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ABSTRACT
In recent years, “document store” NoSQL systems have ex-
ploded in popularity. A large part of this popularity has
been driven by the adoption of the JSON data model in
these NoSQL systems. JSON is a simple but expressive
data model that is used in many Web 2.0 applications, and
maps naturally to the native data types of many modern
programming languages (e.g. Javascript). The advantages
of these NoSQL document store systems (like MongoDB and
CouchDB) are tempered by a lack of traditional RDBMS
features, notably a sophisticated declarative query language,
rich native query processing constructs (e.g. joins), and
transaction management providing ACID safety guarantees.
In this paper, we investigate whether the advantages of the
JSON data model can be added to RDBMSs, gaining some
of the traditional benefits of relational systems in the bar-
gain. We present Argo, an automated mapping layer for
storing and querying JSON data in a relational system, and
NoBench, a benchmark suite that evaluates the performance
of several classes of queries over JSON data in NoSQL and
SQL databases. Our results point to directions of how one
can marry the best of both worlds, namely combining the
flexibility of JSON to support the popular document store
model with the rich query processing and transactional prop-
erties that are offered by traditional relational DBMSs.

1. INTRODUCTION
Relational database systems are facing new competition

from various NoSQL (“Not Only SQL”) systems. While
there are many varieties of NoSQL systems, the focus of
this paper is on document store NoSQL systems such as
MongoDB and CouchDB. These systems are appealing to
Web 2.0 programmers since they generally support JSON
(Javascript Object Notation) as their data model. This data
model fits naturally into the type systems of programming
languages like Javascript, Python, Perl, PHP, and Ruby. In
other words, using JSON addresses the problem of object-
relational impedence mismatch.
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These NoSQL document stores also use the flexibility of
JSON to allow the users to work with data without having to
define a schema upfront. This“no-schema”nature eliminates
much of the hassle of schema design, enables easy evolution
of data formats, and facilitates quick integration of data
from different sources. In other words, these systems are
query-first and schema-later or schema-never systems.

As a result, many popularWeb applications (e.g. Craigslist,
Foursquare, and bit.ly), content management systems (e.g.
LexisNexis and Forbes), big media (e.g. BBC), and scien-
tific applications (e.g. at the Large Hadron Collider) today
are powered by document store NoSQL systems like Mon-
goDB [3] and CouchDB [7].

Furthermore, JSON is now a dominant standard for data
exchange among web services. Today many web services
APIs support JSON as a data interchange format, including
the APIs for Twitter [39], Facebook [37], and many Google
services [25]. Thus, a JSON-based document store has a
strong appeal to programmers who want to communicate
with these popular web services in their applications.

Despite their advantages, JSON document stores suffer
some substantial drawbacks when compared to traditional
relational DBMSs. The querying capability of these NoSQL
systems is limited – they are often difficult to program for
complex data processing, and there is no standardized query
language for JSON. In addition, these leading JSON docu-
ment stores don’t offer ACID transaction semantics.

It is natural to ask whether there is a fundamental mis-
match between using a relational data processing kernel and
the JSON data model (bringing all the benefits described
above). Many NoSQL advocates have argued that relational
database management systems (RDBMSs) do not have a
key role to play in these modern flexible data handling en-
vironments. The focus of this paper is to directly address
that belief, by designing, developing, and evaluating a com-
prehensive end-to-end solution that uses an RDBMS core,
but exposes the same JSON programming surface as the
NoSQL JSON document stores. The central contribution
of this paper is that with our approach, a relational DBMS
can be augmented with a layer that transparently exports the
JSON model, thereby providing all the advantages of NoSQL
JSON document stores, while providing higher performance
and richer functionality (such as native joins, and ACID
guarantees instead of BASE consistency). We hope that our
proof-of-concept efforts here will encourage a broader dis-
cussion in the database community about supporting JSON
data with relational technology, and adding features tradi-
tionally associated with RDBMSs to JSON document stores.
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The key contributions of this work are as follows: First,
we carefully consider how the JSON data model can be sup-
ported on top of a traditional RDBMS. A key challenge
here is to directly support the schema flexibility that is of-
fered by the use of the JSON data model (see Section 2).
We then develop an automated mapping layer called Argo
that meets all of the requirements identified for JSON-on-
RDBMS (see Section 3). Argo runs on top of a traditional
RDBMS, and presents the JSON data model directly to
the application/user, with the addition of a sophisticated,
easy to use SQL-based query language for JSON, which we
call Argo/SQL. Thus, programming against Argo preserves
all the ease-of-use benefits that are associated with docu-
ment store NoSQL systems, while gaining a highly usable
query language and additional features that are naturally
enabled by using an underlying relational system (including
ACID transactions). Argo includes two alternative mapping
schemes which we compare against each other.
Second, we present a micro-benchmark, called NoBench,

to allow us to gain insights into various performance aspects
of JSON document stores (see Section 4).
Finally, we implement Argo on two open-source RDBMSs

(MySQL and PostgreSQL) and use NoBench to contrast the
performance of Argo on these two RDBMSs with MongoDB
– the leading NoSQL JSON document store system. We
draw various insights from this detailed evaluation (see Sec-
tion 5), and conclude that with Argo or a similar system, tra-
ditional RDBMSs can offer the best of both worlds. Namely,
Argo on an RDBMS preserves the flexibility associated with
using the JSON data model and often outperforms exist-
ing NoSQL systems, all while providing higher functionality
(e.g. joins, ACID) than existing NoSQL systems. To the
best of our knowledge, this is the first paper that has shown
the feasibility and the advantage of adapting RDBMSs to
meet the popular programming surface of JSON document
stores.

2. BACKGROUND

2.1 The JSON Data Model
The JSON data model [14] consists of four primitive types,

and two structured types. The four primitive types are:

• Unicode Strings, wrapped in quote characters.
• Numbers, which are double-precision IEEE floats.
• Boolean values, which are True or False.
• Null, to denote a null value.

The two structured types are:

• Objects, which are collections of attributes. Each at-
tribute is a key (String) and value (any type) pair.

• Arrays, which are ordered lists of values. Values in an
array are not required to have the same type.

A value in an object or array can be either a primitive type
or a structured type. Thus, JSON allows arbitrary nesting
of arrays and objects.
Figure 1 shows an example of two JSON objects. The first

object has string attributes name and rival, a numeric age
attribute, and a boolean indicted attribute. The object also
has an attribute kids, which is an array consisting of three
strings and an object (it is perfectly legal to mix value types
in an array). The nested object in the kids array defines

{
"name": "George Bluth",
"age": 58,
"indicted": True,
"kids": ["Gob", "Lindsay", "Buster",

{
"name": "Michael",
"age": 38,
"kids": ["George-Michael"]

}],
"rival": "Stan Sitwell"

}

{
"name": "Stan Sitwell",
"age": "middle-aged",
"charity_giving": 250120.5,
"kids": ["Sally"]

}

Figure 1: A pair of valid JSON objects.

its own mapping of keys to values, and includes its own
array of kids (recall that JSON can nest objects and arrays
arbitrarily deep within each other).

2.2 Implication of using JSON in a DBMS
JSON-based NoSQL document stores, such as MongoDB [3]

and CouchDB [7], store collections of JSON objects in lieu
of relational tables, and use JSON as the primary data for-
mat to interact with applications. There are no restrictions
on the format and content of the objects stored, other than
those imposed by the JSON standard. This leads to several
salient differences from the relational model, namely:

• Flexibility and Ease-of-Use: Since applications don’t
have to define a schema upfront (or ever), application
writers can quickly start working with the data, and eas-
ily adapt to changes in data structure.

• Sparseness: An attribute with a particular key may ap-
pear in some objects in a collection, but not in others.
This situation often arises in e-commerce data [5, 12].

• Hierarchical Data: Values may be arrays or objects,
nested arbitrarily deep. In contrast to the relational ap-
proach of normalizing hierarchical data into separate ta-
bles with foreign-key references, hierarchical data is rep-
resented intensionally within the parent object [31].

• Dynamic Typing: Values for a particular key have no
fixed data type, and may vary from object to object.

2.3 Current NoSQL JSON Document Stores
The current leading native JSON document stores are

MongoDB and CouchDB. MongoDB is the current market
leader in this category, and has a richer feature set than
CouchDB. MongoDB has a query language, while CouchDB
requires writing MapReduce-based “views”. MongoDB also
offers higher performance [2]: it is implemented in C++, has
robust indexing support, uses a fast binary representation of
JSON [1] internally, and uses a fast custom binary protocol
to connect to client applications. In contrast, CouchDB is
implemented in Erlang, does not support indices in the usual
sense (although it supports materialized views), and offers
only a text-based REST interface to clients, requiring fre-
quent expensive JSON serialization and deserialization.

It should be noted that JSON data is sometimes stored in
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flat key-value stores like Riak [9] and Cassandra [8]. How-
ever, such systems don’t provide the same intuitive program-
ming surface as true JSON document stores, and there is an
impedance mismatch between the application data model
and the underlying database data model making it harder
to write the end application program. Consequently, a num-
ber of large web applications are powered by native JSON
document stores [4, 18,20].

2.4 JSON vs. XML
JSON is similar to XML in that both are hierarchical semi-

structured data models. In fact, JSON is replacing XML in
some applications due to its relative simplicity, compactness,
and the ability to directly map JSON data to the native data
types of popular programming languages (e.g. Javascript),
rather than having to programatically interact with an XML
document via an API like DOM or SAX.
When XML emerged as a popular standard for data ex-

change, the database community responded with research
into presenting relational databases as XML [11, 19, 35], ef-
ficiently storing and querying XML data using an underly-
ing relational database [6, 15, 23, 26, 27, 34, 36, 38], and cre-
ating native non-relational XML stores [29]. We drew on
this rich body of research into XML as a data model (espe-
cially systems for mapping and querying XML in a relational
database) when designing Argo, our solution for storing and
querying JSON data in a relational database. We discuss
this XML-oriented research further in Section 6.
Although JSON is similar to XML in some ways, there are

several major differences in the data models which cause
previously developed XML mapping techniques not to be
directly applicable to JSON. These differences include:

• Schema: In some applications of XML, an XML schema
or document type definition (DTD) is available which de-
scribes restrictions on the structure of XML documents.
Some XML-on-relational mapping techniques, such as the
normalized universal approach of [23], the generation of
overflow mappings in STORED [15], and the schema an-
notations which enable inlining in ShreX [6], exploit in-
formation from a schema for a class of XML documents to
store certain data more efficiently and to reduce the num-
ber of joins that are required to reconstruct the XML doc-
uments. There is no equivalent to XML schema for JSON,
so mappings must necessarily be schema-oblivious.

• Repetition: In a JSON object, a key maps to only one
value (which may be a structured type nesting other val-
ues). In XML, a particular node type (identified by its tag
name) may appear any number of times beneath a parent
node (unless restricted by an available XML schema).

• Ordering: The order of nodes in an XML document
(both the global order and the order among siblings) is
potentially semantically meaningful and should be pre-
served. In JSON, order is only significant among the
items in an array.

• Typed Data: The only primitive datatype that basic
XML supports is a string (although the W3C standard
for XML Schema defines a richer type system, and allows
type constraints for certain values in an XML document
to be expressed [30]). In contrast, JSON data is typed
(see Section 2.1), with data types unambiguously deter-
mined from the JSON syntax.

We note that there is a rich body of work on schema-

oblivious XML mapping and our mapping approach (out-
lined in Section 3) is inspired by that work, which unfortu-
nately can’t be directly applied to JSON. One could imag-
ine developing a JSON-to-XML mapping layer, and using
an existing XML mapping technique. Such a mapping must
preserve JSON type information and allow queries to access
attributes of different types (for instance, a comparison pred-
icate should compare string values according to their lexico-
graphical order, and numeric values according to their sign
and magnitude). We could devise a mapping scheme which
represents JSON values of different types as different tags
in an XML document. Such a scheme would preserve the
type information from JSON, but in many cases type-aware
querying would require constructing complicated XPath ex-
pressions with different cases for different types, which in the
case of non-string values would also require frequent deseri-
alization of values from their string form. For these reasons,
we have chosen to focus directly on implementing a JSON-
on-relational system rather than considering a multi-layer
JSON-on-XML-on-relational approach, although we do take
inspiration from the previous work dealing with XML data
in relational systems and selectively adapt several techniques
from the XML research to the JSON model.

Finally, we note that in practice, the way JSON is de-
ployed and used differs from the typical use cases for XML.
JSON objects are lightweight, often with only a few levels
of nesting, and each object usually represents a single en-
tity in the data domain. In contrast, XML documents are
often large, with many entities belonging to the same con-
ceptual group being represented as repeated tags in a single
document. As noted above, JSON data is accessed and ma-
nipulated by client applications directly as native variables,
while more heavyweight XML documents are accessed via
an API like DOM or SAX, or transformed by a rules-based
mechanism like XSLT. The practical differences in the way
JSON is used as compared to other data models motivated
us to develop our own synthetic benchmark, NoBench, which
models common JSON data usage patterns (see Section 4).

3. ARGO: BRINGING JSON TO RELATIONS
Existing NoSQL document stores are limited by the lack of

a sophisticated and easy-to-use query language. The most
feature-rich JSON-oriented query language today is Mon-
goDB’s query language. It allows selection, projection, dele-
tion, limited types of updates, and COUNT aggregates on a
single collection of JSON objects, with optional ordering
of results. However, there is no facility for queries across
multiple collections (including joins), or for any aggregate
function other than COUNT. Such advanced query constructs
must be implemented outside of MongoDB, or within Mon-
goDB by writing a Javascript MapReduce job (while in other
systems like CouchDB, even simple queries require MapRe-
duce). MongoDB’s query language requires specifying pro-
jection lists and predicates as specially-formatted JSON ob-
jects, which can make query syntax cumbersome.

NoSQL systems typically offer BASE (basically available,
soft state, eventually consistent) transaction semantics. The
BASE model aims to allow a high degree of concurrency, but
it is often difficult to program against a BASE model; for
example, it is hard for applications to reconcile changes [33].
Recent versions of NoSQL systems such as MongoDB have
made an effort to improve beyond BASE, but these improve-
ments are limited to ensuring durability of individual writes
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and still fall far short of full ACID semantics.
To address these limitations, we developed Argo, an auto-

mated mapping layer for storing and querying JSON data in
a relational DBMS. Argo has two main components:

• A mapping layer to convert JSON objects to relational
tuples and vice versa. (Described in Section 3.1)

• A SQL-like JSON query language, called Argo/SQL, for
querying JSON data. Beneath the covers Argo/SQL con-
verts queries to vanilla SQL that works with the mapping
scheme, and reconstructs JSON objects from relational
query results. (Described in Section 3.2)

Note that since the Argo approach uses a relational engine,
it can provide stronger ACID semantics.

3.1 Argo: The Mapping Layer
The storage format of Argo handles schema flexibility,

sparseness, hierarchical data, and dynamic typing as defined
in Section 2.2. The Argo storage format was designed to be
as simple as possible while still being a comprehensive solu-
tion for storage of JSON data. There are indefinitely many
possible storage formats, and we do not claim that ours is
optimal; indeed, experience with XML suggests that the
best-performing format is application-dependent [6]. (We
do show in Section 5 that even this simple format provides
good performance. We also consider exploring other map-
ping schemes to be an interesting direction for future work.)
In order to address sparse data representation in a rela-

tional schema, Argo uses a vertical table format (inspired
by [5]), with columns for a unique object id (a 64-bit BIG-
INT), a key string (TEXT), and a value. Rows are stored in
vertical table(s) only when data actually exists for a key,
which allows different objects to define values for different
keys without any artificial restrictions on object schema, and
without any storage overhead for “missing” values.
To deal with hierarchical data (objects and arrays), we

use a key-flattening approach. The keys of a nested object
are appended to the parent key, along with the special sepa-
rator character “.”. This technique has the effect of making
the flattened key look like it is using the element-access op-
erator, which is conceptually what it represents. Similarly,
each value in an array is handled by appending the value’s
position in the array to the key, enclosed by square brack-
ets. This scheme allows the storage of hierarchical data in
a single, flat keyspace. To illustrate, the flattened key for
George Bluth’s grandson “George-Michael” in Figure 1 is
kids[3].kids[0]. Key-flattening is similar to the Dewey-order
approach for recording the order of XML nodes [38] and
the simple absolute path technique for representing a node’s
position in an XML document [36].
With the structured data types (objects and arrays) han-

dled by key-flattening, we now address storage for the prim-
itive types: strings, numbers, and booleans. We evaluated
two storage schemes which we call Argo/1 and Argo/3.

3.1.1 Argo/1
This mapping scheme uses a single-table vertical format

and retains the type information inside the table. Each col-
lection of JSON objects is stored as a single 5-column ta-
ble, which includes the standard object-id and key string
columns, as well as one value column for each of the three
basic JSON types: string (TEXT), number (DOUBLE PRECI-

SION), and boolean (BOOLEAN or BIT). The value columns

argo people data

objid keystr valstr valnum valbool

1 name George Bluth NULL NULL
1 age NULL 58 NULL
1 indicted NULL NULL true
1 kids[0] Gob NULL NULL
1 kids[1] Lindsay NULL NULL
1 kids[2] Buster NULL NULL
1 kids[3].name Michael NULL NULL
1 kids[3].age NULL 38 NULL
1 kids[3].kids[0] George-Michael NULL NULL
1 rival Stan Sitwell NULL NULL
2 name Stan Sitwell NULL NULL
2 age middle-aged NULL NULL
2 charity giving NULL 250120.5 NULL
2 kids[0] Sally NULL NULL

Figure 2: Decomposition of JSON Objects from Fig-
ure 1 into the Argo/1 Relational Format.

allow NULL values to mark columns that don’t contain ac-
tual data values. It would also be possible to store any
number of JSON collections in just one table by adding a
column for a unique collection ID to this schema, but doing
so can complicate query processing and cause data from a
single collection to become sparse on data pages, incurring
significant overhead. We therefore create one table for each
JSON collection.

We illustrate Argo/1 in Figure 2. All values are dis-
tributed into the rightmost three columns of the table, ac-
cording to their types. Other fields are all filled with NULL.
Attributes with the key age occupy two columns because
they have two types in the sample JSON data. Values in
nested arrays and objects have keys that are flattened as
described above.

Reconstructing JSON objects from the mapped tuples is
simple in this scheme. Argo starts with an empty JSON
object and fetches rows from the table, ordered by objid.
Argo examines the keystr of each row, checking for the
element-access operator “.” and/or an array subscript in
square brackets, creating intermediate nested objects or ar-
rays as necessary on the path represented by the key string.
The sole non-null value from valstr, valnum, or valbool is
inserted into the appropriate place in the reconstructed ob-
ject. Argo then moves on to the next row. If the objid is the
same as the previous row, it repeats the process of insert-
ing that row’s value. If the objid has changed, Argo emits
the reconstructed JSON object and starts over with a new,
empty object. After processing the last row, Argo emits the
final object. If there are no rows to reconstruct objects from,
Argo simply returns without emitting any objects.

3.1.2 Argo/3
This mapping scheme uses three separate tables (one for

each primitive type) to store a single JSON collection. Each
table has the standard objid and keystr columns, as well as
a value column whose type matches the type of data (TEXT
for string, DOUBLE PRECISION for number, and BOOLEAN or
BIT for boolean). This is similar to a previously-studied
schema for storing XML documents in object-relational databases
which uses seperate “node tables” for different types of XML
nodes (element, attribute, and text) [36]. Similar to Argo/1,
each JSON collection is represented by its own set of 3 tables
(again, we choose not to use a global set of 3 tables with a
column for a unique collection ID to avoid extra complexity
and overhead for storage and query processing).
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argo people str

objid keystr valstr

1 name George Bluth
1 kids[0] Gob
1 kids[1] Lindsay
1 kids[2] Buster
1 kids[3].name Michael
1 kids[3].kids[0] George-Michael
1 rival Stan Sitwell
2 name Stan Sitwell
2 age middle-aged
2 kids[0] Sally

argo people num

objid keystr valnum

1 age 58
1 kids[3].age 38
2 charity giving 250120.5

argo people bool

objid keystr valbool

1 indicted true

Figure 3: Decomposition of JSON Objects from Fig-
ure 1 into the Argo/3 Relational Format.

Figure 3 illustrates the Argo/3 relational representation
for the sample JSON objects from Figure 1. All values in
the two objects in the file are distributed across three ta-
bles, according to their types. In particular, the attributes
with key age have different value types in the two objects,
and therefore are separately stored in table argo people str
and argo people num. Just as in Argo/1, nested values are
handled with key-flattening.
The object reconstruction process for Argo/3 is similar to

the process for Argo/1, except that rows are read from the 3
tables in a collection in parallel, ordered by objid. A JSON
object is reconstructed from all values across the 3 tables
with the same objid, then the object is emitted and the
Argo runtime moves on to the next-lowest objid from the
three tables.

3.2 Argo/SQL
Argo/SQL is a SQL-like query language for collections

of JSON objects. It supports three types of statements:
INSERT, SELECT, and DELETE.
An insert statement has the following form:

INSERT INTO collection_name OBJECT {...};

Argo lazily creates collections when they are first accessed,
so there is no CREATE COLLECTION statement. The way that
Argo handles INSERT statements is described in Section 3.2.1.
A SELECT statement can specify a projection list of at-

tribute names or * for all attributes. It can optionally spec-
ify a predicate in a WHERE clause. It is also possible to specify
a single INNER JOIN. To illustrate these features, we show a
number of valid Argo/SQL SELECT statements, and the re-
sults they return, in Figure 4. We discuss the evaluation
of predicates in Section 3.2.2, selection and projection in
Section 3.2.3, and join processing in Section 3.2.4.
Finally, a DELETE statement removes objects from a col-

lection with an optional WHERE predicate. The following is
an example of a valid DELETE statement in Argo/SQL:

DELETE FROM people WHERE "Lindsay" = ANY kids;

The above query deletes the first object from the collec-
tion. Note that it has a predicate that matches the string
“Lindsay” with any of the values in the array kids. Array-
based predicates are discussed in more detail in Section 3.2.2.

3.2.1 Insertion

Query Result

SELECT age FROM people; {"age": 58}
{"age": "middle-aged"}

SELECT * FROM people WHERE {
charity_giving > 100000; "name": "Stan Sitwell",

"age": "middle-aged",
"charity_giving": 250120.5,
"kids": ["Sally"]
}

SELECT left.name, {
right.kids "left": {

FROM people AS left "name": "George Bluth"
INNER JOIN people AS right },
ON (left.rival = right.name); "right": {

"kids": ["Sally"]
}
}

Figure 4: Argo/SQL SELECT statement examples.

When Argo receives an INSERT command, it begins a
transaction in the underlying RDBMS (optionally, the user
can choose to manually begin and later commit a transac-
tion encapsulating more than just the insertion of a single
object). Unique object IDs (the objid column) are generated
from a SQL SEQUENCE. Argo recursively walks the structure
of the JSON object, keeping track of the complete key-path
(implementing key-flattening as described above) and exe-
cuting an INSERT statement on the type-appropriate under-
lying table (for Argo/3), or type-appropriate columns of the
underlying single table (for Argo/1) for each string, num-
ber, or boolean value encountered. When Argo has finished
walking the object, it commits the transaction if the insert
command is not in an explicit transaction block, thus guar-
anteeing that INSERTs of JSON objects are atomic.

3.2.2 Predicate Evaluation
Evaluating the WHERE clause of a SELECT or DELETE query

requires a general mechanism for evaluating predicates on
JSON objects and finding the set of objids which match.

Simple Comparisons: Suppose we wish to evaluate a
simple predicate comparing an attribute to a literal value.
Argo selects objid from the underlying table(s) where keystr
matches the specified attribute (values nested arbitrarily
deep in arrays or objects are allowed), and where the value
matches the user-specified predicate. Argo uses the type of
the literal value in such a predicate to determine which table
(in Argo/3) or column (in Argo/1) to check against. The six
basic comparisons (=, !=, <, <=, >, >=), as well as LIKE and
NOT LIKE pattern-matching for strings, are supported.

For example, the predicate charity_giving > 100000 is
evaluated in Argo/1 as:

SELECT objid FROM argo_people_data WHERE keystr =

"charity_giving" AND valnum > 100000;

In Argo/3, the same predicate is evaluated as:

SELECT objid FROM argo_people_num WHERE keystr =

"charity_giving" AND valnum > 100000;

Predicates Involving Arrays: Argo/SQL supports pred-
icates that may match any of several values in a JSON ar-
ray, using the ANY keyword. When ANY precedes an attribute
name in a predicate, Argo will match any keystr indicating
a value in the array, instead of exactly matching the at-
tribute name. For example, the predicate "Lindsay" = ANY
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kids is evaluated in Argo/1 as:

SELECT objid FROM argo_people_data WHERE keystr

SIMILAR TO "kids\[[0123456789]+\]" AND valstr =

"Lindsay";

And in Argo/3:

SELECT objid FROM argo_people_str WHERE keystr

SIMILAR TO "kids\[[0123456789]+\]" AND valstr =

"Lindsay";

Conjunctions: In general, an AND conjunction of predi-
cates can not be evaluated on a single row of the underlying
relational table(s), since each row represents only a single
value contained in an object. Fortunately, Argo is able to
take the intersection of the matching objids for the sub-
predicates of a conjunction to find the matching objids for
that conjunction. For example, the predicate age >= 50

AND indicted = True is evaluated with the following SQL
statement in Argo/1:

(SELECT objid FROM argo_people_data WHERE keystr

= "age" AND valnum >= 50) INTERSECT (SELECT objid

FROM argo_people_data WHERE keystr = "indicted"

AND valbool = true);

In Argo/3, we again take the intersection of objids match-
ing each sub-predicate. Sub-queries which evaluate the in-
dividual sub-predicates in a conjunction are constructed on
the type-appropriate tables. The predicate age >= 50 AND

indicted = True is evaluated with the following SQL state-
ment in Argo/3:

(SELECT objid FROM argo_people_num WHERE keystr

= "age" AND valnum >= 50) INTERSECT (SELECT objid

FROM argo_people_bool WHERE keystr = "indicted"

AND valbool = true);

Disjunctions: Just as a conjunction can be evaluated
as the intersection of its child subpredicates, a disjunction
can be evaluated as the UNION of the sets of objids matching
its child subpredicates. When using Argo/1, and when all
of the disjunction’s children are simple comparisons or other
disjunctions whose leaf-level descendants are all simple com-
parisons, an optimization is possible: Argo simply connects
the predicate clauses for each of the individual simple com-
parisons with OR.
For example, the predicate age >= 50 OR indicted = true

is evaluated in Argo/1 as:

SELECT objid FROM argo_people_data WHERE (keystr

= "age" AND valnum >= 50) OR (keystr = "indicted"

AND valbool = true);

Argo/3 does not admit this same optimization, because in
Argo/3 the individual predicates must be evaluated against
3 different tables 1. So, in Argo/3, the same predicate must
be evaluated with a UNION:

(SELECT objid FROM argo_people_num WHERE keystr =

"age" AND valnum >= 50) UNION (SELECT objid FROM

argo_people_bool WHERE keystr = "indicted" AND

valbool = true);

A disjunction whose children are not simple comparisons

1A more limited optimization, where sub-predicates which
specify literals of the same type are connected with OR, and
three queries (one for each type-specific table) are UNIONed
together, is possible in Argo/3.

can not be evaluated with the OR optimization in Argo/1.
The predicate charity_giving >= 100000 OR (indicted =

True AND age >= 50) is evaluated in Argo/1 as:

(SELECT objid FROM argo_people_data WHERE keystr

= "charity_giving" AND valnum >= 100000) UNION

((SELECT objid FROM argo_people_data WHERE keystr

= "indicted" AND valbool = true) INTERSECT (SELECT

objid FROM argo_people_data WHERE keystr = "age"

AND valnum >= 50));

And in Argo/3 as:

(SELECT objid FROM argo_people_num WHERE keystr

= "charity_giving" AND valnum >= 100000) UNION

((SELECT objid FROM argo_people_bool WHERE keystr

= "indicted" AND valbool = true) INTERSECT (SELECT

objid FROM argo_people_num WHERE keystr = "age"

AND valnum >= 50));

Negations: Any basic comparison can be negated by tak-
ing the opposite comparison. For negations of conjunctions
or disjunctions, Argo applies De Morgan’s laws to push nega-
tions down to the leaf comparisons of a predicate tree.

3.2.3 Selection
A SELECT query requires reconstruction of objects match-

ing the optional predicate. If there is a WHERE predicate
in a SELECT query, the matching object IDs (found via the
methods described in Section 3.2.2) are inserted into a tem-
porary table (created with the SQL TEMPORARY keyword, so
it is private to a connection), and attribute values belonging
to the matching objects are retrieved via a SQL query of the
following form in Argo/1:

SELECT * FROM argo_people_data WHERE objid IN

(SELECT objid FROM argo_intermediate) ORDER BY

objid;

In Argo/3, 3 similar queries fetch attribute values from
the 3 tables comprising the collection:

SELECT * FROM argo_people_str WHERE objid IN

(SELECT objid FROM argo_intermediate) ORDER BY

objid;

SELECT * FROM argo_people_num WHERE objid IN

(SELECT objid FROM argo_intermediate) ORDER BY

objid;

SELECT * FROM argo_people_bool WHERE objid IN

(SELECT objid FROM argo_intermediate) ORDER BY

objid;

Note that it is possible to obtain the same results via a
natural join of the data table(s) and the intermediate result
table instead of a subquery (in fact, the join method is used
in MySQL for performance reasons).

Argo iterates through the rows in the results of the above
queries and reconstructs matching JSON objects according
to the methods described in Sections 3.1.1 and 3.1.2.

Projection: The user may wish to project only certain
attributes from JSON objects matching a query, as illus-
trated in the first query in Figure 4. The object reconstruc-
tion algorithms detailed above are the same, with the addi-
tion of a predicate that matches only the specified attribute
names. Because a given attribute may be an embedded ar-
ray or object, we can not simply match the attribute name
exactly, we must also find all nested child values if any exist.
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Argo accomplishes this task with LIKE predicates on the key
string column. For example, if the projection list contains
the attributes“name”and“kids”, Argo will run the following
query (using Argo/1):

SELECT * FROM argo_people_data WHERE (keystr =

"name" OR keystr LIKE "name.%" OR keystr LIKE

"name[%" OR keystr = "kids" OR keystr LIKE

"kids.%" OR keystr LIKE "kids[%") AND objid IN

(SELECT objid FROM argo_intermediate) ORDER BY

objid;

Selection With No Predicate: In Argo/SQL, as in
standard SQL, it is possible to have a SELECT query with no
WHERE predicate. In this case, there is no predicate evalua-
tion step, and projection and object reconstruction proceeds
as detailed above, with the subquery for matching objid

omitted.

3.2.4 Join Processing
Argo supports SELECT queries with a single INNER JOIN

as illustrated by the last query in Figure 4. In order to eval-
uate a join condition on attributes of JSON objects, Argo
performs a JOIN query on the underlying Argo/1 or Argo/3
tables where the keystrs match the names of the attributes
in the join condition, and the values satisfy the join con-
dition. For example, to evaluate the JOIN query shown in
Figure 4, Argo would run the following (using Argo/1):

SELECT argo_join_left.objid,

argo_join_right.objid FROM argo_people_data AS

argo_join_left, argo_people_data AS argo_join_-

right WHERE argo_join_left.keystr = "rival" AND

argo_join_right.keystr = "name" AND argo_join_-

left.valstr = argo_join_right.valstr;

This is not the end of the story, however, as many join con-
ditions make sense for more than one of the JSON primitive
data types. The equijoin shown above evaluates the join
condition for strings. To evaluate the condition for numbers
and boolean values, Argo runs two more queries identical
to the above, except with valstr replaced with valnum or
valbool, respectively, and takes the UNION of the three.
For Argo/3, the join evaluation process is very similar,

except that the three queries in the UNION each access the
type-appropriate table.
As with a simple SELECT query, Argo stores the results

of the above in a TEMPORARY intermediate table. Argo then
selects rows matching the left and right objid in the inter-
mediate table from the underlying data table(s) (optionally
projecting out only certain attributes as described in Sec-
tion 3.2.3), and reconstructs the joined objects according to
the methods described in Sections 3.1.1 and 3.1.2.

3.2.5 Deletion
Just as with SELECT, a DELETE query may take an optional

predicate, in which case object IDs matching the predicate
are inserted into a temporary table. All of the attribute
data belonging to matching objects is then deleted via a
SQL query of the following form in Argo/1:

DELETE FROM argo_people_data WHERE objid IN

(SELECT objid FROM argo_intermediate);

When using Argo/3, there are 3 similar DELETE state-
ments, one for each table.

The predicate evaluation query and the DELETE query are
encapsulated in a single transaction.

If there is no predicate in a DELETE query, then all the
objects in a collection are deleted via a statement similar to
the above, with the subquery for matching objid omitted.

4. NOBENCH: A JSON DOCUMENT STORE
BENCHMARK

To evaluate the performance of query processing in JSON
document stores, we created the NoBench benchmark suite.
NoBench follows the spirit of other database micro-benchmarks
(such as [13,16]) in that it aims to identify a simple and small
set of queries that touch on common operations in the target
settings. The NoBench queries are not meant to replicate or
simulate a particular production workload, but instead fo-
cus on individual operations common to many applications.
NoBench consists of a data generator and a set of 12 simple
queries that are defined below.

4.1 Generated Data
The NoBench data generator generates a series of JSON

objects with the following attributes:

• str1, str2: a pair of unique strings.
• num: a unique number in the range 0 – N, where N is the
total number of objects generated.

• bool: a boolean value (50% are true, 50% are false).
• dyn1: a dynamically typed value that is equal to num in
95% of the objects, and equal to str1 in the remaining
5%.

• dyn2: a dynamically typed value that is equal to either
str1, num, or bool in an even 1/3 of objects.

• nested arr: a nested array of 0 – 7 strings randomly sam-
pled from the Brown Corpus of published American En-
glish text [24]. The Brown Corpus follows a Zipfian distri-
bution, and is used to simulate “tag” or keyword search.

• nested obj: a nested object with 2 attributes:

• str: a unique string that is equal to str1 from a differ-
ent object in the generated set.

• num: a unique number that is equal to num from a
different object in the generated set.

• sparse XXX: a series of sparsely-populated attributes from
sparse 000 to sparse 999. Each object has a series of
10 consecutively-numbered sparse attributes chosen from
the set of 1000. Sparse attributes are chosen to form 100
“clusters”, so that any two objects will share all of their
sparse attributes or none of them. Specifically, any given
object has sparse attributes sparse XX0 through sparse -
XX9, where XX varies from object to object. The value
for each such attribute is randomly chosen from a set of
10 strings.

• thousandth: an integer in the range 0 – 999, equal to num
modulo 1000

The generated data set includes hierarchical data, dy-
namic typing, and sparse attributes.

4.2 Queries
The twelve NoBench queries are designed to test the per-

formance of common operations in a JSON document store.
The final result for each query is inserted into a temporary
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table or collection. The queries are grouped into five cat-
egories, and are described below. The full Argo/SQL and
MongoDB commands for each query are shown in Table 1.
In all the queries below where the query has a literal con-

stant (e.g. the boundaries of a range predicate), this con-
stant is generated uniformly randomly (without substitu-
tion) from within the range of the domain for that literal.
This method allows testing NoBench queries with different
parameterization, touching different parts of the data set, so
that we can more accurately gauge overall performance.

4.2.1 Projection: Q1 to Q4

Q1: This query projects the two common attributes str1 and
num from all the objects in the dataset. This query simply
tests the ability of the system to project a small subset of
attributes that are always present in each object.
Q2: This query projects the two nested attributes nested -
obj.str and nested obj.num from the entire dataset. Com-
paring to Q1 exposes the difference in projecting nested at-
tributes.
Q3: This query projects two sparse attributes from one of
the 100 clusters. This query tests the performance when
projecting attributes that are defined in only a small subset
of objects.
Q4: This query projects two sparse attributes from two dif-
ferent clusters. This query retrieves the same number of at-
tribute values as Q3, but fetches them from twice as many
objects (i.e. the cardinality of the result of Q4 is twice that
of Q3).

4.2.2 Selection: Q5 to Q9
Note: Q5 below is a rifle-shot selection of a single object,
while Q6 – Q9 each select 0.1% of the objects in the collec-
tion. Q6 – Q9 each measure the cost of reconstructing many
objects that match a particular predicate, while the type of
predicate is different for each query.
Q5: This query selects a single object using an match pred-
icate on str1. This query tests the ability of the system to
fetch a single whole object by an exact identifier.
Q6: This query selects 0.1% of the objects in the collection
via a numeric range predicate on num. This query tests
the speed of predicate evaluation on numeric values and the
reconstruction of many matching objects.
Q7: This query selects 0.1% of the objects in the collection
via a numeric predicate that selects values of dyn1 in a par-
ticular range. Comparing this query with Q6 exposes the
difference in evaluating a predicate on an attribute that is
statically-typed and an attribute that is dynamically-typed.
Q8: This query selects approximately 0.1% of the objects
in the collection by matching a string in the embedded ar-
ray nested arr. This query tests the speed of evaluating a
predicate that matches one of several values inside a nested
array, and simulates a keyword-search operation.
Q9: This query selects 0.1% of the objects in a collection
by matching the value stored in a sparse attribute. This
query tests evaluation of a predicate on an attribute that
only exists in a small subset of the objects.

4.2.3 Aggregation
Q10: This query selects 10% of the objects in the collection
(by selecting a range of values for num), and COUNTs them,

grouped by thousandth. The result will have 1000 groups,
each of whose count is 0.01% of the total number of objects
in the collection. This query tests the performance of the
COUNT aggregate function with a group-by condition.

4.2.4 Join
Q11: This query selects 0.1% of objects in the collection
(via a predicate on num) and performs a self-equijoin of
the embedded attribute embedded obj.str with str1. This
query tests the performance of joins, and simulates following
social-graph edges for a set of many users.

4.2.5 Insert
Q12: This query inserts objects, in bulk, amounting to 0.1%
of total data size. This query tests the performance of in-
serting data, and measures the cost of object decomposition
and index maintenance (where applicable).

5. EVALUATION
This section presents the results of NoBench on a lead-

ing NoSQL database MongoDB (version 2.0.0), and Argo
(see Section 3) on two representative open-source database
systems PostgreSQL (version 9.1.1) and MySQL (version
5.5.15).

We ran our experiments on a server with two 2.67GHz
6-core Intel Xeon X5650 processors, 24GB of DDR3 main
memory, and a hardware RAID-0 consisting of four 7200RPM
disks. The system runs Scientific Linux 5.3 (kernel 2.6.18).

In all the experiments, we simply run one query at a
time. Thus, we present results with a concurrency level of
one. In keeping with the design of the NoBench (a micro-
benchmark), this method allows us to determine the per-
formance of core data processing operations without other
compounding factors. In future work (see Section 7), we in-
tend to investigate performance in higher concurrency and
clustered environments. We do note, however, that data
sharding for clustered environments is not an intrinsic ad-
vantage of MongoDB, or of NoSQL systems in general. It
has been shown that hash-based sharding is easily adaptable
to traditional relational databases, and that the resulting
sharded RDBMS (specifically Microsoft SQL Server) typi-
cally outperforms sharded MongoDB [22].

5.1 Experimental Setup
In this section, we describe how each system is set up

in order to run the queries in NoBench and obtain mean-
ingful results. Since many parameters of MongoDB are not
tunable, we configured PostgreSQL and MySQL correspond-
ingly to ensure that all three systems are fairly compared.
Note that, while we tuned the checkpointing and logging
behavior of the three systems to be as similar as possible,
MySQL and PostgreSQL both provide full ACID semantics
for transactions, whereas MongoDB is primarily a BASE
system and only guarantees durability of individual write
operations. The relational systems may experience a disad-
vantage compared to MongoDB due to the overhead of their
more sophisticated transaction management capabilities.

Buffer Pool. MongoDB does not have a standard“buffer
pool,” and instead uses memory-mapped files to access data.
The server was dedicated to MongoDB during testing and
we found MongoDB used up to 97.8% of the system mem-
ory. In contrast, PostgreSQL and MySQL manage memory
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Query MongoDB Command Argo/SQL Command
Q1 db["nobench_main"].find({}, ["str1", "num"]) SELECT str1, num FROM nobench_main;

Q2 db["nobench_main"].find({}, ["nested_obj.str",
"nested_obj.num"])

SELECT nested_obj.str1, nested_obj.num FROM
nobench_main;

Q3 db["nobench_main"].find({ "$or" : [ { "sparse_-
XX0" : {"$exists" : True} } , { "sparse_XX9" :
{"$exists" : True} } ] }, ["sparse_XX0", "sparse_-
XX9"])

SELECT sparse_XX0, sparse_XX9 FROM nobench_main;

Q4 db["nobench_main"].find({ "$or" : [ { "sparse_-
XX0" : {"$exists" : True} } , { "sparse_YY0" :
{"$exists" : True} } ] }, ["sparse_XX0", "sparse_-
YY0"])

SELECT sparse_XX0, sparse_YY0 FROM nobench_main;

Q5 db["nobench_main"].find({ "str1" : XXXXX }) SELECT * FROM nobench_main WHERE str1 = XXXXX;

Q6 db["nobench_main"].find({ "$and": [{ "num" : {
"$gte" : XXXXX } }, { "num" : { "$lt" : YYYYY }
}]})

SELECT * FROM nobench_main WHERE num BETWEEN XXXXX
AND YYYYY;

Q7 db["nobench_main"].find({ "$and": [{ "dyn1" : {
"$gte" : XXXXX } }, { "dyn1" : { "$lt" : YYYYY }
}]})

SELECT * FROM nobench_main WHERE dyn1 BETWEEN XXXXX
AND YYYYY;

Q8 db["nobench_main"].find({ "nested_arr" : XXXXX }) SELECT * FROM nobench_main WHERE XXXXX = ANY
nested_arr;

Q9 db["nobench_main"].find({ "sparse_XXX" : YYYYY }) SELECT * FROM nobench_main WHERE sparse_XXX =
YYYYY;

Q10 db["nobench_main"].group({"thousandth" : True},
{ "$and": [{ "num" : { "$gte" : XXXXX } }, {
"num" : { "$lt" : YYYYY } }]}, { "total" : 0 },
"function(obj, prev) { prev.total += 1; }")

SELECT COUNT(*) FROM nobench_main WHERE num BETWEEN
XXXXX AND YYYYY GROUP BY thousandth;

Q11 Implemented in JavaScript MapReduce. SELECT * FROM nobench_main AS left INNER JOIN
nobench_main AS right ON (left.nested_obj.str =
right.str1) WHERE left.num BETWEEN XXXXX AND YYYYY;

Q12 Bulk-insert using mongoimport command-line tool. PostgreSQL: COPY table FROM file;
MySQL: LOAD DATA LOCAL INFILE file REPLACE INTO
TABLE table;

Table 1: NoBench query commands in MongoDB query language and Argo/SQL.

in their own pinned buffer pool. For both these RDBMSs,
we set the size of the buffer pool to be 3/4 of the size of
the system memory, with additional memory allocated for
temporary storage. For PostgreSQL, we allocated 18GB to
the buffer pool, 1GB to the temporary buffer, and 4GB to
the maintenance working buffer. For MySQL, we allocated
18GB to the buffer pool, 4GB for heap (temporary) tables,
and 1GB for the InnoDB additional memory pool.
Checkpointing. In MongoDB, checkpointing is imple-

mented by invoking a fsync system call on memory mapped
files. We configure MongoDB to periodically call fsync every
5 minutes. Similarly, we set the checkpoint interval to be 5
minutes for PostgreSQL and MySQL.
Logging. Journaling is available in MongoDB starting

from version 1.8. Group commits are performed every 100ms
for journaling in MongoDB. We also configured PostgreSQL
and MySQL to perform group commits over 100ms.
Indices. Benchmark performance is sensitive to the num-

ber and types of indices. In all three systems, we created
indices to enhance query performance where sensible. All
three systems use B-tree indices.
In PostgreSQL and MySQL, we built indices on the objid,

keystr, valstr, and valnum columns of the Argo/1 format
(illustrated in Figure 2). For Argo/3 (illustrated in Fig-
ure 3), indices were built on the objid and keystr columns
of each of the three tables, as well as the valstr column of
the string table and the valnum column of the number table.
In MongoDB, indices are built on the values associated

with a particular key. The MongoDB documentation recom-
mends building indices to match queries that will actually be

run, and we follow this recommendation. We build indices
on str1 (for Q5), num (for Q6 and Q10), dyn1 (for Q7), and
nested arr (for Q8). We do not build indices on any sparse
attributes (which might help Q9, and possibly Q3 and Q4),
as that would require the creation of 1000 separate indices
to support any possible parameterization of the queries.

5.2 Methodology
In each run of our benchmark, the dataset is first gener-

ated into raw text files. The database is loaded with the
dataset, and indices are constructed on the data. Since in-
dex construction and loading is a one-time cost we do not
show these costs for all three systems (although Q12 mea-
sures the cost of index maintenance when performing a bulk
insert). Once loading and building indices is completed, we
restart the database. We then run the queries and measure
the response time. The results for each query are stored in
a temporary table or collection.

For each query, 10 runs are performed. Each individual
run of the queries Q3–Q11 in NoBench has its parameters
randomized so that the results are not distorted by caches
in the database system. Parameters are semirandom, but
are repeatable across different systems and multiple experi-
ments.

We only report results for “warm”queries, since this simu-
lates the common operational setting. We discard the maxi-
mum and minimum values among the 10 runs for each query.
We report the mean execution time of the remaining 8 runs.
With few exceptions, the normalized coefficient of variation
in execution times was less than 20%, and tended to be
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smaller for longer-running queries. Complete data on varia-
tion in query execution times are presented in Table 4.
At each scale factor, and for each query, we use the mean

execution time from MongoDB as a baseline. To compare
the performance of Argo on MySQL and PostgreSQL with
the MongoDB baseline, we calculate a unitless speedup fac-
tor, which is the mean execution time for MongoDB divided
by the mean execution time for the other system. To sum-
marize the overall results, we report the geometric mean 2

of the speedup factors for all 12 queries (the geometric mean
is the appropriate, meaningful average for normalized unit-
less numbers [21]). It is important to note that, as a mi-
crobenchmark, NoBench does not replicate or simulate any
“real” query workload, and instead contains queries which
are meant to individually stress different operations in the
database. The geometric mean of speedup factors does not,
therefore, indicate that the combination of Argo and a par-
ticular database is definitively faster or slower than Mon-
goDB. It should also be noted that, because the 12 NoBench
queries are dominated by selection (five queries) and pro-
jection (four queries), the reported geometric mean will be
more heavily influenced by these classes of queries than joins,
aggregates, and inserts (which are represented by one query
each). The geometric mean of speedup factors is a useful
for making broad at-a-glance comparisons between systems,
but, as we shall see, fully understanding the differences in
performance between document stores requires looking at
the results for the individual queries.
All experiments are run by a NoBench driver script run-

ning on the same server. The response times for each query
that we report here are collected in the client process, which
includes the cost of mapping layers for the relational ap-
proaches.
In order to study how the systems perform as the data

size is scaled up, the queries in NoBench are evaluated over
datasets whose cardinality is scaled by a factor of 4, from 1
million to 64 million objects. The total on-disk sizes of the
datasets are shown in Figure 5. The 1-million and 4-million
object datasets fit in memory for each database, while the
16 million object dataset exceeds the memory size for the
relational systems (but not MongoDB), and the 64 million
object dataset requires spilling to disk for all systems.

5.3 Implementation
Because of the lack of a standardized query language for

JSON document stores, some effort was necessary to port
NoBench to each of the specific systems that we tested. The
full commands for each query are shown in Table 1.
MongoDB: For queries Q1 through Q10, MongoDB’s

native JSON-based query language was used. MongoDB
does not natively support joins (in fact, MongoDB’s doc-
umentation explicitly encourages denormalizing and dupli-
cating data in hierarchical structures to avoid the need for
joins). To implement Q11, we used MongoDB’s integrated
Javascript MapReduce system. Note that, in MongoDB,
MapReduce jobs are unable to take advantage of indices, so
the map step always requires a complete scan of a collection,
which negatively impacts performance. For Q12, the mon-

goimport command-line tool was used to bulk-insert a file
full of JSON objects.

2GM = 12
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Figure 5: Database sizes. The numbers at the top of
each bar indicates the full database size. The “/1”
and “/3” indicates that the DBMS is using Argo/1
or Argo/3 respectively.

PostgreSQL MySQL
Argo/1 Argo/3 Argo/1 Argo/3

Q1 500.89 460.52 (1.09) 494.61 414.39 (1.19)
Q2 748.82 630.29 (1.19) 485.84 392.30 (1.24)
Q3 36.28 47.66 (0.76) 126.89 140.85 (0.90)
Q4 41.09 77.44 (0.53) 248.37 81.03 (3.07)
Q5 0.07 0.13 (0.54) 0.07 0.12 (0.58)
Q6 137.11 279.11 (0.49) 203.50 290.38 (0.70)
Q7 135.54 190.37 (0.71) 224.60 180.52 (1.24)
Q8 105.04 143.95 (0.73) 141.28 99.67 (1.42)
Q9 86.35 115.83 (0.75) 145.67 91.71 (1.59)
Q10 5163.81 35.57 (145.17) 2089.15 54.43 (38.38)
Q11 2245.96 2226.01 (1.01) 259.15 211.55 (1.23)
Q12 39.88 33.04 (1.21) 90.49 43.38 (2.09)

GM 1.0 1.21 1.0 1.67

Table 2: Argo/1 versus Argo/3 (16 million object
dataset). All reported times are in seconds. Bold
text in Argo/3 columns is speedup factor vs. Argo/1
on the same system (higher is better for Argo/3).

Relational DBMSs: When testing NoBench in rela-
tional systems (namely MySQL and PostgreSQL), we used
the object decomposition/reconstruction and query evalua-
tion strategies implemented in Argo.

5.4 Query Processing in Argo/1 and Argo/3
We have performed an extensive evaluation of Argo/1

and Argo/3 on both PostgresSQL and MySQL for all the
datasets, and the complete results can be seen in Table 4.
In the interest of space we only show one representative re-
sult here. Table 2 shows the results for the 16 million object
dataset. As can be seen in this table, overall Argo/3 has
higher performance than Argo/1 on both MySQL and Post-
greSQL. To summarize our findings:

• The projection queries (Q1-Q4) tend to perform better
with Argo/3 because the underlying RDBMS is able to
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quickly see that there are no matching rows in the bool

table, and the matching rows occupy fewer pages in the
other two tables.

• The selection queries (Q5-Q9) are slower in PostgreSQL
with Argo/3 as the object reconstruction step is more ex-
pensive, since it has to access data across multiple tables
(though each table is more “compact”, so has a more effi-
cient index access). However, Argo/3 is sometimes faster
than Argo/1 with MySQL as the database size is smaller
with MySQL (see Figure 5), requiring fewer disk accesses
and hence allowing MySQL to benefit from more compact
indices.

• The aggregation query, Q10, is much faster with Argo/3,
as the key component here is the access to the num val-
ues, and the smaller num table in Argo/3 (rather than a
fat data table in Argo/1) results in a big performance
improvement for Argo/3.

• For the join query (Q11), MySQL uses an index join al-
gorithm that outperforms the sort-merge join algorithm
that the PostgreSQL optimizer chose. Argo/3 performs
somewhat better than Argo/1 on MySQL, because the
indices used for the join are more compact, while Argo/1
and Argo/3 perform almost identically on PostgreSQL.

• Argo/3 outperforms Argo/1 on the bulk-insert Q12 since
Argo/3 requires no storage space for NULLs, and fewer,
smaller indices must be updated for each row.

We present a more detailed analysis of the performance
of Argo/1 and Argo/3 in both MySQL and PostreSQL in
Appendix A. Given the overall better performance with
Argo/3, in the interest of space, for the remainder of this
paper we only consider the Argo/3 mapping.

5.5 MongoDB vs. Argo
In this section, we present results from running NoBench

on MySQL and PostgreSQL (with Argo/3), and MongoDB.
The detailed results are shown in Table 3. At each scale fac-
tor, the geometric mean of speedup factors shows MySQL
outperforming MongoDB. Argo on PostgreSQL outperforms
MongoDB at the 1M and 4M scale factors, but falls some-
what behind at 16M and 64M. For all but the smallest scale,
MySQL outperforms PostgreSQL.
Before we examine individual queries, we note that as a

NoSQL system designed specifically for JSON data, Mon-
goDB’s architecture is substantially different from that of
Argo running on MySQL or PostgreSQL. We found that a
few major design differences between the systems had cor-
respondingly major implications for performance:

• Storage format: MongoDB stores whole JSON objects
contiguously using a fast binary representation of JSON [1].
Argo decomposes JSON objects into a 1-row-per-value
format.

• Indices: indices in MongoDB are on the values of a par-
ticular attribute. Indices in Argo are built separately on
objid, keystr, and various column values. MongoDB in-
dices therefore tend to be smaller and are specialized to
particular attributes.

• MapReduce: MongoDB can not natively query more than
one table at once. To do even a simple self-join (as
in Q11) requires writing a Javascript MapReduce job,
which can not benefit from any indexing or native query-
ing capability. Additionally, both map and reduce tasks
in MongoDB operate on objects which are deserialized

fromMongoDB’s native binary storage format and loaded
into a Javascript VM, then have their output serialized
and re-inserted into the database (i.e. each object makes
two round-trips between the database and a dynamic lan-
guage runtime).

5.5.1 Projection: Q1 – Q4
MongoDB’s contiguous storage of objects actually hin-

ders its performance compared to Argo when projecting at-
tributes in Q1-Q4, since Argo can use an index to quickly
fetch just the appropriate rows, while MongoDB must scan
through every object and project two attributes out from
each (the overhead of this projection operation is especially
apparent for common attributes in Q1 and Q2, where it
must be performed on every object). We have found that
Argo/3 on MySQL performs competitively with MongoDB
when projecting sparse attributes at the largest scale fac-
tors (16M and 64M objects), and substantially outperforms
MongoDB for all other projection queries at all scales.

5.5.2 Selection: Q5 – Q9
For Q5 (rifle-shot selection), MongoDB scans to find the

matching object, even though an index on str1 is available to
match the predicate. Argo on the SQL systems always uses
an index to find the matching object, and hence Argo vastly
outperforms MongoDB for the rifle-shot selection query at
all scale factors. The fact that MongoDB does not take
advantage of an obviously useful index in this query is a
serious oversight by its query optimizer.

For the 0.1% selectivity queries (Q6-Q9) MongoDB does
use indices. At a scale of 1M objects, Argo on the relational
systems outperforms MongoDB. At 4M objects, MongoDB
is more competitive, but Argo on MySQL still performs best.
At 16M objects, MongoDB takes the lead over Argo on these
queries. Because of MongoDB’s compact contiguous stor-
age format and relatively lightweight indices, MongoDB’s
complete dataset and indices fit in RAM at 16M objects,
whereas Argo on MySQL and PostgreSQL must spill to disk
(see Figure 5). At 16M objects, the object reconstruction
stage of the selection queries in Argo must frequently access
the disk, while MongoDB has no such handicap. At 64M ob-
jects, MongoDB maintains its advantage in these queries, as
even though MongoDB’s data is no longer totally memory-
resident, it can still keep most of its indices in memory, and
its contiguous storage format for objects allows it to fetch
whole objects from the disk easily.

5.5.3 Aggregation: Q10
MongoDB’s built-in group function was used to imple-

ment COUNT with GROUP BY, and we found that MongoDB
generally tends to outperform Argo on MySQL (though not
overwhelmingly) for Q10 up through a scale factor of 16M,
while Argo on PostgreSQL has a small performance advan-
tage at 1M and 4M objects. Once MongoDB’s data no longer
fits in memory, however, we found that MongoDB switched
from a relatively fast, optimized in-memory implementation
of the group function to an extremely slow MapReduce ver-
sion. As such, MongoDB’s performance for Q10 is much
worse than Argo at 64M objects.

5.5.4 Join: Q11
As we saw above when MongoDB fell back on MapRe-

duce for Q10 at 64M objects, MapReduce in MongoDB can
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1 Million Objects 4 Million Objects
Mongo PGSQL SU MySQL SU Mongo PGSQL SU MySQL SU

Q1 104.56 2.01 52.52 5.05 20.90 433.87 9.95 43.61 22.32 19.44
Q2 102.95 2.30 44.76 4.97 20.71 419.47 10.11 41.49 20.65 20.31
Q3 3.24 0.03 108.00 0.05 64.80 13.00 0.31 41.94 0.27 48.15
Q4 3.53 0.06 58.73 0.05 70.60 15.55 0.31 50.16 0.26 59.81

Q5 1.59 0.001 1590 0.001 1590 6.20 0.06 103.33 0.01 620
Q6 1.76 0.06 29.33 0.17 10.35 8.32 44.02 0.19 3.88 2.14
Q7 1.58 0.05 31.60 0.11 14.36 6.27 23.15 0.27 2.46 2.55
Q8 1.66 0.05 33.20 0.11 15.09 6.72 16.00 0.42 1.91 3.52
Q9 1.90 0.17 11.18 0.47 4.04 8.02 11.78 0.68 3.06 2.62

Q10 1.24 0.85 1.46 2.28 0.54 4.81 3.90 1.23 12.12 0.40

Q11 211.81 16.69 12.69 0.16 1323.8 915.09 87.52 10.46 12.99 70.45

Q12 0.19 0.83 0.23 1.30 0.15 0.78 7.26 0.11 8.05 0.10

GM 1.0 – 23.90 – 19.52 1.0 – 3.77 – 8.25

16 Million Objects 64 Million Objects
Mongo PGSQL SU MySQL SU Mongo PGSQL SU MySQL SU

Q1 1706.39 460.52 3.71 414.39 4.12 7261.63 6004.00 1.21 1575.65 4.61
Q2 1728.25 630.29 2.74 392.30 4.41 7276.17 18913.28 0.38 1609.58 4.52
Q3 52.44 47.66 1.10 140.85 0.37 472.05 1811.96 0.26 514.90 0.92
Q4 62.77 77.44 0.81 81.03 0.77 553.92 1539.10 0.36 475.49 1.16

Q5 23.80 0.13 183.08 0.12 198.33 260.73 0.30 869.1 0.26 1002.8
Q6 31.86 279.11 0.11 290.38 0.11 353.10 2993.52 0.12 2438.96 0.14
Q7 23.91 190.37 0.13 180.52 0.13 321.47 2239.01 0.14 1912.36 0.17
Q8 25.32 143.95 0.18 99.67 0.25 326.38 2975.56 0.11 1048.50 0.31
Q9 31.24 115.83 0.27 91.71 0.34 362.65 1800.08 0.20 1019.05 0.36

Q10 18.26 35.57 0.51 54.43 0.34 31174.31 9479.01 3.29 2101.88 14.83

Q11 6651.15 2226.01 2.99 211.55 31.44 53318.21 10117.21 5.27 2543.00 20.97

Q12 8.13 33.04 0.25 43.38 0.19 35.12 123.31 0.28 22.82 1.54

GM 1.0 – 0.93 – 1.08 1.0 – 0.80 – 2.35

Table 3: Performance comparison across the three systems. All reported times are in seconds. The SU column
indicates speedup relative to MongoDB at the same scale factor (higher is better). GM is the geometric mean
of the speedup factor over all queries.

be terribly slow. The join query, Q11, also needs to use a
MapReduce job, and as a result the performance of this join
query is far worse than Argo.

5.5.5 Bulk Insertion: Q12
MongoDB outperforms Argo for bulk inserts at most scale

factors. This is understandable, as MongoDB stores inserted
objects contiguously (there is no need to decompose them)
and the indices that need to be updated with each insert
are comparatively lightweight. Nevertheless, Argo’s insert
times, especially at larger scale factors, are not so long com-
pared to MongoDB to become a significant disadvantage.

5.6 Scaling
The results in Table 3 show that no system achieves lin-

ear scaleup across all scale factors. As might be expected,
there is a significant performance penalty on each system
when data no longer fits entirely in memory. Argo on the
relational systems also suffers from more difficult object re-
construction as scale increases for Q6-Q9 and Q11 (as dis-
cussed in Sections 3.1.1 and 3.1.2), because it must access
many (sometimes uncontiguous) rows when reconstructing
matching objects.

5.7 Summation
Our evaluation shows that Argo/3 generally offers perfor-

mance superior to Argo/1. When Argo/3 is run on MySQL,
its performance is high enough to make it a very compelling

alternative to MongoDB. We find that, when data is small
enough to fit entirely in memory (as with 1M or 4M objects),
Argo/3 on MySQL outperforms MongoDB across the board,
except for COUNT and insertions, where Argo is nonethe-
less competitive. When data is too large to fit in mem-
ory, Argo/3 on MySQL has superior performance for pro-
jection, rifle-shot selection, aggregate, and join queries, but
MongoDB performs better when selecting large groups of
objects.

6. RELATED WORK
It has recently been shown that the object-graph data

model of JSON (and of several other hierarchical data mod-
els used in NoSQL systems), wherein nested objects and
values are represented intensionally inside of their parent
objects, is the dual of the foreign-key (extensional) repre-
sentation of parent-child relationships between entities in
relational databases. This dual form of the relational model
was christened CoSQL [31]. Proceeding from this realiza-
tion, a generalized algebra for relational and co-relational
data was developed, and a unified query interface for both
was implemented in LINQ. One of the primary motivations
for the work on CoSQL was the realization that the lack of a
standardized data model and query language among NoSQL
products, and hence the lack of interoperability between
those products, is hindering the development and growth
of the NoSQL market.

Currently, there is a nascent effort to define a standard-
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ized declarative query language for JSON data, UnQL [28].
UnQL has the participation of developers from the SQLite
and the CouchDB projects. The proposed UnQL syntax
is inspired by SQL, and provides commands for insertion,
deletion, selection, and updates over collections of JSON
objects. Queries are limited to a single collection. Unlike
Argo/SQL, the current draft specification does not support
joins or aggregate functions.
It is hoped that the JSON data model, combined with

the UnQL query language, will eventually be implemented
across many NoSQL products, realizing the CoSQL authors’
hopes for a compatible and competitive market for NoSQL
databases. Our own work in developing Argo shows that a
compatible implementation of UnQL based on a relational
mapping layer is possible, and that such an implementation
could be a compelling choice in such a market.
Argo/1 and Argo/3 were inspired by previous work which

introduced a vertical representation for sparse data in rela-
tional systems [5]. Another approach to sparse data is an“in-
terpreted” wide-row storage format, which has been imple-
mented by modifying the storage layer of PostgreSQL [10].
The Dremel project introduced a columnar storage for-

mat for (fixed-schema) hierarchical data [32]. Each field in
an object (including fields which may be repeated and/or
nested arbitrarily deep) is mapped to a separate column-
stripe, with integer repetition and definition levels attached
to each value. It is important to note that the repetition and
definition levels, which are necessary for object reconstruc-
tion, both depend on the data being statically typed so as
to know where repeatable (i.e. array-like) and optional (i.e.
sparse) fields exist. It follows that the Dremel approach is
not directly applicable to dynamically typed data.
As we noted in Section 2.4, there is a large body of work

on supporting XML in relational systems, which provided
valuable insights in developing Argo.
Projects such as Silkroute [19] and Xperanto [11] provide

sophisticated methods to expose queryable XML views of
relational databases. Another approach extends SQL with
new aggregate and scalar functions to emit XML documents
as the result of SQL queries [35]. We note that functions for
emitting JSON data from SQL queries are slated for inclu-
sion in a forthcoming release of PostgreSQL [17], mirroring
the latter approach (in a considerably simplified early form).
Other research has developed both schema-aware and schema-

oblivious mappings for storing XML data in relational ta-
bles [6, 15, 23, 34], with careful planning to preserve the or-
der of nodes in an XML document [38]. Building on these
techniques, it was discovered that the use of relational in-
dex structures [26] and a new form of the join operator [27]
substantially improves the performance of certain classes of
XPath/XQuery queries over XML documents.
Compared to dealing with XML, JSON presents a unique

set of challenges. Some aspects of JSON allow one to sim-
plify techniques from the XML-mapping world, while some
of the distinguishing aspects of JSON (listed in Section 2.4)
make it different from XML when considering mapping schemes.
Argo presents a simple and intuitive scheme for mapping
JSON to a relational schema. Argo’s simplicity makes it
easy to implement and understand.

7. CONCLUSION AND FUTURE WORK
The database community has a long history of building ro-

bust and stable data products, but has been somewhat slow

to respond to emerging application/data domains. The use
of schema-less JSON document stores is rapidly gaining in
popularity amongst developers of data-driven web and mo-
bile applications, and traditional DBMSs are not being con-
sidered seriously in these new settings. Rather, developers
are using emerging NoSQL JSON document stores.

In this paper, we have shown that with the mapping layer
that we proposed, namely Argo, traditional RDBMSs can
support the flexibility of the schema-less JSON data model.
Furthermore, with Argo one can go beyond what JSON
NoSQL systems offer today and provide an easy-to-use declar-
ative query language. Our results demonstrate that the Argo
solution is generally both higher performing and more func-
tional (e.g. it provides ACID guarantees and natively sup-
ports joins) than the leading NoSQL document store Mon-
goDB. With Argo, traditional RDBMSs can offer an attrac-
tive alternative to NoSQL document stores while bringing
additional benefits such as administration and management
tools that have been hardened for RDBMSs over time.

There are a number of directions for future work, includ-
ing expanding the current evaluation to explore the impact
of multi-user, multi-core, and cluster environments, and ex-
panding the study to include distributed key-value stores
and alternative relational mapping schemes.
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APPENDIX

A. DETAILED PERFORMANCE ANALYSIS
In this section, we examine the performance differences

between Argo/1 and Argo/3, and between PostgreSQL and
MySQL, in greater detail. This analysis expands on the
comparison between Argo/1 and Argo/3 in Section 5.4, and
complements the comparison of Argo with MongoDB in Sec-
tion 5.5.

In our evaluation, we used the EXPLAIN command pro-
vided by each database to determine the query plans which
were being used to execute the underlying SQL generated
by Argo, which in turn helped us to explain some of the
differences in performance that we observed.

A.1 Projection
MySQL and PostgreSQL both use an index on the keystr

column to find matching rows in either the Argo/1 or Argo/3
representation. Argo/3 tends to perform somewhat better
for each of these queries, because the underlying relational
systems are able to quickly see that there are no matching
rows in the bool table, and the matching rows occupy fewer
pages in the other two tables (because they are separated
by type, and because there is no overhead for NULL values).

For the projection queries (Q1-Q4), PostgreSQL always
uses a similar query plan: it uses an index on the keystr

column to find matching rows in either the Argo/1 or Argo/3
representation. MySQL does the same for each of the queries
which project sparse attributes (Q3, Q4), but behaves differ-
ently for Q1 and Q2. Using Argo/3, MySQL uses an index
on the keystr column of the str and bool tables, but per-
forms a simple scan on the num table, checking the keystr

of every row. Using Argo/1, MySQL performs a simple scan
on the data table and checks the keystr of every row. Be-
cause Q1 and Q2 project common attributes which occur
in every object in the dataset, there are matching rows in
almost every page of the num table of Argo/3 or the data

table of Argo/1, and the selectivity of matching the keystr

is very high (more than 10% in Argo/1, and more than 23%
in the num table of Argo/3), so the MySQL query optimizer
determines that using an index will not actually be helpful.

We can see that Argo/3 always outperforms Argo/1 when
projecting common attributes. For MySQL, part of the
difference is explained by the ability to use an index on
keystr to speed up fetching results from the str table. Both
MySQL and PostgreSQL need to access fewer pages, be-
cause they can each use an index on keystr to quickly de-
termine that they do not need to retrieve any results from
the bool table, and because all of the matching rows oc-
cupy fewer pages (because they are separated by type, and
because there is no overhead for NULL values).

A.2 Selection
For the selection queries (Q5-Q9), PostgreSQL andMySQL

use very similar query plans. Recall that a selection query
generally involves 2 steps: a predicate evaluation step which
finds objids of matching objects, and an object reconstruc-
tion step which finds all rows with those objids and recon-
structs the original JSON objects from them. In each query
Q5-Q9, MySQL and PostgreSQL both use the same strategy
for the second (object reconstruction) step: they perform an
indexed nested loops join between the intermediate result ta-
ble and the single data table (for Argo/1) or each of the 3
data tables (for Argo/3).

The strategy used to evaluate the first (predicate evalua-
tion) query varies from Q5-Q9, naturally, because the predi-
cate varies. As with the object reconstruction step, MySQL
and PostgreSQL use essentially the same query plan for each
of the individual predicate evaluation queries. For Q5, the
index on the valstr column (of the data table of Argo/1 or
the str table of Argo/3) is used to match an exact value, and
the single resulting row is filtered by keystr (this predicate
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evaluation is always very fast, but Q5 takes slightly longer in
total on Argo/3 because, during object reconstruction, rows
belonging to the proper object must be fetched from at least
3 pages, from each of 3 tables, as opposed to 1 or 2 pages
from a single table). For Q6 and Q7, an index on valnum

is used to select numbers in the appropriate range, and the
matching rows were filtered by keystr. For Q8, an index
on valstr is used to select strings matching the keyword,
and the matching rows are filtered by pattern-matching on
keystr. For Q9, an index on keystr is used to match the
appropriate attribute sparse attribute name, and an index
on valstr is used to match the appropriate value, and the
intersection of the rows matched by the two indices is taken.

A.3 Aggregation
Q10 shows the most extreme difference in performance

between Argo/1 and Argo/3, with Argo/3 performing vastly
better.
As a first step, both MySQL and PostgreSQL select 10%

of the objids in the dataset based on a range predicate on
num. For Argo/1 and Argo/3, MySQL then uses an index on
keystr to find rows representing num attributes, and then
filter them based on valnum. In Argo/3, MySQL performs
this operation on the num table, where about 23% of the rows
hold num values (so there are comparatively more matches
per page) and the table itself is far smaller than the single
data table in Argo/1 (so there are fewer pages to visit).
PostgreSQL uses an intersection of matches from the indices
on keystr and valnum to find matching rows, but just like
MySQL it will have to access many more pages in Argo/1
than in Argo/3.
For the second step, both MySQL and PostgreSQL join

the intermediate result from the first step with either the
single data table for Argo/1, or the num table for Argo/3,
filtering the result to rows where keystr equals thousandth
(the group-by attribute), and performing the aggregate on
the result, grouping by valnum (i.e. the values of the at-
tribute thousandth). Because the filtering occurs after the
join, minimizing the size of the join result is crucial to perfor-
mance. In Argo/3, the join is with the comparatively small
num table, and over 23% of the resulting rows will match

the filter and actually go on to be used in the aggregate. In
Argo/1, the join is with the much larger data table (and this
join is 100 times the size of the object reconstruction joins
in Q6-Q9), and only about 5% of the resulting rows match
the filter.

In both steps of Q10, there is a tremendous advantage to
working with a smaller num table in Argo/3, rather than a
fat data table in Argo/1.

A.4 Join
On Q11, both MySQL and PostgreSQL first use an index

to select 0.1% of object ids. PostgreSQL uses an index on
keystr to get rows corresponding to the join attributes str1
and nested obj.str, then performs a sort-merge join on val-

str. MySQL, on the other hand, performs an indexed join
on valstr first, then filters the result for keystrs matching
the join attributes. Both databases then fetch rows belong-
ing to the left and right objects in each result pair using
the same sort of indexed nested loop joins described above
for selection queries. There is not a great difference be-
tween Argo/1 and Argo/3 for joins, but MySQL does out-
perform PostgreSQL substantially, because the indexed join

performed by MySQL turns out to be a great deal faster
than the sort-merge join performed by PostgreSQL, even
though MySQL must filter the join results afterwards.

A.5 Insertion
On Q12, the bulk-insert query, Argo/3 outperforms Argo/1.

This is because, although the same number of rows are in-
serted for each format, Argo/3 requires no storage space for
NULLs, and fewer, smaller indices must be updated for each
row.

B. FULL EXPERIMENTAL RESULTS
In Table 4, comprehensive NoBench results for all queries

at all scale factors are presented, including relative speedup
between Argo/1 and Argo/3 on MySQL and PostgreSQL,
and the normalized coefficient of variation for each experi-
mental result. This table contains a superset of the infor-
mation presented in Tables 2 and 3.
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1 Million Objects
MongoDB PostgreSQL MySQL

CoV Argo/1 CoV Argo/3 (SU) CoV Argo/1 CoV Argo/3 (SU) CoV

Q1 104.56 0.001 2.12 0.040 2.01 (1.05) 0.074 12.80 0.003 5.04 (2.54) 0.177
Q2 102.95 0.001 2.20 0.091 2.30 (0.96) 0.175 12.77 0.002 4.97 (2.57) 0.080
Q3 3.24 0.064 0.03 0.012 0.03 (1.00) 0.401 0.14 0.195 0.05 (2.80) 0.004
Q4 3.53 0.079 0.04 0.128 0.06 (0.67) 0.201 0.12 0.152 0.05 (2.40) 0.006
Q5 1.59 0.087 0.17 0.097 0.001 (170) 0.827 0.001 0.108 0.001 (1.00) 0.024
Q6 1.76 0.064 1.54 1.547 0.06 (25.7) 0.019 0.18 0.176 0.17 (1.06) 0.111
Q7 1.57 0.079 0.04 0.031 0.05 (0.80) 1.569 0.15 0.140 0.11 (1.36) 0.026
Q8 1.66 0.054 0.04 0.004 0.05 (0.80) 0.186 0.14 0.156 0.11 (1.27) 0.190
Q9 1.90 0.086 0.15 0.027 0.17 (0.88) 0.081 0.48 0.202 0.47 (1.02) 0.140
Q10 1.24 0.068 1.54 0.094 0.85 (1.81) 0.125 5.54 0.082 2.28 (2.43) 0.081
Q11 211.81 0.009 14.97 0.010 16.69 (0.90) 0.157 0.17 0.147 0.16 (1.06) 0.038
Q12 0.19 0.345 0.90 0.104 0.83 (1.08) 0.398 1.62 0.246 1.30 (1.25) 0.319

GM 1.0 1.94 1.0 1.59

4 Million Objects
MongoDB PostgreSQL MySQL

CoV Argo/1 CoV Argo/3 (SU) CoV Argo/1 CoV Argo/3 (SU) CoV

Q1 440.00 0.014 8.32 0.246 9.95 (0.84) 0.218 57.79 0.011 22.32 (2.59) 0.244
Q2 436.58 0.039 8.85 0.161 10.11 (0.88) 0.392 57.47 0.018 20.65 (2.78) 0.021
Q3 13.00 0.037 0.35 1.102 0.31 (1.13) 1.388 0.41 0.026 0.27 (1.52) 0.128
Q4 15.54 0.028 0.27 0.124 0.31 (0.87) 0.138 0.44 0.098 0.26 (1.69) 0.132
Q5 6.20 0.076 0.09 0.116 0.06 (1.5) 0.216 0.01 0.715 0.01 (1.00) 0.705
Q6 8.32 0.072 23.32 0.027 44.02 (0.53) 0.026 9.94 0.031 3.88 (2.56) 0.295
Q7 6.27 0.046 19.41 1.662 23.15 (0.84) 1.791 8.31 0.045 2.46 (3.38) 0.021
Q8 6.72 0.046 15.90 0.188 16.00 (0.99) 0.045 5.34 0.039 1.91 (2.80) 0.060
Q9 8.02 0.078 13.19 0.042 11.78 (1.12) 0.077 5.46 0.057 3.06 (1.78) 0.032
Q10 4.81 0.048 22.48 1.521 3.90 (5.76) 0.057 25.60 0.127 12.12 (2.11) 0.081
Q11 915.09 0.013 79.34 0.012 87.52 (0.91) 0.007 9.80 0.186 12.99 (0.75) 0.108
Q12 0.78 0.120 8.67 0.281 7.62 (1.14) 0.184 10.04 0.066 8.05 (1.25) 0.075

GM 1.0 1.10 1.0 1.85

16 Million Objects
MongoDB PostgreSQL MySQL

CoV Argo/1 CoV Argo/3 (SU) CoV Argo/1 CoV Argo/3 (SU) CoV

Q1 1758.77 0.030 500.89 0.048 460.52 (1.09) 0.102 494.61 0.091 414.39 (1.19) 0.148
Q2 1726.37 0.001 748.82 0.028 630.29 (1.19) 0.080 485.84 0.004 392.30 (1.24) 0.007
Q3 52.44 0.012 36.28 0.403 47.66 (0.76) 0.142 126.89 0.201 140.85 (0.90) 0.057
Q4 62.77 0.021 41.09 1.215 77.44 (0.53) 0.444 248.37 0.211 81.03 (3.07) 0.597
Q5 23.80 0.013 0.07 0.331 0.13 (0.54) 0.180 0.07 0.192 0.12 (0.58) 0.081
Q6 31.86 0.053 137.11 0.403 279.11 (0.49) 0.294 203.50 0.036 290.38 (0.70) 0.281
Q7 23.91 0.022 135.54 0.107 190.37 (0.71) 1.041 224.60 0.028 180.52 (1.24) 0.061
Q8 25.32 0.013 105.04 0.130 143.95 (0.73) 0.419 141.28 0.041 99.67 (1.42) 0.073
Q9 31.24 0.019 86.35 0.069 115.83 (0.75) 0.087 145.67 0.087 91.71 (1.59) 0.046
Q10 18.26 0.009 5163.81 0.644 35.57 (145.17) 0.247 2089.15 0.963 54.43 (38.38) 0.099
Q11 6651.15 0.006 2245.96 0.689 2226.01 (1.01) 0.078 259.15 0.056 211.55 (1.23) 0.045
Q12 8.13 1.270 39.88 0.500 33.04 (1.21) 0.449 90.49 0.559 43.38 (2.09) 0.053

GM 1.0 1.21 1.0 1.67

64 Million Objects
MongoDB PostgreSQL MySQL

CoV Argo/1 CoV Argo/3 (SU) CoV Argo/1 CoV Argo/3 (SU) CoV

Q1 7269.68 0.001 – – 6004.00 (–) – 625.17 0.214 1575.65 (0.40) 0.007
Q2 7298.89 0.003 – – 18913.28 (–) – 498.27 0.026 1609.58 (0.31) 0.005
Q3 472.95 0.001 – – 1811.96 (–) – 372.02 0.979 260.88 (1.43) 0.974
Q4 555.24 0.002 – – 1539.10 (–) – 1011.85 0.420 825.51 (1.23) 0.424
Q5 260.73 0.018 – – 0.30 (–) – 0.70 0.175 0.41 (1.71) 0.361
Q6 353.10 0.027 – – 2993.52 (–) – 1430.98 0.054 2728.33 (0.52) 0.106
Q7 321.47 0.037 – – 2239.01 (–) – 1429.88 0.020 2072.32 (0.69) 0.077
Q8 326.38 0.013 – – 2975.56 (–) – 658.37 0.004 1016.37 (0.65) 0.032
Q9 362.65 0.019 – – 1800.08 (–) – 639.70 0.059 1052.06 (0.61) 0.031
Q10 31174.31 0.000 – – 9479.01 (–) – 3344.70 0.000 2516.93 (1.33) 0.165
Q11 53318.21 0.000 – – 10117.21 (–) – 1588.37 0.092 2726.07 (0.58) 0.067
Q12 35.12 0.087 – – 123.31 (–) – 703.74 0.509 296.27 (2.38) 0.923

GM 1.0 – 1.0 0.82

Table 4: Comprehensive results at all scale factors. All reported times are the mean of run times in seconds.
Bold text in Argo/3 columns is speedup factor vs. Argo/1 on the same system (higher is better for Argo/3)
(speedup vs. MongoDB is reported in Table 3). CoV columns are the normalized coefficient of variation of
run times.
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