
Accurate, Efficient, and Adaptive Calling Context Profiling

Xiaotong Zhuang ∗

Georgia Institute of Technology
xt2000@cc.gatech.edu

Mauricio J. Serrano Harold W. Cain
Jong-Deok Choi

IBM T.J. Watson Research Center
{mserrano,tcain,jdchoi}@us.ibm.com

Abstract
Calling context profiles are used in many inter-procedural code
optimizations and in overall program understanding. Unfortunately,
the collection of profile information is highly intrusive due to the
high frequency of method calls in most applications. Previously
proposed calling-context profiling mechanisms consequently suffer
from either low accuracy, high overhead, or both.

We have developed a new approach for building the calling
context tree at runtime, called adaptive bursting. By selectively
inhibiting redundant profiling, this approach dramatically reduces
overhead while preserving profile accuracy. We first demonstrate
the drawbacks of previously proposed calling context profiling
mechanisms. We show that a low-overhead solution using sampled
stack-walking alone is less than 50% accurate, based on degree
of overlap with a complete calling-context tree. We also show
that a static bursting approach collects a highly accurate profile,
but causes an unacceptable application slowdown. Our adaptive
solution achieves 85% degree of overlap and provides an 88%
hot-edge coverage when using a 0.1 hot-edge threshold, while
dramatically reducing overhead compared to the static bursting
approach.

Categories and Subject Descriptors D2.3.4 [Programming Lan-
guages]: Processors–compilers

General Terms Algorithms, Measurement, Performance

Keywords Profiling, Call Graph, Calling Context, Calling Con-
text Tree, Adaptive, Java Virtual Machine

1. Introduction
Many compiler optimizations benefit from accurate profile infor-
mation, but this information must be collected carefully. A pro-
filing mechanism must not significantly affect the performance of
an application, otherwise the measured profile may not reflect the
application’s true behavior. Unfortunately, it is difficult to collect
the fine-grained events necessary for creating an accurate profile
without perturbing the application, due to the intrusiveness of col-
lection. Constructing accurate profiles while minimizing overhead

∗ This research was performed while the author was an intern at IBM
Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI ’06 June 10–16, 2006, Ottawa, Ontario, Canada
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

is particularly important for just-in-time compilers, since any slow-
down due to profiling must be compensated by the performance
gains obtained from the profile information.

Inter-procedural optimizations often depend upon accurate
calling-context profiles; however, creating these profiles is com-
plicated by common object-oriented programming styles and lan-
guage features. Due to small average method sizes, calls and returns
are frequently made, leading to high overheads if calling context
information is collected on a per-method-call basis. Frequent calls
may also lead to deep stack depths, resulting in a high-cost opera-
tion to determine the calling context within the stack. Additionally,
virtual function calls obscure the caller-callee relationship, making
static construction of the profile very difficult.

Call graphs are a commonly used, succinct representation of
method invocation behavior, in which nodes representing methods
are connected by directed edges representing caller-callee relation-
ships. For some applications, the usefulness of call graphs is lim-
ited due to a lack of detailed context information. For example, an
effective inlining may require inlining not just a single-level call
site, but a sequence of calls. A call graph does not provide enough
information for this purpose, because it represents each method us-
ing a single node, regardless of the number of paths on which the
method appears. Also, understanding the cause(s) of events such
as cache misses or synchronizations frequently requires identify-
ing not just the method where such events occur, but the overall
context in which these methods execute. The importance of addi-
tional context information has been demonstrated in much prior
work [3, 4, 6, 9, 21, 23, 24, 26]. Furthermore, as mentioned by oth-
ers [3, 23], the standard profiling tools gprof [22] and gpt [7] cannot
properly apportion the cost of a procedure to its callers, leading to
an inaccurate profile.

The calling context was previously defined as the chain of
method calls that are concurrently active on the stack [3, 23].
Naturally, a tree may be used to represent an execution’s contexts,
which reduces the duplication of common methods at the bottom of
the stack (assume stack grows from bottom to top). Two commonly
used representations for calling contexts are Call Trees (CT) and
Calling Context Trees (CCT) [3]. In a CT, a new node is added for
each method invocation, attached to the parent node (i.e. the caller
method), whereas a CCT merges identical child nodes (methods)
of the same parent node. Call trees and calling context trees will be
described in more detail in Section 2 and Figure 1.

We present a sampling-based profiler for building a CCT that is
both space efficient and highly accurate. At every sampling point,
the profiler walks the stack from the top of the stack to the root of
the stack and identifies the full calling context at that point. The
stack-walking is immediately followed by a short period, called a
burst, during which the profiler traces each and every method call
and return.

This profiling mechanism is refined through adaptive sampling.
Adaptive sampling predicts the method calls and returns made

263

Call sequence:

‘=>’: method call;

‘<=,’: method return;

A=>B=>C=>E,<=,=>E,<=,<=,<=,=>

D,=>C,<=,<=,=>B,=>C=>E,<=,=>E

<=,<=,<=,=>D=>C=>A,<=,<=,<=,
Call Graph

A

DB

E

C

2

4

2

2

2
1

Call Graph

A

DB

E

C

2

4

2

2

2
1

Call Tree

A

DB

E

C C

B D

C C

E AE E

Call Tree

A

DB

E

C C

B D

C C

E AE E

A

B

E

C

D

A

C

2

2

4

2

2

1

Calling -Context Tree

A

B

E

C

D

A

C

2

2

4

2

2

1

Calling -Context Tree

Figure 1. Examples of call graph, call tree and calling context tree (CCT)

during a burst using a history-based predictor, and disables certain
bursts that are deemed to be redundant. This prediction is based on
the observation that bursts of stack-walks that begin from the same
calling context tend to contain similar sequences of method calls
and returns. Predicting and disabling certain bursts greatly reduces
the profiling overhead, but suffers from mispredictions. To remedy
this, we stochastically re-enable a small portion of predicted-and-
disabled bursts, based on a predetermined re-enable ratio, called
the adaptive re-enable ratio (RR). In order to maintain the relative
balance of edge-weights, the profiler then adjusts the counts of
the calls of the bursts that are re-enabled, again, using RR (more
precisely, using 1/RR).

We show that this adaptive mechanism approaches the accuracy
of an exhaustively constructed CCT, while keeping profiling over-
heads within reason.

The main contributions of this paper are:

1. A novel profiling technique for efficient construction of highly
accurate CCT.

• The runtime overhead of the technique is much smaller
than exhaustive calling-context profiling techniques, while
maintaining high accuracy in the range of 80% to 90%.

• Our implementation is based on a commodity profiling in-
terface, JVMPI, and does not require compiler-specific in-
strumentation. We expect the overhead to come down sig-
nificantly with instrumentation techniques more efficient
than JVMPI.

2. Formal comparison of two metrics for evaluating CCT accu-
racy: degree of overlap [5, 6, 14], and hot-edge coverage, which
is our new definition.

3. Extensive measurements of the efficiency and accuracy of our
technique, and extensive comparison with previous techniques,
using a large number of benchmark programs, including a very
large commercial J2EE Java application.

The rest of the paper is organized as follows: Section 2 intro-
duces the calling context and the CCT. Section 3 describes metrics
to measure the accuracy of the CCT. Section 4 presents previous ap-
proaches for constructing the CCT. Section 5 details our adaptive
sampling approach. Section 6 presents experimental results and dis-

cussion. Section 7 discusses related work, and Section 8 concludes
the paper.

2. Calling Context and the Calling Context Tree
The (dynamic) calling context of a method invocation is the
sequence of un-returned method calls from the program’s root
method to the method invocation. This calling context can be deter-
mined by walking the call stack backwards from the top-of-stack to
the root of the stack, recording each method on the stack along the
way. Although call graphs, call trees, calling contexts, and calling
context trees may be (partially) constructed statically, we focus on
dynamic program behavior, and therefore further discussion will
assume the dynamic construction of these structures unless explic-
itly stated otherwise.

Figure 1 shows an example call sequence, along with the call
graph, the call tree (CT), and the calling context tree (CCT), all
corresponding to the call sequence. The weight of each call-graph
edge represents the total number of calls of the target method (of
the edge) by the source method (of the edge). The CCT is a succinct
summary of the call tree, built recursively from the root by merging
each node’s children that correspond to the same method. The edge
weight of a CCT represents the number of nodes merged into the
single target node of the edge. The edge weight also represents the
number of calls (i.e. calling frequency) of the callee by the caller
within the particular calling context of the caller.

Although a CT captures more complete information, its space
overhead is much higher than a CCT. The CT size is proportional
to the total number of calls in an execution since each call must
generate a new node, and it therefore has the same asymptotic
complexity as the entire call trace. The space requirement of a CCT
can also be large in the presence of recursion, but in practice is
much smaller than that of a CT. For this reason, we focus on the
CCT representation.

Note that in the example, all calls of E by C happen when C
is called by method B, i.e. when the calling context of method C
is “A ⇒ B ⇒ C”. C does not call E at all when its calling
context is “A ⇒ D ⇒ C”. This information is absent from the
call graph: both edges onto C have the same edge weight (i.e.
counter value of two). This information, however, is clear from
both the CT and the CCT. A CCT, like the one in the figure, whose

264

hotcover(CCT1, CCT2, T) =
|{e : e ∈ CCT1, eweight ≥ T ∗ hottest1} ∩ {e : e ∈ CCT2, eweight ≥ T ∗ hottest2}|

|{e : e ∈ CCT2, eweight ≥ T ∗ hottest2}| × 100%

Figure 2. Hot-edge coverage of CCT1 over CCT2 with threshold T (0% ≤ T ≤ 100%)

edge weights represent their calling frequencies could be used for
context sensitive inlining as described in prior work [19]. However,
depending on the purpose of the calling context information, edge
weights may represent different metrics such as the number of
cache misses incurred within a particular context.

A more precise representation of the CCT should also distin-
guish calls made from different call sites. That is, the children of a
parent node may be distinguished by both the method and its call
site in the caller/parent method. We omit this information for now,
due to a lack of support in our experimental infrastructure (JVMPI).

If a CCT captures all caller/callee pairs during an execution, we
call it a Complete CCT. It is noteworthy that the completeness of
a CCT is only with respect to a particular execution. Edges that
are statically possible but do not occur during an execution will be
missing from the complete CCT. Due to the incomplete nature of
sampling-based profiling mechanisms, we call a CCT built from
a sampling-based approach, including ours, an approximate calling
context tree (ACCT)[6]. Informally, the accuracy of an ACCT of an
execution is the measure of how “faithfully” the ACCT represents
the Complete CCT of the same execution.

For comparison of two CCTs, we must know whether two edges
or nodes from the two CCTs are equivalent. We recursively define
the equivalence of nodes and edges as follows:

DEFINITION 1. Equivalence of Nodes and Edges:

1. Two root nodes n1 and n2 that correspond to the same static
method are equivalent.

2. Node n1 on CCT1 and node n2 on CCT2 are equivalent if they
correspond to the same static method, and their parent nodes
are equivalent.1.

3. An edge e1 on CCT1 is equivalent to an edge e2 on CCT2 if the
source nodes of the edges are equivalent and the target nodes of
the edges are equivalent. If two edges or nodes are equivalent,
we simply say the edge or node is part of both CCTs.

3. Measuring CCT Accuracy
To fairly evaluate and compare different approaches for CCT con-
struction, we must define proper metrics so that the effectiveness
of each approach may be compared. To compare profiler overhead,
we measure the execution slowdown caused by the profiling mech-
anism. Because some approaches reduce the overhead at the ex-
pense of accuracy, we must define metrics to compare the quality
of an ACCT relative to a complete CCT.

We present two metrics to measure how accurately one CCT
matches another CCT: (1) degree of overlap, and (2) hot-edge
coverage.

3.1 Degree of Overlap

The degree of overlap metric is used to judge the completeness of
one CCT with respect to another, and has been used in several other
research papers [5, 6, 14]. The definition is as follows:

overlap(CCT1, CCT2) =P

e∈CCT1∩CCT2

min(pweight(e,CCT1), pweight(e,CCT2))

1 If call sites are distinguished through the addition of labeled edges, the
call-site labels of the edges connecting to their parents must also be equiv-
alent

where pweight(e,CCT) is defined as the percentage of CCT ’s
total edge weights represented by the edge weight on e. Only edges
on both CCT1 and CCT2 are counted. The degree of overlap in-
dicates how CCT2 overlaps with CCT1 or how CCT2 is covered
by CCT1. The degree of overlap range is from 0% to 100%.

3.2 Hot-edge Coverage

While degree of overlap measures the similarity of two CCTs in
their entirety, the hot-edge coverage metric focuses on the simi-
larity of edges in each graph having relatively high edge weights
(so-called “hot edges”). This metric is useful because hot edges are
usually the focus of performance optimization. Accurately collect-
ing information about these edges may be more useful than accu-
rately constructing an entire CCT that includes rarely called paths.

As defined in Figure 2, hot-edge coverage measures the per-
centage of hot edges of one CCT that are covered by another
CCT, where an edge-weight threshold criteria is used to determine
hotness. In this definition, hottest1 and hottest2 represent the
weights of the hottest edges of CCT1 and CCT2, and 0 ≤ T ≤
100%.

A higher value of the hot-edge coverage indicates that CCT1

more accurately captures the hot edges from CCT2. The hot-edge
coverage range is from 0% to 100%.

For example, a hot-edge coverage threshold of 0.95 will use all
the edges whose weights are within 5% of the hottest CCT edge in
computing the coverage. It should be noted that this is very different
than simply choosing the top 5% hottest edges, or edges whose
weights represent 5% of the cumulative CCT edge weights, which
are two other measures of hotness.

Hot-edge coverage approximately captures how well the order-
ing of the edges in CCT2, with respect to their hotness, matches
that in CCT1. Intuitively, if

hotcover(CCT1, CCT2, Ti) � hotcover(CCT1, CCT2, Tj),

for 100% ≥ Ti > Tj ≥ 0%, then the set of edges in CCT2 whose
hotness is between hottest2∗Ti and hottest2∗Tj is quite different
from that of the corresponding edges in CCT1.

4. Conventional Approaches to Calling Context
Tree Construction

In this section, we compare and contrast two profiling mechanisms
that have been previously used to collect method invocation pro-
files: the exhaustive approach and sampled stack-walking. Each of
these proposals has downsides that are addressed by our adaptive
profiling mechanism described in Section 5.

4.1 The Exhaustive Approach

Given a trace containing all method calls and returns, calling con-
text tree construction is straightforward. Initially, a root node is
added to the tree, and a cursor pointer is maintained that points to
the current method context, initialized to the root node. If a method
call is encountered, the node’s children are compared to the new
callee. If a matching child is found, the weight of the edge onto the
child is incremented. If no child matches the callee, a new child is
created. The cursor is then moved to the callee method. If a return
is seen, the cursor is moved back one level to the parent. In the case
of multi-threaded applications, a cursor is needed per thread.

265

sample point
reached

N

hash

skip the
burst Y

Weight
compensation/

feedback?

enabledisable

Check the stack signature in the
history table

perform the burst
with weight
adjustment

perform
the burst

feedback

history
table

CCT

reenable
mechanism

Figure 3. Overview of the adaptive bursting mechanism

This exhaustive approach builds a Complete CCT, but obviously
suffers from severe performance degradation due to the tracing
overhead. Our experiments indicate that tracing overhead can cause
over 50 times slowdown using our JVMPI-based infrastructure,
since each and every method call and return must be instrumented.
Prior work has also reported considerable slowdown, despite using
a more efficient instrumentation mechanism [3].

4.2 Sampled Stack-Walking

Sampled stack-walking is one alternative to the exhaustive ap-
proach, which was used in previous experiments by Arnold and
Sweeney [6]. Since a cursor pointer cannot be maintained across
samples, the current context is determined at each sampling point
by performing a stack walk from the current method to the root
method, and adding this path to the CCT if necessary. If the CCT
already contains the path, the edge weight between the top two
methods on the stack is incremented.

Since the sampling rate may be controlled, profiling overhead
can be easily minimized at the cost of accuracy. However, the ac-
curacy of the sampled stack-walking approach suffers for two main
reasons. First, because individual method calls are not observed but
inferred, the collected CCT results may be inaccurate and mislead-
ing. For example, a program may spend most of its time execut-
ing within a single method. However, the sampled stack-walking
approach will assume that the method’s caller is making frequent
calls to the method because it is always on the top of the stack.
Consequently, the CCT obtained with this approach reflects exe-
cution time spent in each context more than the method invoca-
tion frequency of each context. Second, increasing accuracy by
increasing the sampling rate can be costly because of the gener-
ally high overhead of the interrupt mechanism to trigger a sampled
stack-walking. Furthermore, supporting high-sampling rates may
not even be feasible on some systems whose timer-resolution is
limited. As will be shown in our results section, the degree of over-
lap and hot-edge coverage for sampled stack walking are typically
below 50%.

5. CCT Profiling using Static and Adaptive
Bursting

Because neither the sampling-based nor exhaustive profiling mech-
anism provides both high-accuracy and low-overhead, we have
built a profiling mechanism called static bursting that combines

the best features of each approach. We have experimentally found
the static bursting profiler to provide many advantages over the ex-
haustive and sampling-based profiling mechanisms. Static bursting,
however, still causes significant performance degradation, which
we address with a mechanism called adaptive bursting. Adaptive
bursting dynamically disables profile collection for previously ob-
served calling contexts. In the next two subsections, we describe
these approaches. Because application behavior changes over time,
it is useful to periodically re-enable profile collection for disabled
calling contexts. We describe this re-enablement mechanism in the
third subsection.

5.1 Static Bursting

Like the sampling-based approach, a bursting profiler allows the
application to run unhindered between sampling points. At each
sampling point, the stack is walked to determine the current calling
context. Instead of incrementing an edge weight based on this
stack sample (which may not reflect actual method invocation), we
revert to the exhaustive approach and collect a “burst” of call/return
samples for an interval whose length we refer to as burst length.
Performing bursting alone at each sampling point, without a stack
walk, would result in a low accuracy CCT. Because the calling
context at the beginning of the burst would be unknown, it would
be difficult to determine where to update the CCT.

A similar approach was previously used for a different purpose:
the collection of temporal information for cache references [20].
Although CCT accuracy is dramatically improved when using the
static bursting approach, it still introduces significant overheads due
to the intrusiveness of each burst, which leads to our next profiling
mechanism: adaptive bursting, a profiling mechanism that achieves
the accuracy of static bursting while minimizing overhead.

5.2 Adaptive Bursting

Because application control flow is highly repetitive, it is no sur-
prise that static bursting collects much redundant information.
Adaptive bursting reduces this overhead by selectively disabling
bursts for previously sampled calling-contexts, thus reducing re-
dundant samples due to repetitive execution sequences. Unfortu-
nately, permanently disabling bursting for certain contexts leads to
two problems: 1) as runtime behaviors periodically change, new
calling patterns will be lost from the calling context tree, and 2)
by disabling bursting for a common calling context, CCT edge-
weights, for example, may become skewed as hot call-return se-
quences are sampled with the same frequency as rare call-return
sequences. Our adaptive mechanism addresses these two problems
through probabilistic burst re-enablement and edge-weight com-
pensation, described below. Figure 3 illustrates the overall flow of
the adaptive bursting mechanism.

5.3 Adaptive Bursting with Re-enablement

We adaptively disable bursting based on history information stored
in a software-implemented history table and the adaptive re-enable
ratio (RR). At each sampling point, this table is indexed using a
signature constructed using the run-time stack. If there is no table
entry with the matching signature, a new entry is created, and a
burst is initiated. However, if a matching entry is found, a random
number 0 ≤ n ≤ 1 is generated. If n ≤ RR, a burst is performed.
Otherwise, no burst is performed.

Intuitively, the runtime stack contains all methods that are cur-
rently on the stack, all parameters being passed, and values of local
variables. This information can give us a great deal of information
regarding the current state of the program’s execution. This infor-
mation, however, must be distilled into a concise signature that can
be computed at low cost while also being well distributed. We use

266

A,B,C,D

sig1=X

A,B,C,D

sig2=X

A,B,C,D

sig 3=X

A,B,C,E

sig 4=X

A,B,C,E

sig 5=X

A,B,C,D

sig6=X

w/o reenable
only burst 1 is enabled

(a)
w/ reenable, burst 1 and 4 are enabled, RR=1/3

(b)

A

B

C

D

6

6

6

A

B

C

D

6

6

3

E

3

A

B

C

D

1

1

1

X 6

A

B

C

D

1

1

1

X 3

A

B

C

E

1

1

1

+()

Figure 4. Illustration for weight compensation

Call Graph CCT
NAME DESCRIPTION

PLAT
FORM # nodes # edges # nodes

checkit jvm98 - check program x86 988 1827 9115
compress jvm98 - Modified Lempel -Ziv method x86 721 1227 7581
db jvm98 - database simulation x86 744 1310 8666
ipsixql Persistent XML -database x86 802 1330 9439
jack jvm98 - Java Parser Generator x86 987 1996 58422
javac jvm98 - java compiler x86 1505 4144 917986
specjbb Java business application x86 2467 5368 66792
jess jvm98 - Expert Shell System x86 1101 2106 24194
kawa Java -based Scheme system x86 2454 5496 430557
mpegaudio jvm98 - decompress audio files x86 898 1516 14019
JAS SpecJAppServer2004:3 tier java server AIX 6918 14597 256189

Table 1. Benchmarks evaluated

a variation of the CRC [10], computed using the address of each
method and call site on the stack.

Although we could control overhead by manipulating sampling
rate, the advantage added by this history-based mechanism is its
favoritism of bursting for those calling contexts whose signatures
have not been previously observed. Given a fixed bursting rate,
this favoritism increases the number of unique calling contexts for
which bursting will be enabled.

As mentioned earlier, permanently disabling bursting for a par-
ticular calling context is undesirable, because this skews CCT edge-
weights by decreasing the relative weight of hot edges and increas-
ing the relative weight of cold edges. Also, because the calling con-
text signature is approximate, it is possible that the same signature
may represent two different calling contexts.

In order to maintain an accurate distribution of edge-weights,
we again use RR for weight compensation. As described before, at
each sampling point, we generate a random number 0 ≤ n ≤ 1
to determine whether bursting need be re-enabled (i.e. whether
n ≤ RR). If it is determined that a burst should be re-enabled,
we use RR to perform weight compensation, by multiplying every
counter value added to the CCT by 1/RR. For example, if RR is
set to 0.25, 25% of the bursts are selectively enabled whose history
table entries indicate that they should be disabled. Consequently
the edge weights incremented on the CCT during each enabled

burst are multiplied by 4. Intuitively, we only enable one burst for
every four bursts that are skipped. Therefore the weights should be
four times larger. As an example in Figure 4.b, we set RR = 1/3.
Thus burst 4 is re-enabled and we can capture the call from C to
E. The CCT in Figure 4(b) is therefore more accurate than the
CCT in Figure 4(a). For those calling context signatures that are
not disabled according to the history table, this multiplication by
1/RR is not performed, because their weights do not need to be
compensated.

The value of RR reflects the trade-off between accuracy and
overhead. A higher RR causes more bursts to be re-enabled, adding
higher overhead, whereas a smaller RR could miss more bursts
and lowers the quality of the CCT. In Section 6.3, we report the
sensitivity of our results to this important parameter.

6. Experimental Evaluation
In this section, we present accuracy and performance data for each
of the profiling mechanisms. We empirically show that the static
bursting profiler yields the most accurate calling context-tree, but
causes unacceptable performance overhead. Using adaptive burst-
ing with re-enablement, we are able to approach the accuracy of
static bursting, while incurring much less overhead. This approach
also provides much greater accuracy than both the previously pro-

267

Sampling Interval 10ms
Burst Length 0.2ms
Re-enable Ratio 5%
History Table 2048 entries

Table 2. Default parameters

posed sampled stack-walking technique, and the adaptive-bursting
profiler without re-enablement. We also present a study testing the
sensitivity of the adaptive profilers to the parameters chosen to con-
trol burst length and re-enable ratio, followed by a study of calling-
context tree accuracy as a function of time. First, we present the
details of our experimental methodology.

6.1 Methodology

Our profiler implementation uses the industry-standard
JVMPI instrumentation interface. We obtained results for two dif-
ferent platforms, primarily experimenting using Sun Microsystem’s
1.3.2 08 JVM, running on a 1.8 GHZ Pentium 4/Windows XP sys-
tem configured with 1GB of memory. We additionally evaluated
a Java server middleware application on a 1.6 GHZ, 4-processor
(each 2-way SMT), IBM Power5 system configured with 16GB of
memory, running IBM’s J9 production virtual machine [17].

Table 1 shows the benchmarks evaluated. On the
x86/Windows platform, for comparison we use the eight SPECjvm
benchmarks that are also evaluated in [4]. In addition, kawa exer-
cises a Java-based Scheme system [2]. Ipsixql is a benchmark of
persistent XML database services [1]. From SPECjvm98 [12], we
did not include mtrt, which is a multithreaded application. Instead,
we used SPECjbb2000, and SPECjAppServer2004 (JAS) [13].
JAS is a heavily multithreaded J2EE benchmark program, run-
ning on PowerPC/AIX in a three-tier configuration using Web-
Sphere Application Server 6.0, with a DB2 8.2 back-end tier and
a client/driver front-end tier. We report results for the middle-tier
only, which is running the WebSphere application server.

The last three columns of Table 1 show the number of nodes and
edges for the call graph and CCT. (CCT being a tree, its number of
edges is always smaller than its number of nodes by one.) This data
illustrates the size of the CCT relative to a call graph; on average,
the number of nodes (edges) on a CCT is 29 (14) times more than
that of the corresponding call graph.

Due to the non-deterministic nature of the multithreaded bench-
marks (SPECjbb, and JAS) significant variation may exist across
runs. To eliminate this potential source of experimental error, we
first record a timestamped trace for each of these benchmarks, in-
cluding all method calls and returns during one execution. We use
this trace for off-line simulation of each profiling approach so that
we can perform a deterministic comparison. For benchmarks run on
the x86 (excluding SPECjbb), we evaluate the slowdown by mea-
suring real elapsed time.

For the initial experiments presented in the next subsection,
we use the parameters listed in Table 2. A fixed sampling rate of
approximately 10 ms was used for our experiments. Depending
on the algorithm, a burst of length 0.2 ms may be initiated. Our
adaptive bursting profiler with re-enablement may enable bursting
with a default re-enable ratio of RR=5%. These experiments are
followed by a sensitivity analysis of the parameter values.

6.2 Results

In this section, we compare the accuracy and overhead of the four
profiling mechanisms: sampled stack walking (as described in Sec-

ch
ecki

t

co
mpress db

ipsix
ql

jack
java

c jbb
jess

ka
wa

mpegaudio jas

ave
rage

de
gr

ee
 o

f o
ve

rla
p

w
ith

 c
om

pl
et

e
C

C
T

 (
%

)

0

20

40

60

80

100
stack walk adaptive adaptive with re-enable static burst

Figure 5. Comparison of the degree of overlap

Col 2
Col 3
Col 4
Col 5
Col 6
Col 7

ch
ecki

t

co
mpress db

ipsix
ql

jack
java

c jbb
jess

ka
wa

mpegaudio jas

ave
rage

ho
t-

ed
ge

 c
ov

er
ag

e
w

.r
.t

th
e

co
m

pl
et

e
C

C
T

th

re
sh

ol
d=

10
%

 (
%

)

0

20

40

60

80

100
stack walk adaptive adaptive with re-enable static burst

Figure 6. Comparison for hot-edge coverage with threshold=0.1

tion 4), adaptive bursting, adaptive bursting with re-enablement,
and static bursting. Figure 5 shows the degree of overlap for all
benchmarks, calculated against the complete CCT. In general, sam-
pled stack walking is the least accurate, significantly lower than the
bursting mechanisms. Also, its effectiveness varies widely across
our benchmarks; the degree of overlap is especially low for bench-
marks with a relatively flat method execution profile. Static bursting
achieves the highest degree of overlap for most applications, while
the adaptive mechanism with re-enabling performs nearly as well.
The average values are 49.8%, 68.8%, 85.2%, 91.4% for the four
schemes, respectively. Due to the probabilistic nature of each of
these sampling-based profilers, it is possible for non-representative
samples to skew the profiler’s accuracy. We believe this is the case
for checkit, and kawa, in which profiling mechanisms that collect
more profiling information actually yield slightly less accurate re-
sults.

Figure 6 compares the accuracy of each profiler using the hot-
edge coverage metric, using a threshold of 0.1. This means we are
only interested in the edges with weight between 0.1 × hottest
weight and hottest weight. Notice that this range typically con-
sists of very few edges (7 out of 7580 for compress, which contains
the fewest edges, and 24 out of 917985 for javac, which contains
the most edges). One clear difference from the previous figure is
that the adaptive profiler performs much better when using the hot-
edge coverage accuracy metric. This may be because the hottest
edges will probabilistically be the first-sampled edges with a partic-
ular calling context signature, and therefore do not require further
sampling based on re-enabling.

Among all profilers, adaptive with re-enablement is the most
stable across all benchmarks, while the simple stack-walking pro-
filer performs inconsistently. The results are especially poor on ap-

268

ch
ecki

t

co
mpress db

ipsix
ql

jack
java

c jbb
jess

ka
wa

mpegaudio jas

ave
rage

sl
ow

do
w

n
(%

)

0

20

40

60

80

100

120

140

160

adaptive adaptive with re-enable static burst

Figure 7. Comparison of slowdown

plications with very flat method profiles, e.g. checkit, kawa, javac,
and JAS.

The difference in hotness between an edge meeting the hot-
edge threshold and an edge missing the threshold is quite small for
many applications, resulting in susceptibility to variation for some
applications (e.g. mpegaudio, kawa). In summary, the average hot-
edge coverage of each profiler is 52.9%, 79.1%, 88.2%, and 88.1%,
respectively.

Finally, we compare the overhead caused by each profiling
mechanism in Figure 7. Across all benchmarks, slowdown is a
function of the frequency of bursting. Because the static bursting
profiler performs the most bursts, its slowdown is naturally greatest,
at 117%. As shown in Figure 8, the adaptive with re-enablement
profiler performs more bursting than the basic adaptive profiler, and
consequently, its slowdown is slightly higher, on average 18.8%
compared to 14.8%. The slowdown for sampled stack walking (not
shown in this figure) is negligibly small (less than 1%).

In summary, evaluation based upon these parameters shows
that with a modest slowdown (around 20%), the JVMPI-based
adaptive bursting approach can achieve 85% degree of overlap,
and cover 88% of the hottest edges with threshold = 0.1. This
is significantly more accurate than the previously proposed stack
sampling mechanism [6]. The slowdown is incurred partly because
of the inefficient JVMPI profiler interface. We expect this to be
further reduced with a more efficient instrumentation mechanism.

6.3 Sensitivity Study

In this subsection, we evaluate the sensitivity of the profiling mech-
anisms to the choice of the burst length, and re-enable ratio, and
also investigate each profiler’s performance using the hot-edge cov-
erage metric for varying hotness thresholds.

In Figure 9, we present profiling accuracy while altering two
parameters: the burst length and the re-enable ratio. In each small
figure, there are four curves corresponding to four burst length:
0.1 ms, 0.2 ms, 0.5 ms and 1.0 ms, with a 10ms sampling rate
(denoted burstlength/samplingrate). The x-axis consists of up
to 5 cases: adaptive, adaptive with RR = 5%, adaptive with
RR = 10%, adaptive with RR = 20% and static bursting. All
numbers are averaged across all benchmarks.

As in the previous results, we observe the same trends of in-
creased overlap in Figure 9(a) as we move from the adaptive pro-
filer to the static bursting profiler. As one might expect, as the burst
length increases, overlap increases for all schemes because more
profiling data is being collected.

The second sensitivity test, shown in Figure 9(b), examines the
percentage of bursts that are disabled as a function of re-enable
ratio. The four curves show almost no difference because whether
or not a burst will be enabled is a function of re-enable ratio,

ch
ecki

t

co
mpress db

ipsix
ql

jack
java

c jbb
jess

ka
wa

mpegaudio jas

ave
rage

pe
rc

en
ta

ge
 o

f d
is

ab
le

d
bu

rs
ts

 (
%

)

0

20

40

60

80

100 adaptive adaptive with re-enable

Figure 8. Comparison of the percentage of disabled bursts

not burst length. As one would expect, the percentage of disabled
bursts drops dramatically as a function of the re-enable ratio, almost
linearly.

Figure 9(c) compares slowdown as this re-enable ratio is ad-
justed. Of course, because raising the re-enable ratio incurs more
bursting, more overhead is created causing a larger slowdown.
Comparing this data with Figure 9 (a), we conclude that if we take
a modest burst length such as 0.2 ms, and choose a small re-enable
ratio, the adaptive profiler with re-enablement offers the best trade-
off between accuracy and overhead. We do not show the results for
hot edge coverage, because they only vary slightly across configu-
rations. This is perhaps due to the fact that the adaptive approaches
always get high coverage and are close to saturation.

In Figure 10, we show how hot edge coverage varies depending
on chosen threshold values. The threshold (x-axis) is varied from
0.95 to 0.05 (the higher the threshold, the fewer hot edges included
in the range). Due to space limitations, we report this result for
SPECjbb alone. The static burst and adaptive profilers perform well
across all of these threshold values. We find that the relative perfor-
mance of the profilers depicted here applies for most applications,
although absolute numbers are quite different depending on appli-
cation behavior (mostly as a function of the flatness of the profile).
In general, coverage increases as the threshold decreases, because
as the number of edges meeting a threshold grows, the probability
that a profiler will correctly discover the edges grows. The cover-
age dips at certain points, because as the threshold is lowered, the
number of methods meeting this threshold jumps abruptly. When
a large jump occurs, there is a probability that different profilers
will find different hot-edges, depending on variations in sampling
timing.

6.4 Degree of Overlap Over Time

As shown in Figure 11, our final experiment tests how well the
adaptive profiler (0.2/10, no re-enablement) tracks the complete
CCT over time, with respect to degree of overlap. In this figure, the
x-axis represents the number of method calls and returns. Because
the complete CCT changes over time (we compare the ACCT to the
complete CCT at identical points in time), the difference between
the two is not necessarily convergent. The two may match perfectly
at one point in time. However, a program’s behavior may change
(e.g. due to a phase change), causing the adaptive profiler to play
catch-up to the complete CCT.

The figure contains two curves, showing the average degree of
overlap across the x86 benchmarks (averaged), and JAS, respec-
tively. Horizontal lines corresponding to each curve are also in-
cluded indicating the degree of overlap observed at the end of pro-
filing for that application. Each curve initially increases steeply,
then increases more slowly towards their ultimate values. The ini-

269

(a)

adaptive

re-enable 5%

re-enable 10%

re-enable 20%

static burst

de
gr

ee
 o

f o
ve

rla
p

w
ith

 c
om

pl
et

e
C

C
T

 (
%

)

40

60

80

100

0.1/10
0.2/10
0.5/10
1.0/10

(b)

adaptive

re-enable 5%

re-enable 10%

re-enable 20%
pe

rc
en

ta
ge

 o
f d

is
ab

le
d

bu
rs

ts
 (

%
)

70

75

80

85

90

95

100

0.1/10
0.2/10
0.5/10
1.0/10

(c)

adaptive

re-enable 5%

re-enable 10%

re-enable 20%

static burst

sl
ow

do
w

n
(%

)

0

100

200

300

400

500

600

0.1/10
0.2/10
0.5/10
1.0/10

Figure 9. Sensitivity test for a variety of re-enable ratios and bursting lengths

threshold

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5

ho
t e

dg
e

co
ve

ra
ge

 (
%

)

0

20

40

60

80

100

stack walk
adaptive
re-enable 5%
re-enable 10%
re-enable 20%
static burst

Figure 10. Hot-edge coverage while varying threshold

tial jump is mostly within the first second of execution (roughly
translated from the number of method calls and returns), and ap-
proaches saturation within a few seconds. In future work, we plan
to use this convergence phenomenon to further reduce overhead;
once CCT updates become rare, profiling can be reduced without
sacrificing accuracy.

7. Related Work
There has been an abundance of research related to call graphs, call
trees, and calling context trees. For brevity, we discuss only those
that are most related to our approach.

Calling context tree profiling has been previously described
by many researchers. Both Ammons et al. [3] and Spivey [23]
proposed construction of the CCT through instrumentation of all
method calls and returns, leading to a large slowdown. Several
authors have used a sampling-based approach to obtain an ACCT
(also called a PCCT) [6, 15, 25]. Although it has low overhead,
the sampling-based approach sometimes causes significant loss
of accuracy compared with the complete CCT, as shown here.
For some applications, accuracy may be high, but its inconsistent
results yield low confidence.

There has been extensive research constructing call graph pro-
files based on sampling, bursting, or a mixture of the two. Call

million method call/returns
20 40 60 80 100 120 140

de
gr

ee
 o

f o
ve

rla
p

w
ith

 c
om

pl
et

e
C

C
T

 (
%

)

30

40

50

60

70

80

90

jas
average
(all benchmarks)

Figure 11. Convergence of the Degree of Overlap

graphs are relatively easy to capture with high accuracy. Even
with sampling based approaches, a high degree of overlap may be
achieved. Because the CCT is inherently more valuable than the
call graph (e.g. as shown in prior work [19]), a low-overhead pro-
filing mechanism that can generate CCT should be preferable to a
call graph profiler of comparable overhead.

Bernat and Miller [8] propose an incremental call path profiling
mechanism, which reduces overhead by allowing users to choose
methods of interest and generate path profiles including those meth-
ods. Aside from targeting a different application (call path profil-
ing or manually selected methods), their instrumentation approach
is orthogonal to our approach. We rely on the heavyweight JVMPI
interface, but our adaptive-based profiler can tolerate its overheads
reasonably well. Combining their lightweight instrumentation with
the adaptive approach should strengthen both approaches.

Arnold and Grove [4] present an approach that combines timer-
based and counter-based sampling. A timer interrupt triggers the
collection of a bursty (potentially non-contiguous, stride-based) se-
quence of n samples, where each sample records a method call.
These n samples are used to construct an approximate call graph
used for guiding inlining decisions. A key result of this work is its
evidence that timer-based sampling alone produces inaccurate re-
sults that are reflected in poor inlining decisions, which has been

270

one of the biggest motivations for our work. Their paper also de-
scribes a clever way to reuse existing method entry checks, so that
there is no additional overhead when the instrumentation is dis-
abled. This approach will also be useful in future implementations
of our adaptive profiling mechanism.

8. Conclusions
This paper describes and evaluates an adaptive bursting approach
to building the calling context tree at runtime. It selectively inhibits
redundant bursts, and re-enables a certain percentage of bursts to
react to changing application phases, while performing compen-
sation to maintain the relative weights of edges. We have shown
that our adaptive approach dramatically reduces profiling overhead
compared to the exhaustive and static bursting approaches, while
still creating a high accuracy calling context tree. We also demon-
strate that a pure stack-walking approach, although quite inexpen-
sive, yields inconsistent results with large variations in accuracy
across applications.

Our results show that a JVMPI-based adaptive bursting ap-
proach achieves 85% degree of overlap and cover 88% when us-
ing 0.1 hot-edge threshold with a modest slowdown (around 20%).
We can expect the slowdown to further go down with more effi-
cient instrumentation. In contrast, the overlapping of sampled stack
walking is below 50%, and the exhaustive approach incurs 50 times
slowdown with its accuracy comparable with our approach.

Despite its simplicity, our adaptive mechanism has been shown
to be very effective. We claim that with the use of a more efficient
instrumentation mechanism, the overheads of our adaptive profiler
will be negligibly small. This will be shown in future work. We
also plan to further investigate adaptive mechanisms that make a
more informed decision on when to enable and disable bursting,
in addition to using the current RR-based stochastic approach. For
example, heuristics such as the number of nodes added to the CCT
during a burst for a particular stack signature may be a good indi-
cator that some stack signatures should initiate bursts more or less
frequently than others. We also believe that our adaptive approach
may be applicable to other types of profilers (e.g. path profiling),
and plan to investigate its use for other types of collection.

Acknowledgments
We thank Matthew Arnold for donating parts of the code for
stack sampling and for extensive conversations about his adap-
tive scheme. Many thanks to Kristis Makris and Kyung Ryu for
the scripts to run SPECjAppServer2004, and to the anonymous
reviewers for their invaluable comments.

References
[1] Colorado bench. http://www-plan.cs.colorado.edu/henkel/

projects/colorado bench.

[2] Kawa, the java-based scheme system. http://www.gnu.org/
software/kawa.

[3] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware
performance counters with flow and context sensitive profiling.
In SIGPLAN Conference on Programming Language Design and
Implementation, pages 85–96, 1997.

[4] M. Arnold and D. Grove. Collecting and Exploiting High-Accuracy
Call Graph Profiles in Virtual Machines. In International Symposium
on Code Generation and Optimization, 2005.

[5] M. Arnold and B. Ryder. A framework for reducing the cost of
instrumented code. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 168–179, 2001.

[6] M. Arnold and P. F. Sweeney. Approximating the calling context tree
via sampling. IBM Research Report, July 2000.

[7] T. Ball and J. R. Larus. Optimally profiling and tracing programs.
ACM Transactions on Programming Languages and Systems,
16(4):1319–1360, July 1994.

[8] A. R. Bernat and B. P. Miller. Incremental call-path profiling.
Technical report, University of Wisconsin, 2004.

[9] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W.M. Hwu. Profiled-
guided automatic inline expansion for c programs. Software–Practice
and Experience, 22(5):349–369, 1992.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Press, Cambridge MA and McGraw-Hill, 1990.

[11] Standard Performance Evaluation Corporation. Specjbb2000 java
business benchmark. http://www.spec.org/jbb2000.

[12] Standard Performance Evaluation Corporation. Specjvm98 bench-
marks. http://www.spec.org/jvm98.

[13] Standard Performance Evaluation Corporation. SPECjAppServer2004.
http://www.spec.org/jAppServer2004.

[14] P. T. Feller. Value profiling for instructions and memory locations.
Masters Thesis CS98-581, University of California San Diego, April
1998.

[15] N. Froyd, J. Mellor-Crummey, and R. Fowler. Low-overhead call path
profiling of unmodified, optimized code. In ICS ’05: Proceedings of
the 19th annual international conference on Supercomputing, pages
81–90, 2005.

[16] D. Grove, G. DeFouw, J. Dean, and C. Chambers. Call graph
construction in object-oriented languages. In Proceedings OOPSLA
’97, pages 108–124, 1997.

[17] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V. Sundare-
san. Java just-in-time compiler and virtual machine improvements for
server and middleware applications. In Usenix 3rd Virtual Machine
Research and Technology Symposium (VM’04), 2004.

[18] R. J. Hall. Call path profiling. In Proceedings of the 14th International
Conference on Software Engineering, IEEE Computer Society 1992.

[19] K. Hazelwood and D. Grove. Adaptive Online Context Sensitive
Inlining. In International Symposium on Code Generation and
Optimization, pages 253–264, 2003.

[20] M. Hirzel and T. Chilimbi. Bursty tracing: A framework for low-
overhead temporal profiling. In In 4th ACM Workshop on Feedback-
Directed and Dynamic Optimization (FDDO-4), December 2001.

[21] U. Holzle and D. Ungar. Optimizing dynamically-dispatched
calls with run-time type feedback. In SIGPLAN Conference on
Programming Language Design and Implementation, pages 326–
336, 1994.

[22] P. Kessler S. Graham and M. McKusick. An execution profiler for
modular programs. Software–Practice and Experience, 13(8):671–
685, 1983.

[23] J. M. Spivey. Fast, accurate call graph profiling. Software–Practice
and Experience, 34(3):249–264, 2004.

[24] T. Suganuma, T. Yasue, and T. Nakatani. An empirical study of
method inlining for a java just-in-time compiler. In JVM-02 Java
Virtual Machine Research and Technology Symposium, pages 91–
104, 2002.

[25] J. Whaley. A portable sampling-based profiler for java virtual
machines. In Java Grande, pages 78–87, 2000.

[26] T. Yasue, T. Suganuma, H. Komatsu, and T. Nakatani. An efficient
online path profiling framework for java just-in-time compilers.
In PACT Conference on Parallel Architectures and Compilation
Techniques, pages 148–158, 2003.

271

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

