replay cache
accesses and word-sized comparison operations. This cost
is multiplied by the number of replays, which we have
empirically determined to be relatively small. In the equa-
tion above, overhead,.,,, includes the energy cost of the
two extra pipeline latches and replay filtering mechanism.
Because the number of replays is quite small (on average
0.02 replay loads per committed instruction using the no-
recent-snoop/no-unresolved-store filter configuration), if
an implementation’s load queue CAM energy expenditure
per committed instruction is greater than 0.02 times the
energy expenditure of a cache access and word-sized com-
parison, we expect the value-based replay scheme to yield
a reduction in power consumption.

6. Conclusions

As transistor budgets increase, there is a great tempta-
tion to approach each new problem by augmenting an
existing design with special purpose predictors, buffers,
and other hardware widgets. Such hardware may solve the
problem, but also increases the size and complexity of a
design, creating an uphill battle for architects, designers,
and verifiers trying to produce a competitive product. In
this paper, we explore a simple alternative to conventional
associative load queues. We show that value-based replay
causes a negligible impact on performance compared to a
machine whose load queue size is unconstrained. When
comparing the value-based replay implementation to pro-
cessors whose load queues are constrained by clock cycle
time, we find the potential for significant performance ben-
efits, up to 34% and averaging 8% relative to a 16-entry
load queue.

The value-based memory ordering mechanism relies
on several heuristics to achieve high performance, which
reduce the number of replays significantly. We believe
these heuristics are more broadly applicable to other
load/store queue designs and memory order checking
mechanisms, and plan to explore their use in other settings.
Although we have primarily focused on value-based replay

as a complexity-effective means for enforcing memory
ordering, we believe that there is also potential for energy
savings, as outlined in the last section. In future work, we
plan to perform a more thorough evaluation of value-based
replay as a low-power alternative to conventional load
queue designs.

Acknowledgments

This work was made possible through an IBM Gradu-
ate Fellowship, generous equipment donations and finan-
cial support from IBM and Intel, and NSF grants CCR-

0073440, CCR-0083126, EIA-0103670 and CCR-
0133437.
References

[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. “Checkpoint
processing and recovery: Towards scalable large instruc-
tion window processors.” In Proc. of the 36th Intl. Symp.
on Microarchitecture, December 2003.

2] A. Alameldeen and D. Wood. “Variability in architectural
simulations of multi-threaded workloads.” In Proc. of the
Ninth Intl. Symp. on High Performance Computer Archi-
tecture, February 2003.

[3] T. Austin. “DIVA: A reliable substrate for deep submicron
microarchitecture design.” In Proc. of the 32nd Intl. Symp.
on Microarchitecture, pages 196207, Haifa, Israel, No-
vember 1999.

[4] H. W. Cain, K. M. Lepak, B. A. Schwartz, and M. H. Li-
pasti. “Precise and accurate processor simulation.” In
Proc. of the Workshop on Computer Architecture Evalua-
tion using Commercial Workloads, February 2002.

[5] A. Charlesworth, A. Phelps, R. Williams, and G. Gilbert.
“Gigaplane-XB: extending the ultra enterprise family.” In
Proceedings of Hot Interconnects V, pages 97-112, Au-
gust 1997.

[6] G. Z. Chrysos and J. S. Emer. “Memory dependence pre-
diction using store sets.” In Proc. of the 25th Intl. Symp. on
Computer architecture, pages 142—153. IEEE Press, 1998.

[7] Compaq Computer Corporation, Shrewsbury, Massachu-
setts. 21264/EV68CB and 21264/EV68DC Hardware Ref-
erence Manual, 1.1 edition, June 2001.

[8] A. Condon and A. J. Hu. “Automatable verification of se-
quential consistency.” In Proc. of the 13th Symp. on Par-
allel Algorithms and Architectures, January 2001.

[9] K. Gharachorloo, A. Gupta, and J. Hennessy. “Two tech-
niques to enhance the performance of memory consistency
models.” In Proc. of the 1991 Intl. Conf. on Parallel Pro-
cessing, pages 355-364, August 1991.

[10] Intel Corporation. Pentium Pro Family Developers Manu-
al, Volume 3: Operating System Writers Manual, Jan.
1996.

[11] T.Keller, A. Maynard, R. Simpson, and P. Bohrer. “Si-
mos-ppc full system simulator.” http://www.cs.utex-
as.edu/users/cart/simOS.

[12] A.KleinOsowski and D.J. Lilja. “Minnespec: A new

[15]

[16]

[17]

[18]

[19]

(21]

[25]

[26]

SPEC benchmark workload for simulation-based comput-
er architecture research.” Computer Architecure Letters,
1, June 2002.

A. Landin, E. Hagersten, and S. Haridi. “Race-free inter-
connection networks and multiprocessor consistency.” In
Proc. of the 18th Intl. Symp. on Comp. Architecture, 1991.
K. M. Lepak and M. H. Lipasti. “On the value locality of
store instructions.” In Proceedings of the 27th Internation-
al Symposium on Computer Architecture, pages 182-191,
Vancouver, BC, June 2000.

M. M. K. Martin, D. J. Sorin, H. W. Cain, M. D. Hill, and
M. H. Lipasti. “Correctly implementing value prediction
in microprocessors that support multithreading or multi-
processing.” In Proc. of the 34th Intl. Symp. on Microar-
chitecture, pages 328-337, December 2001.

J. F. Martinez, J. Renau, M. C. Huang, M. Prvulovic, and
J. Torrellas. “Cherry: checkpointed early resource recy-
cling in out-of-order microprocessors.” In Proceedings of
the 35th annual Intl. Symp. on Microarchitecture, pages
3-14. November, 2002.

S. Onder and R. Gupta. “Dynamic memory disambigua-
tion in the presence of out-of-order store issuing.” In Proc.
of the 32nd Intl. Symp. on Microarchitecture, November
1999.

L. Park, C.-L. Ooi, and T. N. Vijaykumar. “Reducing de-
sign complexity of the load-store queue.” In Proc. of the
36th Intl. Symp. on Microarchitecture, December 2003.

D. Ponomarev, G. Kucuk, and K. Ghose. “Reducing pow-
er requirements of instruction scheduling through dynamic
allocation of multiple datapath resources.” In Proc. of the
34th Intl. Symp. on Microarchitecture, December 2001.
M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta.
“Complete computer simulation: the simos approach.”
IEEE Parallel and Distributed Technology, 3(4):34-43,
1995.

S. Sethumadhavan, R. Desikan, D. Burger, C. R. Moore,
and S. W. Keckler. “Scalable hardware memory disambig-
uation for high-ilp processors.” In Proc. of the 36th Intl.
Symp. on Microarchitecture, December 2003.

P. Shivakumar and N. P. Jouppi. “Cacti 3.0: An integrated
cache timing, power, and area model.” Technical Report
2001/2, Compaq Western Research Lab Research Report,
2001.

J.M. Tendler, S.Dodson, S.Fields, H.Le, and
B. Sinharoy. “POWER4 system microarchitecture.” Tech-
nical white paper, IBM Server Group, October 2001.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta.
“The SPLASH2 programs: Characterization and method-
ological considerations.” In Proceedings of the 22nd Inter-
national Symposium on Computer Architecture, pages 24—
36, June 1995.

K. C. Yeager. “The MIPS R10000 superscalar micropro-
cessor.” [EEE Micro, 16(2):28—-40, April 1996.

A. Yoaz, R. Ronen, R. S. Chappell, and Y. Almog. “Si-
lence is golden?” In Work-in-progress workshop of the 7th
International Symposium on High-Performance Comput-
er Architecture, January 2001.

	Mikko H. Lipasti
	Dept. of Elec. and Comp. Engr.
	Univ. of Wisconsin-Madison
	mikko@engr.wisc.edu
	Abstract
	1. Introduction
	2. Associative Load Queue Design
	Figure 1. Correctly supporting out-of-order loads: Examples (a) uniprocessor RAW hazard, (b) mult...
	2.1. Functional Requirements and Logical Design
	Figure 2. A simplified hybrid load queue

	2.2. Physical Design
	Table 1: Load queue attributes for current dynamically scheduled processors
	Table 2: Associative Load queue search latency (nanoseconds), energy (nanojoules)

	3. Value-based Memory Ordering
	Figure 3. Pipeline diagram, replay stages highlighted
	Figure 4. Constraint Graph Example
	3.1. Filtering Replays While Enforcing Memory Consistency
	3.2. Filtering Replays While Enforcing Uniprocessor RAW Dependences
	3.3. The Interaction of Filters

	4. Experimental Methodology
	Table 3: Baseline Machine Configuration
	Table 4: Other Benchmark Descriptions

	5. Experimental Evaluation
	5.1. Performance Comparison
	Figure 5. Value-based replay performance, relative to baseline
	Figure 6. Increased data cache bandwidth due to replay: (a) replay all, (b) no-reorder filter, (c...
	Figure 7. Average reorder buffer utilization
	Figure 8. Performance of constrained load queue sizes, relative to value-based replay with no-rec...

	5.2. Constrained Load Queue Size
	5.3. A Simple Power Model

	6. Conclusions
	Acknowledgments

	Memory Ordering: A Value-Based Approach
	Harold W. Cain
	Computer Sciences Dept.
	Univ. of Wisconsin-Madison
	cain@cs.wisc.edu

