
VLDBJ manuscript No.
(will be inserted by the editor)

The Trichotomy of HAVING Queries on a Probabilistic Database

Christopher Ré · Dan Suciu
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Abstract We study the evaluation of positive conjunctive
queries with Boolean aggregate tests (similar to HAVING in
SQL) on probabilistic databases. More precisely, we study
conjunctive queries with predicate aggregates on probabilis-
tic databases where the aggregation function is one of MIN,
MAX, EXISTS, COUNT, SUM, AVG, or COUNT(DISTINCT) and
the comparison function is one of =,,,≥, >,≤, or < . The
complexity of evaluating a HAVING query depends on the ag-
gregation function, α, and the comparison function, θ. In this
paper, we establish a set of trichotomy results for conjunc-
tive queries with HAVING predicates parametrized by (α, θ).
For such queries (without self joins), one of the following
three statements is true: (1) The exact evaluation problem
has P-time data complexity. In this case, we call the query
safe. (2) The exact evaluation problem is ]P-hard, but the
approximate evaluation problem has (randomized) P-time
data complexity. More precisely, there exists an  for
the query. In this case, we call the query apx-safe. (3) The
exact evaluation problem is ]P-hard, and the approximate
evaluation problem is also hard. We call these queries haz-
ardous. The precise definition of each class depends on the
aggregate considered and the comparison function. Thus,
we have queries that are (MAX,≥)-safe, (COUNT,≤)-apx-safe,
(SUM,=)-hazardous, etc. Our trichotomy result is a signifi-
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cant extension of a previous dichotomy result for Boolean
conjunctive queries into safe and not safe. For each of the
three classes we present novel techniques. For safe queries,
we describe an evaluation algorithm that uses random vari-
ables over semirings. For apx-safe queries, we describe an
 that relies on a novel algorithm for generating a ran-
dom possible world satisfying a given condition. Finally, for
hazardous queries we give novel proofs of hardness of ap-
proximation. The results for safe queries were previously
announced [43], but all other results are new.

Keywords Probabilistic Databases · Query Evaluation ·
Sampling Algorithms · Semirings · Safe Plans

1 Introduction

We study the complexity of evaluating aggregate queries on
probabilistic databases. Our motivation is to manage data
produced by integration applications, e.g., data from object
reconciliation [24,52,53] or information extraction [8,23,27,
35]. Standard approaches require that we eliminate all un-
certainty before any querying can begin, which is expensive
in both man-hours to perform the integration and in lost rev-
enue due to down time. An alternative approach where data
are allowed to be uncertain, but uncertainty is captured using
probabilities has attracted renewed interest [10, 15, 19, 51].

In SQL, aggregates come in two forms: value aggre-
gates that are returned to the user in the SELECT clause (e.g.,
the MAX price) and predicate aggregates that appear in the
HAVING clause (e.g., is the MAX price greater than $10.00?).
In this paper, we focus on positive conjunctive queries with
a single predicate aggregate that we call HAVING queries.
Prior art [6, 26] has defined a semantic for value aggrega-
tion that returns the expected value of an aggregate query
(e.g., the expected MAX price) and has demonstrated its util-
ity for OLAP-style applications. In this paper, we propose



Item Forecaster Profit P

Widget Alice $−99K 0.99
Bob $100M 0.01

Whatsit Alice $1M 1

SELECT SUM(PROFIT)

FROM PROFIT

WHERE ITEM=‘Widget’

SELECT ITEM

FROM PROFIT

WHERE ITEM=‘Widget’

HAVING SUM(PROFIT) > 0.0

Profit(Item;Forecaster,Profit;P) (a) Expectation Style (b) HAVING Style

Fig. 1 A probabilistic database with a Profit relation that contains the profit an analyst forecasts for each item sold. Prior Art [26] has considered
a semantic similar to the query in (a), which returns the expected value of an aggregate. In contrast, we study queries similar to (b) which computes
the probability of a HAVING style predicate, e.g., that the SUM of profits exceeds a value (here, 0.0).

a complementary semantic for predicate aggregates inspired
by HAVING (e.g., what is the probability that the MAX price
is bigger than $10.00?). We illustrate the difference between
the approaches with a simple example:

Example 1 Fig. 1 illustrates a probabilistic database that con-
tains a single relation, Profit. Intuitively, a tuple in Profit
records the profit that one of our analysts forecasts if we con-
tinue to sell that item. We are not certain in our prediction,
and so Profit records a confidence with each prediction.
For example, Alice is quite sure that we will lose money
if we continue selling widgets; this is captured by the tuple
(Widget, Alice, $−99K, 0.99) in Profit. Intuitively, 0.99 is
the marginal probability of the fact (Widget, Alice, $− 99k).

An example of a value aggregate is shown in Fig. 1(a).
In this approach, the answer to an aggregation query is the
expected value of the aggregate function. Using linearity of
expectation, the value of the query in Fig. 1(a) is 100M *
0.01 + −99K * 0.99 ≈ 900K. Intuitively, this large value
suggests that we should continue selling widgets because we
expect to make money. A second approach (that we propose
and study in this paper), is akin to HAVING style aggregation
in standard SQL. An example is the query in Fig. 1(b) that
intuitively says: “What is the probability that we will make
a profit?”. The answer to this query is the probability that
the value of the SUM is greater than 0. Here, the answer is
only 0.01: this small probability tells us that we should stop
selling widgets or risk going out of business.

Our technical starting point is the observation that we
can evaluate a query q with an aggregate α on a deterministic
database using a two step process: (1) annotate the database
with values from some semiring, S α, e.g., if α = COUNT,
then we can take S α to be the natural numbers, and (2) prop-
agate these annotations during query processing (using the
rules in Green et al. [21]). In this scheme, each tuple out-
put by the query is annotated with a value in the semiring
S α that is exactly the value of the aggregate, e.g., the COUNT
of the tuples returned by q. Thus, it is easy to check if the
HAVING query is true: simply test the predicate aggregate on
the value returned by the query, e.g., is the SUM returned by
the query greater than 0? If the answer is yes, return true.

To evaluate aggregate queries on probabilistic databases,
we generalize this approach. On a probabilistic database,

the output of an aggregate query Q is described by a ran-
dom variable, denoted sQ, that takes values in S α. A HAVING
query Q whose predicate is, say, COUNT(∗) < k, can be com-
puted over a probabilistic database in two stages: (1) com-
pute the distribution of the random variable, sQ; and (2) ap-
ply a recovery function that computes the probability that
sQ < k, i.e., sum over all satisfying values of sQ. The cost
of this algorithm depends on the space required to repre-
sent the random variable sQ, which may be exponential in
the size of the database. This cost is prohibitively high for
many applications1. In general, this cost is unavoidable, as
prior art has shown that for SELECT-PROJECT-JOIN (SPJ)
queries (without HAVING), computing a query’s probability
is ]P-Complete2 [12, 20].

Although evaluating general SPJ queries on a probabilis-
tic database is hard, there is a class of SPJ queries (called
safe queries) that can be computed efficiently and exactly
[12, 40]. A safe query has a relational plan P, called a safe
plan, that is augmented to compute the output probability
of a query by manipulating the marginal probabilities as-
sociated with tuples. The manipulations performed by the
safe plan are standard multiplications and additions. These
manipulations are correct because the safe plan “knows”
the correlations of the tuples that the probabilities repre-
sent, e.g., the plan only multiplies probabilities when the
events are independent. To generalize safe plans to com-
pute HAVING queries, we provide analogous operations for
semiring random variables. First, we describe marginal vec-
tors that are analogous to marginal probabilities: a marginal
vector is a succinct, but lossy, representation of a random
variable. We then show that the operation analogous to mul-
tiplying marginal probabilities is a kind of semiring convo-
lution. Informally, we show that substituting multiplications
with convolutions is correct precisely when the plan is safe.

1 A probabilistic database represents a distribution over standard,
deterministic instances, called possible worlds [18]. A probabilistic
database with n tuples can encode 2n possible worlds, i.e., one for each
subset of tuples. We defer to Sec. 2.1 for more details.

2 ]P defined by Valiant [49] is the class of functions that contains
the problem of counting the number of solutions to NP-Hard prob-
lems (e.g., ]3-SAT). Formally, we mean here that there is a polynomial
reduction from a ]P-Hard problem, and to any problem in ]P. Since
technically, the query evaluation problem itself is not in ]P.
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As we show, the running time of safe plans with con-
volutions is proportional to the number of elements in the
semiring, S α. Thus, to compute HAVING queries with an ag-
gregate α efficiently, we need S α to be small, i.e., S α should
contain at most polynomially many elements in the size of
the instance. This condition is met when the aggregate α

is one of {EXISTS, MIN, MAX, COUNT}. For α ∈ {SUM,AVG,
COUNT(DISTINCT)}, the condition is not met. In these cases,
our algorithm is efficient only for a restricted type of safe
plans that we call α-safe. For α-safe plans, a HAVING query
with α can be computed efficiently and exactly. Further, we
show that α-safe plans capture tractable exact evaluation for
queries without self joins3. More precisely, for each aggre-
gate α above, there is a dichotomy for queries without self
joins: Either (1) Q is α-safe, and so has a P-time algorithm,
or (2) Q is not α-safe and evaluating Q exactly is ]P-Hard.
Further, we can decide whether a query is α-safe in P-time.
The techniques for exact evaluation were described in the
preliminary version of this paper [43].

Exact evaluation is the gold standard, but in many ap-
plications, approximately computing probabilities suffices.
For example, if the input probabilities are obtained heuristi-
cally, then computing the precise value of the output proba-
bility may be overkill. Alternatively, even if the probabilities
are obtained precisely, a user may not care about the differ-
ence between a query that returns a probability score of .9
versus .90001. Leveraging this observation, we show that
there are some queries that can be efficiently approximated,
even though they are not α-safe (and so cannot be com-
puted exactly). More precisely, we study when there exists a
Fully Polynomial Time Randomized Approximation Scheme
() for approximating the value of a HAVING query4.
Our key result is that there is a second dichotomy for ap-
proximate evaluation for queries without self joins: Either
(1) an approximation scheme in this paper can approximate
a HAVING query efficiently, or (2) there is no such efficient
approximation scheme. Interestingly, we show that the intro-
duction of self joins raises the complexity of approximation:
we show a stronger inapproximability result for queries in-
volving self joins.

In general, the complexity of evaluating a HAVING query
Q depends on the predicate that Q uses. More precisely, the
hardness depends on both the aggregate function, α, and
the comparison function, θ, which together are called an
aggregate-test pair, e.g., in Fig. 1(b) the aggregate-test pair
is (COUNT, >). For many such aggregate test pairs (α, θ), we
show a trichotomy result: For HAVING queries using (α, θ)
without self joins over tuple-independent probabilistic

3 A self join is a join between a relation and itself. The query
R(x, y), S (y) does not have a self join, but R(x, y),R(y, z) does.

4 An  can be thought of as a form of sampling that is guar-
anteed to rapidly converge and so is efficient. We defer to Def. 19 for
formal details.

databases, exactly one of the following three statements is
true: (1) The exact evaluation problem has P-time data com-
plexity. In this case we call the query safe. (2) The exact
evaluation problem is ]P-hard, but the approximate eval-
uation problem has (randomized) P-time data complexity
(there exists an  to evaluate the query). In this case,
we call the query apx-safe. (3) The exact evaluation problem
is ]P-hard and the approximate evaluation problem is also
hard (no  exists). We call these queries hazardous. It
is interesting to note that the third class is empty for EXISTS,
which are the class extensively studied by prior work [12]:
That is, all Boolean conjunctive queries have an efficient ap-
proximation algorithm.

A key step in many Monte-Carlo-style approximation al-
gorithms based on sampling (including those in this paper)
is randomly generating instances (called possible worlds).
Computing a random possible world is straightforward in
a probabilistic database: we select each tuple with its cor-
responding marginal probability taking care never to select
two disjoint tuples. However, to support efficient techniques
like importance sampling [29], we need to do something
more: we need to generate a random possible world from
the set of worlds that satisfy a constraint that is specified
by an aggregate query. For example, we need to generate
a random world, W̃, such that the MAX price returned by a
query q on W̃ is equal to 30. We call this the random pos-
sible world generation problem. Our key technical result is
that when q is safe (without aggregation) and the number of
elements in the semiring S is small, then we can solve this
problem efficiently, i.e., with randomized polynomial time
data complexity. The novel technical insight is that we can
use safe plans as a guide to sample the database. This use
is in contrast to the traditional use for safe plans of com-
puting query probabilities exactly. We apply our novel sam-
pling technique to provide an  to approximately evalu-
ate some HAVING queries that have ]P-hard exact complex-
ity. Thus, the approaches described in this paper can effi-
ciently answer strictly more queries than our previous, exact
approach (albeit only in an approximate sense).

Contributions and Outline

We study conjunctive queries with HAVING predicates on
common representations of probabilistic databases [4,41,51]
where the aggregation function is one of EXISTS, MIN, MAX,
COUNT, SUM, AVG, or COUNT(DISTINCT); and the aggregate
test is one of =,,, <,≤, >, or ≥. In Sec. 2, we formalize
HAVING queries, our choice of representation, and define ef-
ficient evaluation. In Sec. 3, we review the relevant technical
background (e.g., semirings and safe plans). In Sec. 4, we
give our main results for exact computation: For each ag-
gregate α, we find a class of HAVING queries, called α-safe,
such that for any Q using α:
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– If Q is α-safe then Q’s data complexity is in P.
– If Q has no self joins and is not α-safe then, Q has ]P-

hard data complexity.
– We can decide in polynomial time (in the size of Q) if Q

is α-safe.

In Sec. 5, which is completely new, we state and solve
the problem of generating a random possible world when the
query defining the constraint is safe. In Sec. 6, we discuss
approximation schemes for queries that have α ∈ {MIN,MAX,
COUNT, SUM}. The hardness of an approximation algorithm
for a HAVING query depends on the aggregate, α, but also on
the predicate test, θ. We show:

– If Q is (α, θ)-apx-safe then Q has an .
– If Q has no self joins and is not (α, θ)-apx-safe then, Q

does not have an  and is (α, θ)-hazardous.
– We can decide in polynomial time (in the size of Q) if Q

is (α, θ)-apx-safe.

We show that the trichotomy holds for all combinations
of α and θ ∈ {=,≤, <,≥, >}, but leave open the case of COUNT
and SUM with either of {≥, >}. Additionally, we also show
that queries with self joins belong to a complexity class that
is believed to be as hard to approximate as any problem in
]P. This suggests that the complexity for HAVING query ap-
proximation is perhaps more subtle than for Boolean queries.

2 Formal Problem Description

We first define the syntax and semantics of HAVING queries
on probabilistic databases and then define the problem of
evaluating HAVING queries.

2.1 Semantics

We consider the aggregate functions EXISTS, MIN, MAX, COUNT,
SUM, AVG, and COUNT(DISTINCT) as functions on multisets
with the obvious semantics.

Definition 1 A Boolean conjunctive query is a single rule
q = g1, . . . , gm where for i = 1, . . . ,m, gi is a distinct, pos-
itive extensional database predicate (EDB), that is, a rela-
tional symbol5. A Boolean HAVING query is a single rule:

Q[α(y) θ k] D g1, . . . , gn

where for each i, gi is a positive EDB predicate, α ∈ {MIN,
MAX, COUNT, SUM, AVG, COUNT(DISTINCT)}, y is a single vari-
able6, θ ∈ {=,,, <,≤, >,≥}, and k is a constant. The set of

5 Since all relational symbols are distinct, HAVING queries do not
contain self joins: q = R(x, y),R(y, z) has a self-join, while R(x, y), S (y)
does not.

6 For COUNT, we will omit y and write the more familiar COUNT(∗)
instead.

variables in the body of Q is denoted var(Q). We assume
that y ∈ var(Q). The conjunctive query q = g1, . . . , gn, is
called the skeleton of Q and is denoted sk(Q) = q. In the
above syntax, θ is called the predicate test; k is called the
predicate operand; and the pair (α, θ) is called an aggre-
gate test.

Fig. 2(a) shows a SQL query with a HAVING predicate
that asks for all movies reviewed by at least two distinct re-
viewers. A translation of this query into an extension of our
syntax is shown in Fig. 2(b). The translated query is not a
Boolean HAVING query because it has a head variable (m).
In this paper, we discuss only Boolean HAVING queries. As
is standard, to study the complexity of non-Boolean queries,
we can substitute constants for head variables. For example,
if we substitute ‘Fletch’ for m, then the result is Fig. 2(c)
which is a Boolean HAVING query.

Definition 2 Given a HAVING query Q[α(y) θ k] and a world
W (a standard relational instance), we define Y to be the
multiset of values v(y) where y is distinguished variable in
Q and v is a valuation of q = sk(Q) that is contained in W.
In symbols,

Y = {| v(y) | v is a valuation for sk(Q) and im(v) ⊆ W |}

Here, im(v) ⊆ W denotes that image of sk(Q) under the
valuation v is contained in the world W. We say that Q is
satisfied on W and write W |= Q[α(y) θ k] (or simply W |=

Q) if Y , ∅ and α(Y) θ k holds.

In the above definition, we follow SQL semantics and
require that Y , ∅ in order to say that W |= Q. For example,
Q[COUNT(∗) < 10] D R(x) is false in SQL if RW = ∅, i.e.,
the interpretation of R in the world W is the empty table.
This, however, is a minor technicality and our results are
unaffected by the alternate choice that COUNT(∗) < 10 is true
on the empty database.

2.2 Probabilistic Databases

In this paper, we use probabilistic databases described in the
block-independent disjoint (BID) representation [41,42] that
generalizes many representations in the literature including
p-?-sets and p-or-sets [22], ?- and x-relations [45], and tuple
independent databases [12, 33]. The BID representation is
essentially the same as Barbara et al. [4].

Syntax. We think of a BID schema as a relational schema
where the attributes are partitioned into three disjoint sets.
We write a BID schema as R(K; A; P) where the sets are sep-
arated by semicolons. Here, K is a set of attributes called the
possible worlds key; A is a set of attributes called the set of
value attributes; and P is a single, distinguished attribute
that stores the marginal probability of the tuple called the
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SELECT m.Title
FROMMovieMatch m, Reviewer r
WHERE m.ReviewTitle = r.ReviewTitle
GROUP BY m.Title
HAVING COUNT(DISTINCT r.reviewer) ≥ 2

Q(m)[COUNT(DISTINCT r) ≥ 2] D
MovieMatch(t,m),
Reviewer(−, r, t)

Q[COUNT(DISTINCT r) ≥ 2] D
MovieMatch(t, ‘Fletch’),
Reviewer(−, r, t)

(a) SQL Query (b) Extended Syntax (Not Boolean) (c) Syntax of this paper

Fig. 2 A translation of the query “Which movies have been reviewed by at least 2 distinct reviewers?” into (a) SQL; (b) an extended syntax of this
paper, which is not Boolean; and (C) the syntax of this paper, which is Boolean and is a HAVING query.

probability attribute. The values of K and A come from
some discrete domain, and the values in the attribute P are
numbers in the interval (0, 1]. For example, the BID schema
in Fig. 1 is Profit(Item;Forecaster,Profit;P): {Item} is the
possible worlds key, {Forecaster,Profit} is the set of value at-
tributes, and P is the probability attribute. Also pictured in
Fig. 1 is an instance of this schema.

Semantics. We think of an instance of a BID schema
as representing a distribution over instances called possible
worlds. The schema of these possible worlds is R(K, A), i.e.,
the same schema without the attribute P. Let J be an in-
stance of a BID schema. We denote by t[K AP] a tuple in J,
emphasizing its three kinds of attributes, and call t[K A], its
projection on the K A attributes, a possible tuple. Define a
possible world, W, to be any instance of R(K, A) consisting
of possible tuples such that K is a key in W. Note that the
key constraints do not hold in the BID instance J, but must
hold in any possible world W. LetWJ be the set of all pos-
sible worlds associated to J. In Fig. 1, one possible world
W1 is RW1 =

{
(Widget,Alice,−99k), (Whatsit, Alice, 1M)

}
.

We define the semantics of BID instances only for valid
instances, which are BID instances such that the values in
P can be interpreted as a valid probability distribution, i.e.,
such that for every tuple t ∈ RJ in any BID relation R(K; A; P)
the inequality

∑
s∈R:s[K]=t[K] s[P] ≤ 1 holds. A valid instance

J defines a finite probability space (WJ , µJ). First note that
any possible tuple t[K A] can be viewed as an event in the
probability space (WJ , µJ), namely the event that a world
contains t[K A]. Then we define the semantics of J to be the
probability space (WJ , µJ) such that (a) the marginal proba-
bility of any possible tuple t[K A] is t[P], (b) any two tuples
from the same relation t[K A], t′[K A] such that t[K] = t′[K]
are disjoint events (or exclusive events), and (c) for any set
of tuples {t1, . . . , tn} such that all tuples from the same rela-
tion have distinct keys, the events defined by these tuples are
independent. From above, we see that µ(W1) = 0.99.

Example 2 The data in Fig. 3 shows an example of a BID
database that stores data from integrating extracted movie
reviews from USENET with a movie database from IMDB.
The MovieMatch table is uncertain because it is the result
of an automatic matching procedure (or fuzzy-join [9]). For
example, the probability a review title ‘Fletch’ matches a
movie titled ‘Fletch’ is very high (0.95), but it is not certain

(1.0) because the title is extracted from text and so may con-
tain errors. For example, from ‘The second Fletch movie’,
our extractor will likely extract just ‘Fletch’ although this re-
view actually refers to ‘Fletch 2’. The review table is uncer-
tain because it is the result of information extraction. That
is, we have extracted the title from text (e.g.,‘Fletch is a
great movie, just like Spies Like Us’). Notice that t232a[P] +

t232b[P] = 0.95 < 1, which indicates that there is some prob-
ability reviewid 232 is actually not a review at all.

Remark 1 Recall that two distinct possible tuples, say t[KA]
and t′[KA], are disjoint if t[K] = t′[K] and t[A] , t′[A]. But
what happens if A = ∅, i.e., all attributes are part of the
possible worlds key? In that case all possible tuples become
independent, and we sometime call a table R(K; ; P) a tuple
independent table [12], which is also known as a ?-table [39]
or a p-?-table [22].

Finally, we generalize to probabilistic databases that con-
tain many BID tables in the standard way: tuples in distinct
tables are independent.

Query Semantics. Users write queries on the possible
worlds schema, i.e., their queries do not explicitly mention
the probability attributes of relations. In this paper, all queries
are Boolean so the answer to a query is a probability score
(the marginal probability that the query is true). We define
this formally:

Definition 3 (Query Semantics) The marginal probability
of a HAVING query Q on BID database J is denoted µJ(Q)
(or simply µ(Q)) and is defined by:

µJ(Q) =
∑

W∈WJ :W |=Q

µJ(W)

In general, for a Boolean conjunctive query q, we write
µJ(q) to denote the marginal probability that q is true.

Example 3 Fig. 2(c) shows a query that asks for all movies
that were reviewed by at least 2 different reviewers. The
movie ‘Fletch’ is present when the following formula is sat-
isfied: (m1∧t231a)∨(m2∧t232b)∨(m1∧t235a). The multiplicity
of tuples returned by the query is exactly the number of dis-
juncts satisfied. Thus, µ(Q) is the probability that at least two
of these disjuncts are true. Def. 3 tells us that, semantically,
we can compute this by summing over all possible worlds.
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Title Matched P
‘Fletch’ ‘Fletch’ 0.95 m1
‘Fletch’ ‘Fletch 2’ 0.9 m2

‘Fletch 2’ ‘Fletch’ 0.4 m3
‘The Golden Child’ ‘The Golden Child’ 0.95 m4
‘The Golden Child’ ‘Golden Child’ 0.8 m5
‘The Golden Child’ ‘Wild Child’ 0.2 m6

ReviewID Reviewer Title P

231 ‘Ryan’ ‘Fletch’ 0.7 t231a
‘Spies Like Us’ 0.3 t231b

232 ‘Ryan’ ‘European Vacation’ 0.90 t232a
‘Fletch 2’ 0.05 t232b

235 ‘Ben’ ‘Fletch’ 0.8 t235a
‘Wild Child’ 0.2 t235b

MovieMatch(CleanTitle, ReviewTitle ;; P) Reviews(ReviewID, Reviewer ; ReviewTitle ; P)

Fig. 3 Sample data arising from integrating automatically extracted reviews from a movie database. MovieMatch is a probabilistic relation, we
are uncertain which review title matches with which movie in our clean database. Reviews is uncertain because it is the result of information
extraction.

2.3 Notions of complexity for HAVING queries

In the database tradition, we would like to measure the data
complexity [50], i.e., treat the query as fixed, but allow the
data to grow. This assumption makes sense in practice be-
cause the query is generally orders of magnitude smaller
than the size of the database. Hence, a running time for
query evaluation of O(n f (|Q|)) where |Q| is the size of a con-
junctive query Q is P-time. In our setting, this introduces a
minor technical problem: By fixing a HAVING query q, we
also fix k (the predicate operand); this means that we should
accept a running time n f (k) as efficient. Clearly this is unde-
sirable: because k can be large7. For example, Q[SUM(y) >
200] D R(x, y). For that reason, we consider in this paper
an alternative definition of the data complexity of HAVING
queries, where both the database and k are part of the input.

Definition 4 Fix a skeleton q, an aggregate α, and a compar-
ison operator θ. The query evaluation problem is: given as
input a BID representation J and a parameter k > 0, calcu-
late µJ(Q) where Q[α(y) θ k] is such that sk(Q) = q.

The technical problem that we address in this work is
the complexity of the query evaluation problem. Later, we
will see that the query evaluation problem for the query in
Ex. 3 is hard for ]P, and moreover, that this is the general
complexity for all HAVING queries.

3 Preliminaries

We review some basic facts about semirings (for a reference
see Lang [34]). Then, we introduce random variables over
semirings.

7 If we fix the query than k is assumed to be a constant, and so we
can take even double exponential time in k. Thus, we would like to take
k as part of the input.

3.1 Background: Queries on databases with semiring
annotations

In this section, we review material from Green et al. [21] that
tells us how to compute queries on a database whose tuples
are annotated with elements of a semiring. To get there, we
need some classical definitions.

A monoid is a triple (S ,+, 0) where S is a set, + is an
associative binary operation on S , and 0 is the identity of +,
i.e., s + 0 = 0 for each s ∈ S . For example, S = N (the
natural numbers) with addition is the canonical example of
a monoid.

A semiring is a structure (S ,+, ·, 0, 1) where (S ,+, 0)
forms a commutative monoid with identity 0; (S , ·, 1) is a
monoid with identity 1; · distributes over +, i.e., s · (t + u) =

(s · t) + (s · u) where s, t, u ∈ S ; and 0 annihilates S , i.e.,
0 · s = 0 for any s ∈ S .

A commutative semiring is one in which (S , ·, 1) is a
commutative monoid. As is standard, we abbreviate either
structure with the set S when the associated operations and
distinguished constants are clear from the context. In this
paper, all semirings will be commutative semirings.

Example 4 (Examples of Semirings) For an integer k ≥ 0, let
Zk+1 = {0, 1, . . . , k} then for every such k, (Zk,max,min, 0, k)
is a semiring. In particular, k = 2 is the Boolean semiring,
denoted B. For k = 1, 2, . . . ,, another set of semirings we
consider are Sk = (Zk,+k, ·k, 0, 1) where +k(x, y) = min(x +

y, k) and ·k = min(xy, k) where addition and multiplication
are in Z.

The idea is that database elements will be annotated with
elements from the semiring (defined next) and then these
annotations will be propagated during query processing. For
us, the important point is that aggregation queries can be
viewed as doing computation in these semirings.

Definition 5 Given a commutative semiring S and a Boolean
conjunctive query q = g1, . . . , gn, an annotation is a set of
functions indexed by subgoals such that for i = 1, . . . , n, τgi

is a function from tuples that unify with gi to S . We denote
the set of annotation functions with τ.
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Fig. 4 (a) This is a query plan P = π−x(π−y(R(x) Z S (x, y))) for the
query q = R(x), S (x, y) over some database annotated in N. The value
of the query is q(W, τ) = 6. (b) This is an extensional plan (Def. 12) for
P (πI

−x(πI
−y(R(x) Z S (x, y))). This plan is not safe, since intermediate

values may be neither independent nor disjoint. Thus, the extensional
value computed by this plan is not the correct marginal probability of
the query. For readability, we underline elements of the semiring.

Remark 2 In the above definition, we restrict τ to assigning
values to tuples that unify with gi, since gi may incorporate
selections. For example, if gi = R(x, ‘a’) then τ does not
need to assign values to tuples whose second component is
‘b’. Implicitly, τ should assign all such tuples 0.

We now define the syntax of relational plans and some
related notions. This is completely standard, except for the
minor issue that we view projection as removing attributes
instead of the traditional view of projection as keeping at-
tributes.

Definition 6 (Query Plan Syntax)

– a plan P is inductively defined as (1) a single subgoal
that may include selections, (2) π−xP1 if P1 is a plan and
x is a variable, and (3) P1 Z P2 if P1, P2 are plans.

– var(P), the variables output by P, is defined inductively
as (1) var(g), the variables in the subgoal g, if P = g;
(2) var(π−xP) = var(P) − {x}; and (3) var(P1 Z P2) =

var(P1) ∪ var(P2).
– goal(P), the set of subgoals in P, is defined inductively

as (1) goal(g) = {g}; (2) goal(π−xP1) = goal(P1); and
(3) goal(P1 Z P2) = goal(P1) ∪ goal(P2).

A graphical example query plan is shown in Fig. 4(a)
along with its description in the above syntax.

We view relational plans as computing relational tuples
that are annotated with elements of a semiring (following
Green et al. [21]). To be precise, fix a domain D, and denote
the value of a plan P on a deterministic instance W as ωW

P ,
which is a function D|var(P)| → S . Informally, the value of
a plan maps each standard tuple returned by the plan to an
element of the semiring S . We define ωW

P inductively:

– If P = g then if t ∈ W and t unifies with g then ωW
P (t) =

τg(t) else ωW
P (t) = 0.

– If P = π−xP1, then ωW
π−xP1

(t) =
∑

t′:t′[var(P)]=t

ωW
P1

(t′).

– else P = P1 Z P2 and for i = 1, 2 let ti be t restricted to
var(Pi) then ωW

P1ZP2
(t) = ωW

P1
(t1) · ωW

P2
(t2)

An example of a plan computing a value in a semiring is
shown in Fig. 4(a). The value of the plan in the figure is 6:
Since the plan is Boolean, it returns the empty tuple which
is annotated with 6, more succinctly, ωW

P () = 6.
For a standard conjunctive query q, there may be many

distinct, but logically equivalent, relational plans to compute
q. Green et al. [21] show thatωW

P does not depend on the par-
ticular choice of logically equivalent plan P for q. In turn,
this justifies the notation q(W, τ), as the value of a conjunc-
tive query q on a deterministic instance W under annotation
τ. Formally, we define this value as q(W, τ) def

= ωW
P () where

P is any plan for q and where ωW
P is applied to the empty tu-

ple. This notion is well defined precisely because the value
of q does not depend on the choice of plan, P. When τ is
clear from the context, we drop it and write simply q(W) to
denote the value of q on a world W.

3.2 Background: Random Variables on Semirings

In this section, we extend the idea of semirings on a stan-
dard database to probabilistic databases. Intuitively, in each
possible world, every tuple is annotated with a (potentially
different) semiring element. Hence, we think of each tuple
as being associated with a semiring random variable (de-
fined formally below). A naive representation of these ran-
dom variables can be large, which motivates us to define
an efficient (small) representation called marginal vectors
(in full analogy with marginal probabilities). In addition, we
define (efficient) operations on these marginal vectors that
are fully analogous with multiplying and adding marginal
probabilities . In the remainder of this section, we fix a BID
instance J, and denote by (W, µ) the distribution on possible
worlds induced by J (Sec. 2.1).

Definition 7 Given a semiring S , an S -random variable,
r, is a function r : W → S . Given two S -random variables
r, t then r + t and r · t denote random variables defined in the
obvious way:

(r + t)(W) = r(W) + t(W) and (r · t)(W) = r(W) · t(W)

We write r = s as a shorthand for the event that the
random variable r takes value s. We denote the probabil-
ity of this event as µ(r = s). More precisely, µ(r = s) =

µ({W ∈ W | r(W) = s}). Two basic notions on random vari-
ables are independence and disjointness:
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Definition 8 Given a semiring S and a set of random vari-
ables R = {r1, . . . , rn} on S , R is independent if ∀N ⊆

{1, . . . , n} and any set s1, . . . , sn ∈ S , we have

µ

∧
i∈N

ri = si

 =
∏
i∈N

µ(ri = si)

We say that R is disjoint if for any i , j we have:

µ((ri , 0) ∧ (r j , 0)) = 0

If r and t are two disjoint random variables8 then µ(r = 0 ∨
t = 0) = µ(r = 0) + µ(t = 0) − 1.

To represent a single S -random variable, we may need
space as large as the number of possible worlds (|W|). This
can be exponential in the size of the database J, and so, is
prohibitive for most applications. We now define an alter-
native representation called marginal vectors that have size
proportional to the size of the semiring, i.e., |S |.

Definition 9 Given a random variable r on S , the marginal
vector (or simply, the marginal) of r is denoted mr and is a
real-valued vector indexed by S defined by ∀s ∈ S µ(r =

s) = mr[s].

Two simple facts immediate from the definition are ∀s ∈
S mr[s] ≥ 0 (all entries are positive) and

∑
s∈S mr[s] = 1 (to-

tal probability). We use the following notation mr[s1, . . . , sk]
where s1, . . . , sk are semiring elements to be a shorthand for
the tuple of marginal probabilities (mr[s1], . . . ,mr[sk]).

Marginal vectors for semiring random variables are the
analog of marginal probabilities for Boolean events: they are
a means to write down a simple, succinct (but lossy) rep-
resentation of a random variable. In the case of a Boolean
semiring (i.e., B = ({0, 1} ,max,min, 0, 1)), a random vari-
able r is an event that is true (when r = 1) or false (when
r = 0). Suppose that the marginal probability that r is true
is pr (and so it is false with probability 1 − pr). Then, the
marginal vector has two entries one for each of the semiring
elements, 0 and 1:

mr[0] = 1 − pr and mr[1] = pr

If r and t are independent Boolean events, then their con-
junction r ∧ t has marginal probability given by the simple
formula Pr[r∧t] = Pr[r] Pr[t]. We generalize the idea of mul-
tiplying marginal probabilities to marginal vectors of semir-
ing elements; the resulting operation is called a monoid con-
volution. In full analogy, when when r, t are disjoint semir-
ing random variables, we introduce a disjoint operation that
is analogous to the rule Pr[r ∨ t] = Pr[r] + Pr[t] for disjoint
Boolean events.

8 A more illustrative way to write this computation is Pr[r = 0∨ t =

0] = 1 − Pr[r , 0 ∧ t , 0] = 1 − (1 − µ(r = 0)) + (1 − µ(t = 0))

Definition 10 Given a monoid (S ,+, 0), the monoid con-
volution is a binary operation on marginal vectors denoted
⊕. For any marginals mr and mt we define the s-entry (for
s ∈ S ) of mr ⊕ mt by the equation:

(mr ⊕ mt)[s] def
=

∑
i, j:i+ j=s

mr[i]mt[ j]

That is, the sum ranges over all pairs of elements from the
semiring S whose sum (computed in the semiring S ) is ex-
actly s. We emphasize that since the entries of the marginal
vectors are in R, the arithmetic operations on m in the above
equation are performed in R as well.

The disjoint operation for (S , 0,+) is denoted mr ∐ mt

and is defined by

if s , 0 (mr ∐ mt)[s] def
= mr[s] + mt[s]

else (mr ∐ mt)[0] def
= (mr[0] + mt[0]) − 1.

In a semiring (S ,+, ·, 0, 1) we use ⊕ to mean the convolution
over addition, i.e., over the monoid (S ,+, 0), and ⊗ to mean
the convolution over multiplication, i.e., over the monoid
(S , ·, 1). Notice that the disjoint operation is always paired
with + (not ·).

Example 5 Consider the Boolean semiring B and two ran-
dom variables r and t taking values in B with marginal prob-
abilities pr and pt, respectively. Then mr = (1 − pr, pr) and
mt = (1 − pt, pt). If r and t are independent, then the distri-
bution of r∨ t can be computed using r⊕ t (in B, r∨ t = r+ t).
From the definition, we see that (r ⊕ t)[0] = (1 − pr)(1 − pt)
and (r ⊕ t)[1] = (1 − pt) + (1 − pr)pt + pr pt.

If r and t are disjoint, then mr+t[1] = (mr ∐ mt)[1] =

(pr + pt) and mr+t[0] = (mr ∐ mt)[0] = 1 − mr+t[1].

The next proposition restates that the two operations in
the previous definition yield the correct results, and states
bounds on their running time:

Proposition 1 Let r and s be random variables on the monoid
(S ,+, 0) with marginal vectors mr and mt, respectively. Then
let mr+t denote the marginal of r + t. If r and t are inde-
pendent then mr+t = mr ⊕ mt. If r and t are disjoint then
mr+t = mr ∐ mt. Further, the convolution is associative, so
the convolution of n variables r1, . . . , rn can be computed in
time O(n |S |2):⊕
i=1,...,n

mri def
= mr1 ⊕ · · · ⊕ mrn

and disjoint operation applied to r1, . . . , rn denoted below
can be computed in O(n |S |).∐
i=1,...,n

mr1 def
= mr1

∐
· · ·

∐
mrn

8



Proof We include the proof of the convolution since it is
illustrative. We assume that mx[i] = µ(x = i) for x ∈ {r, t}
and i ∈ S , i.e., the marginal vectors are correct, and that r
and t are independent. We show that

(
mr ⊕ mt) [s] = µ(r+t =

s). Since s ∈ S is arbitrary, this proves the correctness claim.(
mr ⊕ mt

)
[s] =

∑
i, j∈S :i+ j=s

mr[i]mt[ j]

=
∑

i, j∈S :i+ j=s

µ(r = i)µ(t = j)

=
∑

i, j∈S :i+ j=s

µ(r = i ∧ t = j)

= µ(r + t = s) = mr+t[s]

The first equality is the definition. The second equality is by
assumption that the marginal vectors are correct. The third
line is by the independence assumption. The final line is be-
cause the sum is exhaustive. To see the time bound, observe
that we can simply consider all |S |2 pairs to compute the con-
volution (which we assume has unit cost). Since the semir-
ing is associative, and so is the convolution. This also means
that we can compute the n-fold convolutions pairwise.

The importance of this proposition is that if the number
of elements in the semiring is small, then each operation can
be done efficiently. We will use this proposition as the basis
of our efficient exact algorithms.

4 Approaches for HAVING

We define α-safe HAVING queries for α ∈ { EXISTS, MIN,
MAX, COUNT} in Sec. 4.3, for α= COUNT(DISTINCT) in Sec. 4.4,
and α ∈ {AVG, SUM} in Sec. 4.5.

4.1 Aggregates and semirings

We explain how to compute HAVING queries using semir-
ings on deterministic databases, which we then generalize to
probabilistic databases. Since HAVING queries are Boolean,
we use a function ρ : S → {true, false}, called the recovery
function, that maps a semiring value s to true if that value
satisfies the predicate in the having query Q, e.g., when check-
ing COUNT(∗) ≥ 4, ρ(4) is true, but ρ(3) is false. Fig. 5 lists
the semirings for the aggregates in this paper, their associ-
ated annotation functions τ, and an associated Boolean re-
covery function ρ. The aggregation function EXISTS essen-
tially yields the safe plan algebra of Dalvi and Suciu [12,13,
40].

Example 6 Consider the query Q[MIN(y) > 10] D R(y)
where R = {t1, . . . , tn} is a tuple independent database. Fig. 5
tells us that we should use the semiring (Z3,max,min). We

first apply τ: τ(ti) = 1 represents that ti[y] > 10 while
τ(ti) = 2 represents that ti[y] ≤ 10. Let qτ =

∑
i=1,...,m τ(ti),

the sum is in S , and so, qτ = maxi=1,...,m τ(ti). Now, ρ(qt) is
satisfied only when qτ is 1. In turn, this occurs if and only if
all ti[y] are greater than 10 as required.

A careful reader may have noticed that we could have
used Z2 to compute this example (instead of Z3). When we
generalize to probabilistic databases, we may have to ac-
count for a tuple being absent (for which we use the value
0).

More generally, we have the following proposition:

Proposition 2 Given a HAVING query Q, let q = sk(Q) and
S , ρ and τ be chosen as in Fig. 5, then for any deterministic
instance W:

W |= Q ⇐⇒ ρ (q(W, τ))

Proof Let q, the skeleton of Q, have n subgoals. We show
only MIN with ≤ in full detail. All other aggregate-test pairs
follow by similar arguments. We observe the equation

q(W, τ) =
∑

v:im(v)⊆W

∏
i=1,...,n

v(gi)

Further, W |= Q[MIN(y) ≤ k] if and only if there there is
some valuation such that

∏
i=1,...,n v(gi) = 2. Since, 2 + s =

2 for any s ∈ S the existence of such a valuation implies
q(W, τ) = 2. Conversely, if q(W, τ) = 2 then there must be
some such valuation since x + y = 2 implies that either x or
y is 2 in this semiring. Hence, the claim holds.

Similarly, W |= Q[MIN(y) ≥ k], the query is satisfied if
and only if all elements are ≥ k and so each term (valuation)
in the summation must evaluate to 0 or 1. Similar arguments
are true for =,,. In the case of COUNT, if we want to count
from 1, . . . , k we also need two elements, 0 and k + 1: 0
encodes that a tuple is absent and k + 1 encodes that the
value is “bigger than k”.

In probabilistic databases, we view q(W, τ) as a random
variable by fixing τ (the semiring annotation functions), i.e.,
we view q(W, τ) as a function of W alone. We denote this
random variable qτ. Our goal is to compute the marginal
vector of qτ. The marginal vector of qτ, denoted mqτ , is suf-
ficient to compute the value of any HAVING query since we
can simply examine those entries in mqτ for which the re-
covery function, ρ, is true. Said another way, a simple corol-
lary of Prop. 2 is the following generalization to probabilis-
tic databases:

Corollary 1 Given a HAVING query Q, let q = sk(Q), S , ρ,
and τ be as in Prop. 2, then for any BID instance J we have
the following equalities:

µJ(Q) =
∑

k : ρ(k) is true

mqτ [k]
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HAVING Predicate Semiring Annotation τg∗ (t) Recovery ρ(s)
EXISTS (Z2,max,min) 1 s = 1
MIN(y) {<,≤} k (Z3,max,min) if t θ k then 2 else 1 s = 2
MIN(y) {>,≥} k (Z3,max,min) if t θ k then 1 else 2 s = 1
MIN(y) {=,,} k (Z4,max,min) if t < k then 3 else

if t = k then 2 else 1
if = then s = 2
if , then s , 2

COUNT(∗) θ k Sk+1 1 (s , 0) ∧ (s θ k)
SUM(y) θ k Sk+1 t[y] (s , 0) ∧ (s θ k)

Fig. 5 Semirings for the operators MIN, COUNT and SUM. Let g∗ be the lowest indexed subgoal such that contains y. For all g , g∗, ∀t, τg(t)

equals the multiplicative identity of the semiring. Let Zk+1 = {0, 1, . . . , k} and +k(x, y) def
= min(x + y, k) and ·k

def
= min(xy, k), where x, y ∈ Z. Let

Sk
def
= (Zk+1,+k, ·k, 0, 1). MAX and MIN are symmetric. COUNT(DISTINCT) is omitted because it uses two different algebras together. One important

point to note is that, in the case of SUM, if t is outside the semiring (i.e., larger) than τ(t) is set to the largest element of the semiring. Since all values
are present, once this value is present it forces the value of the predicate θ, e.g., if θ =≥ then the predicate is trivially satisfied.

Cor. 1 tells us that we can compute µ(Q) by examining
the entries of the marginal vector mqτ . Hence, our goal is to
compute mqτ [s] for each such index, s ∈ S .

4.2 Computing safely in semirings

We now extend safe plans to compute a marginal vector
instead of a Boolean value. Specifically, we compute mqτ ,
the marginal vector for qτ using the operations defined in
Sec. 3.2.

Definition 11 An extensional plan for a Boolean conjunc-
tive query q is defined recursively as a subgoal g and if
P1, P2 are extensional plans then so are πI

−xP1 (independent
project), πD

−xP1 (disjoint project), and P1 Z P2 (join). An
extensional plan P is safe if, assuming P1 and P2 are safe,
the following conditions are met:

– P = g is always safe
– P = πI

−xP1 is safe if x ∈ var(P1) and ∀g ∈ goal(P1) then
x ∈ key(g)

– P = πD
−xP1 is safe if x ∈ var(P1) and ∃g ∈ goal(P1),

key(g) ⊆ var(P), x ∈ var(g).
– P = P1 Z P2 is safe if goal(P1) ∩ goal(P2) = ∅ and for

i = 1, 2, var(goal(P1)) ∩ var(goal(P2)) ⊆ var(Pi), i.e.,
we may not project away variables that are shared in two
subgoals before they are joined.

An extensional plan P is a safe plan for q if P is safe and
goal(P) = q and var(P) = ∅.

Intuitively, a safe plan tells us that the correlations of tu-
ples produced by intermediate stages of the plan are either
independent or disjoint, as opposed to correlated in some un-
known way. In particular, P = πI

−x(P1) is a safe plan when-
ever those tuples produced by P1 on any instance are inde-
pendent (provided the tuples differ on the variable x). Hence,
we call πI an independent project. Similarly, if P = πD

−x(P1)
is safe, then the tuples produced by P1 are disjoint when-
ever they differ on the variable x. Further, a join is safe if the

branches do not contain any common subgoals, i.e., any tu-
ple produced by P1 is independent of any tuple produced by
P2. For completeness, we state and prove a formal version
of this discussion in Appendix A.

Computing With Safe Plans

We now augment safe plans to compute marginal vectors.
Intuitively, we generalize the operation of multiplying marginal
probabilities (as done in safe plans) to semiring convolu-
tions of marginal vectors, and we generalize the operation
of adding the marginal probabilities of disjoint events to dis-
joint operations on marginal vectors. We think of a plan as
computing a marginal vector: The marginal vector computed
by a plan P on a BID instance J is called the extensional
value of P and is denoted as ω̂J

P,S and is defined below.

Definition 12 Given a BID instance J and a semiring S . Let
P be a safe plan. Denote the extensional value of P in S on J
as ω̂J

P,S . ω̂J
P,S is a function that maps each tuple to a marginal

vector. To emphasize the recursion, we fix J and S and de-
note ω̂J

P,S as ω̂P. We define the value of ω̂P inductively:

– If P = g then ω̂P(t) = mt where mt[0] = 1 − t[P] and
mt[τg(t)] = t[P] and all other entries are 0.

– If P = πI
−xP1 then ω̂P(t) =

⊕
t′:t′[var(P1)]=t

ω̂P1 (t) where
⊕

denotes the convolution over the monoid (S ,+, 0).

– If P = πD
−xP1 then ω̂P(t) =

∐
t′:t′[var(P1)]=t

ω̂P1 (t) where
∐

denotes the disjoint operation over the monoid (S ,+, 0).

– If P = P1 Z P2 then ω̂P(t) = ω̂P1 (t1) ⊗ ω̂P2 (t2) where
for i = 1, 2 ti is t restricted to var(Pi) and ⊗ denotes the
convolution over the monoid (S , ·, 1).

Fig. 4(b) gives an example of computing the extensional
value of a plan: The plan shown is not safe, meaning that
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the extensional value it computes is not correct, i.e., equal
to mqτ . This illustrates that any plan may be converted to an
extensional plan, but we need additional conditions (safety)
to ensure that the computation is correct. Interestingly, in
this case, there is an alternate safe plan: P0 = π−x(R(x) Z
π−y(S (x, y))), i.e., we move the projection early.

The next lemma states that for safe plans, the extensional
value is computed correctly, i.e., the conditions insured by
the safe plan and the operator used in Def. 12 make exactly
the same correlation assumptions. For example, πI indicates
independence, which ensures that ⊕ correctly combines two
input marginal vectors. The proof of the following lemma is
a straightforward induction and is omitted.

Lemma 1 If P is a safe plan for a Boolean query q and τ is
any annotation function into S , then for any si ∈ S on any
BID instance J, we have ω̂J

P()[si] = µJ(qτ = si).

A safe plan (in the terminology of this paper) ensures
that the convolutions and disjoint operations output the cor-
rect results, but it is not sufficient to ensure that the plan
is efficient. In particular, the operations in a safe plan on S
take time (and space) polynomial in |S |. Thus, if the size
of S grows super-polynomially in |J|, the size of the BID in-
stance, the plan will not be efficient. As we will see, this hap-
pens for SUM in most cases. As we show in the next section,
if α is one of MIN, MAX, or COUNT, the number of elements in
the needed semiring is small enough, so the safety of sk(Q)
and Q coincide.

4.3 EXISTS-,MIN-, MAX- and COUNT-safe

We now give optimal algorithms when α is one of EXISTS,
MIN, MAX, or COUNT. The results on EXISTS are exactly the
results of Dalvi and Suciu [12]. We include them to clarify
our generalization.

Definition 13 Let α be one of {EXISTS, MIN, MAX, COUNT}
and Q[α(t) θ k] be a HAVING query, then Q is α-safe if the
skeleton of Q is safe.

Theorem 1 Let Q[α(y) θ k] be a HAVING query for α ∈ {
EXISTS, MIN, MAX, COUNT} such that Q is α-safe then the
exact evaluation problem for Q is in polynomial time in the
size of the data.

Correctness is straightforward from Lem. 1. Efficiency
follows because the semiring is of constant size for EXISTS,
MIN, and MAX. For COUNT, observe that an upper bound on
|S | is number of tuples returned by the query plus one (for
empty), thus count is polynomially bounded as well. Thus,
the entire plan has polynomial time data complexity.

Complexity

The results of Dalvi and Suciu [12, 13, 40] show that either
a conjunctive query without self joins has a safe plan or it is
]P-hard. The idea is to show that a HAVING query Q is satis-
fied only if sk(Q) is satisfied, which implies that computing
Q is at least as hard as computing sk(Q). Formally, we have:

Theorem 2 (Exact Dichotomy for MIN, MAX, and COUNT)
If α ∈ {MIN, MAX, COUNT} and Q[α(y) θ k] does not contain
self joins, then either (1) Q is α-safe and so Q has data com-
plexity in P, or (2) Q has ]P-hard data complexity. Further,
we can find an α-safe plan in P.

Proof The first part of the dichotomy is Theorem 1. We
show the matching negative result. Consider the predicate
test MIN(y) ≥ 1; assuming that Q is not MIN-safe, we have
(by above) that sk(Q) = q is not safe in the sense of Dalvi
and Suciu, we show that this query can be used to compute
Pr[q] on an BID instance J. To see this, create a new instance
J′ that contains exactly the same tuples as J, but recode all
values in attributes referenced by y as integers with values
greater than 1: this query is true precisely when at least one
tuple exists and hence with Pr[q]. We show below that this is
sufficient to imply that all tests θ are hard as well. The proof
for MAX is symmetric. COUNT is similar.

Lemma 2 Let α ∈ {MIN,MAX, COUNT, SUM, COUNT(DISTINCT)},
if computing Q[α(y) = k] exactly is ]P-hard, then it is ]P-
hard for all θ ∈ Θ. Furthermore, if qτ takes at most polyno-
mially many values then the converse also holds: if comput-
ing Q[α(y) θ k] exactly is ]P-hard for any θ ∈ Θ, then it is
]P-hard for all θ ∈ Θ.

Proof We first observe that all aggregate functions α in the
statement are positive, integer-valued functions. We show
that we can use ≤,≥, >, <,, as a black box to compute = ef-
ficiently. We then show that we can compute the inequalities
in time O(k) (using =), thus proving both parts of the claim.

First, observe that q(W, τ) = s is a function on worlds,
i.e., the events are disjoint for different values of s. Hence,

µ(Q[α(y) ≤ k]) =
∑
k′≤k

µ(Q[α(y) = k′]

From this equation it follows that we can compute any in-
equality using = in time proportional to the number of pos-
sible values. To see the forward direction, we compute

µ(Q[α(y) ≤ k + 1]) − µ(Q[α(y) ≤ k]) = µ(Q[α(y) = k])

similarly for a strict inequality. And, 1 − µ(Q[α(y) , k]) −
µ(Q[α(y) , 0]) = µ(Q[α(Y) = k]). The , 0 statement is only
necessary with SQL semantics.

The exact ]P-hardness proofs in the remainder of this
section satisfy the requirement of this lemma. Interestingly,
this lemma does not hold for approximation hardness.

11



4.4 COUNT(DISTINCT)-safe queries

Intuitively, we compute COUNT(DISTINCT) in two stages:
(1) For the subplan rooted at π−y, we first compute the prob-
ability that each value is returned by the plan (i.e., we com-
pute the DISTINCTpart using EXISTS). (2) Then, since we
have removed duplicates implicitly using EXISTS, we count
the number of distinct values using the COUNT algorithm
from Sec. 4.3.

The ordering of the operators, first EXISTS and then COUNT,
is important. As we show in Thm. 4, this ordering exactly
captures tractable evaluation. First, we need a small techni-
cal proposition to state our characterization:

Proposition 3 If P is a safe plan for q, then for x ∈ var(q)
there is exactly one of πI

−x or πD
−x in P.

Proof At least one of the two projections must be present,
because we must remove the variable x (q is Boolean). If
there were more than one in the plan, then they cannot be de-
scendants of each other because x < var(P1) for the ancestor
and they cannot be joined afterward because of the join con-
dition for i = 1, 2 var(goal(P1)) ∩ var(goal(P2)) ⊆ var(Pi).

Thus, it makes sense to talk about the unique node in the
plan tree where a variable x is removed, as we do in the next
definition:

Definition 14 A query Q[COUNT(DISTINCT y) θ k] is
COUNT(DISTINCT)-safe if there is a safe plan P for the skele-
ton of Q such that if P1 is the unique node in the plan where
y is removed, i.e., either πI

−y or πD
−y in P, then no proper an-

cestor of P1 is πI
−x for any x.

This definition exactly insists on the ordering of opera-
tors that we highlighted above.

Example 7 Fix a BID instance J. Consider

Q[COUNT(DISTINCT y) ≥ 2] D R(y, x), S (y)

A COUNT(DISTINCT)-safe plan for the skeleton of Q is P =

πI
−y((πI

−xR(y, x)) Z S (y)). The subquery P1 = (πI
−xR(y, x)) Z

S (y) returns tuples (values for y). We use the EXISTS algebra
to compute the probability that each distinct value appears.

Now, we must count the number of distinct values: Since
we have eliminated duplicates, all y values are trivially dis-
tinct and we can use the COUNT algebra. To do this, we map
each EXISTS marginal vector to a vector suitable for com-
puting COUNT, i.e., a vector in Zk (here k = 2). In other
words, (1 − p, p) = ω̂J

P,EXISTS(t) = mt is mapped to τ̂(mt) =

(1− p, p, 0). In general, this vector would be of length k + 1.
Since P = πI

−yP1, we know that all tuples returned by
P1 are independent. Thus, the correct distribution is given
by convolution over all such t′, each one corresponding to a
distinct y value, i.e., ⊕tτ̂(t′). To compute the final result, use
the recovery function, ρ defined by ρ(s) = s ≥ 2

The proof of the following theorem is a generalization
of Ex. 7, whose proof we include in the appendix (Sec. B):

Theorem 3 If Q is COUNT(DISTINCT)-safe then its evalua-
tion problem is P-time.

Complexity. We now establish that for COUNT(DISTINCT)
queries without self joins, COUNT(DISTINCT)-safe captures
efficient computation. We do this in two stages: first, we ex-
hibit some canonical hard patterns for COUNT(DISTINCT),
and second, in the appendix, we reduce any other non- COUNT(DISTINCT)-
safe pattern to one of these hard patterns.

Proposition 4 The following HAVING queries are ]P-hard
for i = 1, 2, . . . :

Q1[COUNT(DISTINCT y) θ k] D R(x), S(x, y)

and,

Q2,i[COUNT(DISTINCT y) θ k] D R1(x; y), . . . , Ri(x; y)

Proof We prove Q1 is hard and defer Q2,i to the Appendix B.
To see that Q1 is hard, we reduce from counting the num-
ber of independent sets in a graph (V, E) which is ]P-hard.
We let k be the number of edges (|E|) and θ = ‘ ≥′. In-
tuitively, with these choices Q will be satisfied only when
all edges are present. For each node u ∈ V , create a tuple
R(u) with probability 0.5. For edge e = (u, v) create two
tuples S(u, e), S(v, e), each with probability 1. For any set
V ′ ⊆ V , let WV ′ denote the world where the tuples corre-
sponding to V ′ are present. For any subset of nodes, V ′, we
show that V ′ is an independent set if and only if WV−V ′ sat-
isfies Q1, i.e., all edges are present in its node-complement.
Since f (N) = V − N is one-to-one, the number of possible
worlds that satisfy Q1 are exactly the number of independent
sets, thus completing the reduction. Now, if N is an indepen-
dent set, then for any edge (u, v), it must be the case that at
least one of u or v is in V − N, else the set would not be
independent, since it would contain an induced edge. Thus,
every edge is present and Q is satisfied. If N is not indepen-
dent, then there must be some edge (u, v) such that u, v ∈ N,
hence neither of u, v is in V − N. Since this edge is missing,
Q1 cannot be satisfied. This completes the reduction. The
hardness of Q2 is based on a reduction from counting the set
covers of a fixed size and is in the appendix.

There is some work in showing that the patterns in the
previous theorem capture the boundary of hardness.

Theorem 4 (COUNT(DISTINCT) Dichotomy) Let Q[α(y) θ k]
be a HAVING such that α is COUNT(DISTINCT), then either
(1) Q is COUNT(DISTINCT)-safe and so has P data complex-
ity or (2) Q is not COUNT(DISTINCT)-safe and has ]P-hard
data complexity.
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Proof Part (1) of the result is Theorem 3. We sketch the
proof of (2) in the simpler case when only tuple indepen-
dent probabilistic tables are used in Q and defer a full proof
to Appendix B. Assume the theorem fails, let Q be the min-
imal counter example in terms of subgoals; this implies we
may assume that Q is connected and the skeleton of Q is
safe. Since there is no safe plan projecting on y and only in-
dependent projects are possible, the only condition that can
fail is that some subgoal does not contain y. Thus, there are
at least two subgoals R(x) and S (z, y) such that y < x ∪ z
and x ∩ z , ∅. Given a graph (V, E), we then construct a
BID instance J exactly as in the proof of Prop. 4. Only the
R relation is required to have probabilistic tuples, all others
can set their probabilities to 1.

Extending to BID databases requires more work because
our technique of adding extra tuples with probability 1 does
not work: doing so naively may violate a possible worlds
key constraint. The full proof appears in Appendix B. It
is straightforward to decide if a plan is COUNT(DISTINCT)-
safe: the safe plan algorithm of Dalvi and Suciu [13, 40]
simply tries only disjoint projects and joins until it is able
to project away y or it fails.

4.5 SUM-safe and AVG-safe queries

To find SUM- and AVG-safe queries, we need to further restrict
the class of allowable plans. For example, there are queries
involving SUM on a single table that are ]P-hard, e.g., the
query Q[SUM(y) = k] D R(y) is already ]P-hard. There are,
however, some queries that can be evaluated efficiently:

Definition 15 A HAVING query Q[α(y) θ k] for α ∈ {SUM, AVG}
is α-safe, if there is a safe plan P for the skeleton of Q such
that πD

−y in P and no proper ancestor of πD
−y is πI

−x for any x.

The idea of the positive algorithm is that if the plan
contains πD

−y, i.e., each value for y is present disjointly. Let
a1, . . . , an be the y values returned by running the standard
query q(y) (adding y to the head of sk(Q)). Now consider
the query Q′ where sk(Q′) = q[y → ai] (substitute y with
ai). On this query, the value of y is fixed, so we only need
to compute the multiplicity of ai figure out if Q′ is true. To
do this, we use the COUNT algebra of Sec. 4.3 whenever q is
safe.

Theorem 5 If Q[α(y) θ k] for α ∈ {SUM, AVG} is α-safe, then
Q’s evaluation problem is in P-time.

Proof (Sketch) Since Q is α-safe, then there is a plan P satis-
fying Def. 15. The consequence of this definition is that on
any possible world W, we have that the conjunctive query
q(y) (q = sk(Q)) returns a single tuple (i.e., a single binding
for y). This implies that the values are disjoint. So for a fixed

positive integer a returned by q(y), the predicate SUM(y) θ k
depends only on the multiplicity of a. Hence, we can write:

Pr[Q] =
∑
a∈S

Pr[Qa[COUNT(∗) θ
k
a

]

Here, Qa denotes that sk(Qa) = q[y → a], i.e., y is substi-
tuted with a in the body of Qa. Since Q is α-safe, we have
that q[y → a] is safe, and so by Thm. 1, each term can be
computed with the COUNT algebra. Hence, we can compute
the entire sum in polynomial time and so Pr[Q]. For AVG, it
is slightly simpler: Since we are taking the value of m copies
of a, we have that the AVG is a if m > 0 (else the query is
false). Thus, we simply need to compute the probability that
the value a exists with multiplicity greater than 1 (which can
be handled by the standard EXISTS algebra).

Example 8 Consider Q[SUM(y) > 10] D R(‘a’; y), S(y, u).
This query is SUM-safe, with plan πD

−y(R(‘a’; y) Z πI
−uS(y, u)).

Complexity. We show that if a HAVING query without
self joins is not SUM-safe then, it has ]P-data complexity.
AVG follows by essentially the same construction.

Proposition 5 Let α ∈ {SUM, AVG} and θ ∈ {≤, <,=, >,≥}

then Q[α(y) θ k] D R(y) has ]P-data complexity.

Proof We only show SUM, deferring AVG to the appendix.
Consider when θ is =. An instance of ]SUBSET-SUM is a
set of integers x1, . . . , xn and our goal is to count the num-
ber of subsets S ⊆ 1, . . . , n such that

∑
s∈S xi = B. We

create the representation with schema R(X; ; P) satisfying
R = {(x1; 0.5), . . . , (xn; 0.5)}, i.e., each tuple present with
probability 0.5. Thus, µ(Q) ∗ 2n is number of such S . Show-
ing hardness for other aggregate tests follows from Lem. 2.

Theorem 6 Let α ∈ {SUM, AVG} and let Q[α(y) θ k] be a
HAVING query, then either (1) Q is α-safe and hence has
P-time data complexity, or (2) Q is not α-safe and Q has
]P-data complexity.

We prove this theorem in Appendix C.

5 Generating a Random World

In this section, we give an algorithm (Alg. 5.2.1) to solve
the random possible world generation problem, which in-
formally asks us to generate a possible world W̃ such that
q(W̃, τ) = s, i.e., such that the value of q on W̃ is s. The
probability that we generate a fixed world W̃ is exactly the
probability of W̃ conditioned on the value of q being equal
to s. Our solution to this problem is a key a subroutine in our
 for SUM (in Sec. 6), but it is also an interesting prob-
lem in its own right. As pointed out by Cohen et al. [11], a
random world satisfying some constraints is useful for many
debugging and related tasks.
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Algorithm 5.2.1 A random world generator for Jφ
Decl: RWH(φ : semiring parse tree,

s : a semiring value)
returns a random world denoted W̃ ⊆ Jφ.

if φ is a leaf, i.e., φ = (t,mt) for some tuple t then
(* If s , 0 then this implies the tuple must be present. *)
if s , τ(t) then return {t}
elif s = 0 then return ∅ else return ⊥

(*Inductive case*)
Let φ have label (,mr) and children φ1 and φ2

with marginal vectors mφ1 and mφ2 , respectively.
if  = ⊕ then

Choose (s1, s2) s.t. s1 + s2 = s with probability mφ1 [s1]mφ1 [s2] 1
mφ[s]

if  = ⊗ then
Choose (s1, s2) s.t. s1 · s2 = s with probability mφ1 [s1]mφ1 [s2] 1

mφ[s]
if  =

∐
then

Choose (s1, s2) = (s, 0) with probability mφ1 [s1] 1
mφ[s]

or (s1, s2) = (0, s) with probability mφ1 [s2] 1
mφ[s]

(*Union the results of the recursive calls*)
return RWH(φ1, s1) ∪ RWH(φ2, s2)

5.1 Problem Definition

Definition 16 Let J be a BID instance, q be a conjunctive
query, and τ be an annotation function. A BID random world
generator (simply, a random generator) is a randomized al-
gorithm A that generates a possible world W̃ ∈ WJ such
that for any s ∈ S we have9:

Pr
A

[W̃ = W] = µ(W | q(W, τ) = s)

where PrA emphasizes that the probability is taken over the
random choices of the algorithmA. Further, we require that
A run in time poly(|J| , |S |).

This definition says that the probability a world is gen-
erated is exactly the conditional probability of that instance
(conditioned on the value of the query q being s). In this
section, we show that when sk(Q) is safe then we can solve
create a random generator for any BID instance and any an-
notation function.

5.2 Possible World Generation Algorithm

To describe our algorithm, we need a notation to record
the intermediate operations of the safe plan on the marginal
vectors, i.e., a kind of lineage or provenance for the semir-
ing computation. Here, we view a safe plan as computing
the marginal vectors and as computing a symbolic semiring
expression (essentially, a parse tree of the extensional com-
putation performed by the plan).

9 Formally, ifW = ∅, then we require that that a random generator
return a special value, ⊥. This value is like an exception and will not
be returned during the course of normal execution.

Algorithm 5.2.2 A random world generator for J
Decl: RW(φ : semiring parse tree,

J : A BID instance, s a semiring element
returns a random world of J denoted W̃.

Let W̃ ← RWH(φ, s) and T = J − Jφ
for each t ∈ T do

Let K(t) = {t′ | t[K] = t′[K]} = {t1, . . . , tm} with pi = Pr[ti].
Let {tk+1, . . . , tm} = K(t) ∩ Jφ
if K(t) ∩ W̃ = ∅ then

select ti from i = 1, k with pi
1−

∑
j=k+1,m p j

and W̃ ← W̃ ∪ {ti}
T ← T − K(t)

return W̃

Definition 17 A semiring parse tree φ is a binary tree where
a leaf is labeled with a pair (t,mt) where t is a tuple and m
is a marginal vector on S ; and an internal node is labeled
with a pair (,m) where  ∈ {⊕,⊗,

∐
} and m is a marginal

vector.

Given a safe plan P and a BID instance J with annotation
τ, the parse tree associated to P and J is denoted φ(P, J, τ).
We think of φ(P, J, τ) as a record of the computation of P
on J. More precisely, φ(P, J, τ) is a parse tree for the semir-
ing expression that we compute given P and J using the
rules of Def. 12. The operations in a safe plan are n-ary:
we can, however, transform these n-ary operations into a bi-
nary parse tree in an arbitrary way, since the operations are
associative. An example parse tree is shown in Fig. 6. We
observe that any safe plan can be mapped to a parse tree.

Example 9 Fig. 6 illustrates how φ(P, J, τ) is constructed for
a simple example based on SUM. Fig. 6(a) shows a relation
R(A; B) where A is a possible worlds key. Our goal is to gen-
erate a random world such that the query Q[SUM(y) = 6] D
R(x; y) is true. The skeleton of Q is safe and so has a safe
plan, P = πI

−x(πD
−y(R)). Fig. 6(a) also shows the intermedi-

ate tuples that are computed by the plan, along with their
associated marginal vectors. For example, the marginal vec-
tor associated to t1 is mt1 [0, 1] = (1 − p1, p1). Similarly, the
marginal vector for intermediate tuples like t6 is mt6 [1] = p2.
At the top of the plan is the empty tuple, t8, and one entry in
its associated marginal vector, i.e., mt8 [6] = p1 p5 + p2 p4.

The parse tree φ(P, J, τ) corresponding to P on the in-
stance J = {R} is illustrated in Fig. 6(b). The bottom-most
level of internal nodes have  =

∐
, since they encode the

action of the disjoint projection πD
−y. In contrast, the root has

 = ⊕, since it records the computation of the independent
project, πI

−x. As we can see, the parse tree simply records the
computation and the intermediate results.

Algorithm Overview. Our algorithm has two phases:
(1) We first build a random generator for the tuples in the
parse tree φ (defined formally below); this is Alg. 5.2.1. (2)
Using the tuples generated in step (1), we select those tuples
not in the parse tree and complete the generator for J; this
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(a) (b)

Fig. 6 (a) A BID relation R(A; B) used in Ex. 9 along with a safe plan P = πI
−x(πD

−y(R)). The extensional computation is in the semiring N. (b)
φ(P, {R}) is shown where P = πI

−x(πD
−y(R)). The dotted boxes map to the nodes in the tree, described in Def. 17. In the figure, for readability, we

only show the entry for 6 in the root. Also, the entries in the marginal vectors are real (rational) numbers and are written as expressions only for
the sake of readability. There is a one-to-one correspondence between intermediate marginal vectors and nodes in the parse tree φ(P, J, τ).

is Alg. 5.2.2. To make this precise, we need the following
notation:

Definition 18 Given a semiring parse tree φ, we define tup(φ)
inductively: if φ is a leaf corresponding to a tuple t, then
tup(φ) = {t}. Otherwise, φ has two child parse trees φ1

and φ2, then tup(φ) = tup(φ1) ∪ tup(φ2). We also consider
tup+(φ) = tup(φ) − {t | τ(t) = 0}, i.e., tup+(φ) is the set of
tuples with non-zero annotations contained in φ.

If P is a safe plan, then tup has a particular simple form:

Proposition 6 Let P be a safe plan for q and J be a BID in-
stance, then for any internal node φ0 in φ(P, J, τ) with chil-
dren φ1 and φ2, we have that tup(φ1) ∩ tup(φ2) = ∅ and
tup+(φ1) ∩ tup+(φ2) = ∅.

Proof We observe that an ⊕ or an
∐

node is introduced only
if there is a projection removing a variable x (Def. 11), in
which case the tuples in tup(φ1) and tup(φ2) disagree on x,
hence, are disjoint sets of tuples. Case two is that  = ⊗,
which is introduced only as a join of two tuples. In this case,
tup(φ1) and tup(φ2) come from different relations (since
there are no self joins in q). Thus, tup(φ1) and tup(φ2) have
an empty intersection. The second statement follows since
tup+(φi) ⊆ tup(φi) for i = 1, 2.

For any parse tree φ, we can view the tuples in tup+(φ)
as a BID instance that we denote Jφ (any subset of a BID
instance is again, a BID instance). For a deterministic world
W and a semiring expression φ, we write φ(W) to mean the
semiring value of φ on world W, which is computed in the
obvious way.

Step (1): A generator for Jφ. We now define precisely
the first step of our algorithm: Our goal is to construct a
random world generator for the worlds induced by the BID
instance Jφ. This is captured by the following lemma:

Lemma 3 Let P be a safe plan for a query q, φ = φ(P, J, τ),
and Jφ = tup+(φ) then Alg. 5.2.1 is a random generator for
Jφ for any annotation function τ.

Proof Let φ0 be a subtree of φ(P, J, τ). Then, given any s ∈
S , Alg. 5.2.1 is a random generator for Jφ0 . We induct on
the structure of the parse tree φ. In the base case, φ0 is a
leaf node and our claim is straightforward: If s = 0, then we
return the empty world. If τ(t) = s, then we simply return
a singleton world {t} if τ(t) = s. Otherwise, we have that
τ(t) , s, then the input is not well-formed and we return an
exception (⊥) as required. This is a correct random genera-
tor, because our input is conditioned to be deterministic (i.e.,
µ has all the mass on a single instance).

We now write the probability that φ(W) = s in a way that
shows that if we recursively can randomly generate worlds
for subtrees, then we can make a random generator. Induc-
tively, we consider an internal node φ with children φ1 and
φ2. Assume for concreteness that  = ⊕ (the argument for
 = ⊗ is identical and for  =

∐
is only a slight variation).

Let W denote a world of Jφ. Then,

Pr[φ(W) = s] = Pr[φ1(W) = s1 ∧ φ2(W) = s2 | s1 + s2 = s]

This equality follows from the computation of φ. We then
simplify this expression using the fact that for i = 1, 2, φi’s
value is a function tup+(φi). Let Wi = W ∩ tup+(φi), we get:

Pr[φ1(W1) = s1 ∧ φ2(W2) = s2 | s1 + s2 = s]

Observe that Pr[s1 + s2 = s] = Pr[φ(W) = s]. Then, for any
fixed s1, s2 such that s1 + s2 = s, we can then apply Bayes’s
rule and independence to get:

Pr[φ1(W1) = s1] Pr[φ2(W2) = s2]
Pr[φ(W) = s]
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Notice that W1 (respectively, W2) is a possible world of Jφ1

(respectively, Jφ2 ) and so the inductive hypothesis applies.
Now, by Prop. 6, the worlds returned by these worlds do
not make conflicting choices. Since the recursive calls are
correct, we just need to ensure that we pick (s1, s2) with the
above probability. Examining Alg. 5.2.1, we see that we pick
(s1, s2) with exactly this probability, since

Pr[φ1(W) = s1∧φ2(W) = s2 | s1 + s2 = s] =
mφ1 [s1]mφ2 [s2]

mφ[s]

This completes the proof.

Example 10 We illustrate Alg. 5.2.1 using the data of Ex. 9.
Our goal is to generate a random world such that the query
Q[SUM(y) = 6] D R(x; y) is true. The algorithm proceeds
top-down from the root φ. The entry for 6 is selected with
probability equal to p1 p5 + p2 p4.

Assume we have selected 6, then we look at the child
parse trees, φ1 and φ2: There are two ways to derive 6 with
non-zero probability (1) the subtree φ1 takes value 1 and
φ2 takes value 5, written (φ1, φ2) = (1, 5) or (2) we set
(φ1, φ2) = (2, 4). We choose between these options randomly;
we select (φ1, φ2) = (1, 5) with probability equal to p1 p5

p1 p5+p2 p4

(the conditional probability). Otherwise, we select (φ1, φ2) =

(2, 4). Suppose we have selected (φ1, φ2) = (1, 5), we then
recurse on the subtree φ1 with value s1 = 1 and the subtree
φ2 with value s2 = 5.

Recursively, we can see that to set φ1 = 1, it must be
that t1 is present and t2 is absent. Similarly, we conclude
that t4 must be absent and t5 must be present. Hence, our
random world is W̃ = {t1, t5}. If we had instead chosen
(φ1, φ2) = (2, 4) then we would selected W̃ = {t2, t4}. No-
tice that our algorithm never selects (φ1, φ2) = (3, 3) (i.e.,
this occurs with probability 0). More generally, this algo-
rithm never selects any invalid combination of tuple values.

Step (2): A generator for J. We randomly include tu-
ples in J that are not mentioned in φ, i.e., tuples in J − Jφ.
These are tuples that do not match any selection condition
in the query, and can be freely added to W̃ without affect-
ing the query result. Here, we need to exercise some care to
not insert two tuples with the same key into W̃, and so, we
only consider tuples whose possible worlds key differs from
those returned by Step (1). Formally, we prove the following
lemma:

Lemma 4 Let φ(P, J, τ) be a parse tree for a safe plan P, a
BID instance J, and an annotation τ. Then, given a random
generator for Jφ, Alg. 5.2.2 is a random generator for J.

Proof We first use the random generator to produce a ran-
dom world of Jφ, call it Wφ. Now, consider a tuple t ∈ J− Jφ,
let K(t) = {t′ | t′[K] = t[K]} = {t1, . . . , tm}, i.e., tuples dis-
tinct from t that share a key with t. If K(t) ∩ Wφ , ∅, then

t cannot appear in this world because it is disjoint from
the set of K(t). Otherwise, K(t) ∩ Wφ = ∅, and let K(t) −
Jφ = {t1, . . . , tk} (without loss) with marginal probabilities
p1, . . . , pk, i.e., those key tuples not in tup+(φ). These tu-
ples do not affect the value so all that matters is adding them
with the correct probability, which is easily seen to be the
conditional probability:

Pr[ti is included ] =
pi

1 −
∑

j=k+1,...,m p j

This conditional simply says that it is conditioned on none
of the tuples in K(t)∩Jφ appearing. This is exactly Alg. 5.2.2

The main result We now state the main technical result
of this section: It follows directly from the lemma above:

Theorem 7 Let q be a safe conjunctive query, then Alg. 5.2.1
is a random generator for any BID instance J and annota-
tion τ.

An immediate consequences of Thm. 7 is that if the semir-
ing S does not contain too many elements, then Alg. 5.2.1
solves the random possible world generation problem.

Corollary 2 If q is safe and |S | = poly(|J|), then Alg. 5.2.1
solves the random possible world generation problem in time
poly(|J|).

We use this corollary in the next section to design an
 for SUM.

6 Approximating HAVING queries with MIN, MAX and SUM

In this section, we study the problem of approximating HAVING
queries. First, we describe an  for having queries that
have α = MIN where the test condition is < or ≤, or α = MAX

where the condition is one of {≥, >}. This first  ap-
plies to arbitrary such HAVING queries, including queries
whose skeleton is unsafe. Second, we describe an  for
HAVING queries whose skeleton is safe, whose aggregate is
SUM, and where the test condition is any of <, ≤, >, or ≥.

Our  for SUM uses the random possible world gen-
erator of the previous section. These es apply to a
class of queries that we call (α, θ)-apx-safe. Additionally,
we study the limits of any approach, and prove an approxi-
mation dichotomy for many (α, θ) pairs of HAVING queries
without self joins: Either the above scheme is able to pro-
vide an  and so the query is (α, θ)-apx-safe, or there is
no : we call these queries (α, θ)-hazardous10.

10 Formally, we mean that the ]BIS problem would have an ,
an unlikely outcome, [16, 17].

16



6.1 Background: Approximation of ]P-Hard Problems

Although ]P-problems are unlikely to be able to be solved
exactly and efficiently, some problems have a strong approx-
imation called a Fully Polynomial Time Randomized Ap-
proximation Scheme or  [36], which is intuitively like
a 1 + ε approximation.

Definition 19 Given function f that takes an input J and re-
turns a number f(J) ∈ [0, 1], where J is a BID instance, we
say that an algorithmA is an  for f if given any δ > 0,
a confidence, and any ε > 0, an error,A takes J, ε, and δ as
input and produces a number denoted f̃(J) such that

Pr
A

[
∣∣∣f(J) − f̃(J)

∣∣∣ ≤ ε f(J)] > 1 − δ

where PrA is taken over the random choices of the algo-
rithm, A. Further, A runs in time polynomial in ε−1, |W |,
and log 1

δ
.

This definition asks for a relative approximation [36],
which means that if f is exponentially small, but non-zero,
our algorithm is required to return a non-zero value. This
is in contrast to an absolute approximation, that is allowed
to return 0 (and could be constructed using naı̈ve random
sampling). In this section, we fix a query Q and consider the
function f (J) = µJ(Q), where J is a BID instance. We study
whether this function admits an .

We define three counting-like problems that are all ]P-
hard and will be of use later in this section:

Definition 20 The ]CLIQUE problem is given a graph (V, E),
compute the fraction of the subsets of V that are cliques. The
]BIS problem is given a bipartite graph (U,V, E), compute
the fraction of of the subsets of U × V that are independent
sets. The ]KNAPSACK problem is given a set of positive inte-
gers Y = {y1, . . . , yn} and a positive integer value k, compute
the fraction of sets W ⊆ Y such that

∑
i∈W yi ≤ k.

All three problems are ]P-hard11. In a celebrated result,
Jerrum and Sinclair [47] showed that ]KNAPSACK does have
an  using a sophisticated Markov Chain Monte Carlo
technique. It is believed that neither ]CLIQUE nor ]BIS have
an . Interestingly, they are not equally hard to approx-
imate (see Dyer et al. [16]). In particular, ]BIS is a com-
plete problem with respect to approximation preserving re-
ductions. We do not need these reductions in their full gener-
ality, and simply observe that polynomial time computable
1-1 reductions (bijections) are approximation preserving. In
this section, we say that a problem is ]BIS-hard if there is a
1-1, polynomial-time reduction to ]BIS.

The ]KNAPSACK problem is related to the problem of
computing HAVING queries with the aggregate functions SUM
on a single table.

11 We mean here that there is a 1−1 correspondence with the counting
variants of these problems, which are canonical ]P-complete problems.

6.2 An  for MIN with {≤, <} and MAX with {≥, >}

Consider a query Q[MIN(y) ≤ k] D g1, . . . , gl then an equiv-
alent condition to W |= Q is that W |= q′ where q′ D
g1, . . . , gl, y ≤ k. In other words, Q is equivalent to a con-
junctive query, q′, that contains an inequality predicate. As
such, the standard algorithm for conjunctive queries on prob-
abilistic databases [12,20,41] based on Karp-Luby [29] can
be used. A symmetric argument can be used to find an -
 for the aggregate test (MAX,≥). Thus, we get essentially
for free the following theorem:

Theorem 8 If (α, θ) ∈ {(MIN,≤), (MIN, <), (MAX,≥), (MAX, >)}
then Q[α(y) θ k] has an .

Although this theorem is easy to obtain, it is interesting
to note that Q[MIN(y) > k] has an  only if sk(Q) is
safe (as we show in Lem. 8). If sk(Q) is safe, then, we can
compute its value exactly, so the  is not very helpful.
In contrast, Thm. 8 has no such restriction – sk(Q) can be an
arbitrary conjunctive query. This is a striking example that
approximation complexity may be more subtle than exact
evaluation. In particular, an analog of Lem. 2 does not hold.

6.3 An  for safe queries using SUM with {<,≤,≥, >}

The key idea of the  is based on a generalization of
Dyer’s observation: for some k ≥ 0, the query Q[SUM(y) ≤ k]
is only hard to compute if k is very large. If k is small, i.e.,
polynomial in the instance size, then we can compute Q ex-
actly. Dyer’s idea is to scale and round down the values,
so that the y-values are small enough for exact computa-
tion. The cost of rounding is that it introduces some spuri-
ous solutions, but not too many. In particular, the fraction of
rounded solutions is large enough that if we can sample from
the rounded solutions, then we can efficiently estimate the
fraction of original solutions inside the rounded solutions.

To perform the sampling, we use Alg. 5.2.1 from the
previous section (via Alg. 6.3.2). Pseudo-code for the en-
tire  is shown in Fig. 6.3.1. We show only (SUM,≤)
in detail, and explain informally how to extend to the other
inequalities at the end of the section.

Theorem 9 Let Q be a HAVING query Q[SUM(y) θ k] such
that θ ∈ {≤, <} and sk(Q) is safe, then Alg. 6.3.1 is an 
for Q.

It is interesting to note that Thm. 9 implies that we can
efficiently evaluate a much larger set of queries than the pre-
vious, complete exact algorithm (albeit only in an approx-
imate sense). In particular, only a very restricted class of
SUM-safe queries can be processed efficiently and exactly (cf.
Def. 15).
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Algorithm 6.3.1 An  for SUM
Decl:S(Q : a query Q[SUM(y) ≤ k] with a safe skeleton q,

an instance I, a confidence δ and error ε)
returns estimate of µI(Q).

Let body(q) = {g1, . . . , gl} and ni = |pred(gi)|, i.e., the size of the
ith relation.
Let n =

∏
i=1,...,l ni.

Let QR[SUM(y) ≤ n2] with the same body as q (see below).
Let τR(y) = b

n2y
k c and y > k 7→ n2 + 1

Construct an expression parse tree, φ = φ(P, I, τR) where P is a
plan for qR.
For i = 1, . . .m Wi ← SH(φ, k)
(*Run m samples, for m a polynomial in δ, ε, n*)

return |{Wi |Wi |=QO}|
m ∗ µ(QR) (* ≈ µ(QO)

µ(QR) µ(QR) = µ(QO) *)
(*Compute fraction of Wi that satisfy the original query QO.*)

Algorithm 6.3.2 Sampling Helper Routine
Decl:SH(φ: safe aggregate expression, b: a bound)

returns a world

Select s ∈ 0, . . . , b with probability mφ[s]∑
s′ mφ[s′] .

(*Select a final value for the query that is less than the bound b*)
return RW(φ, s)

Our algorithm makes two technical assumptions: (1) in
this section, unlike the rest of the paper, our semantics differ
from SQL: In standard SQL, for a Boolean HAVING query
q, if no tuples are returned by sk(Q) then Q[SUM(y) ≤ k] is
false. In contrast, in this section, we assume that Q[SUM(y) ≤
1] is true, even if sk(Q) = q is false, i.e., we choose the
mathematical convention

∑
y∈Y = 0, over SQL’s choice, and

(2) we make a bounded odds assumption12 : for any tuple t
there is exists β > 1 such that β−1 ≤

pt
1−pt
≤ β. These tech-

nical restrictions can be relaxed, but are chosen to simplify
our analysis.

6.3.1 The Rounding Phase

The goal of the rounding phase is to produce a query and an
annotation function that rounds the values in the instance
down enough so that (1) the exact processing algorithms
of Sec. 4.2 for SUM queries can be used, and (2) we can
randomly generate a world using the algorithm of Sec. 5.
Alg. 6.3.2 shows pseudo code for how these two steps are
put together. The main result of this section is that the re-
sulting algorithm is efficient (runs in time polynomial in the
size of the BID instance J).

To get there, we construct two things: (1) an annotation
function, τR, to do the rounding and (2) a query, QR, that
uses the annotation function τR and the semiring Sn2+1 to
compute the exact distribution of the rounded sum in poly-
nomial time.

12 For example, that this rules our pt = 1 for any tuple and allows
any tuple to not be present with some probability.

The Annotation Function. Let g be the first subgoal of
q such that var(g) 3 y and R = pred(g), i.e., R is some
relation containing y values. We scale down the values of
y in R via the (rounding) annotation function denoted τR.
Let n =

∏
g∈goal(q) |pred(g)|, i.e., the product of the sizes of

all relations in q. Observe that n is polynomial in the in-
stance size13. The rounded annotation function maps into the
much smaller, rounded semiring S R = Sn2+1. We define the
rounded annotation function τR to agree everywhere with the
original annotation function τO, except on g (the R relation):
Here, τO

g (t) = t[y]. In the rounded annotation function, we
have τR

g (t) = b n2

k t[y]c, i.e., the y values are scaled down by a
factor of n2/k and rounded-down to the next highest integer.
Additionally, if t[y] is greater than k, then τR(t) = n2 + 1.
Intuitively, this mapping is correct since if such a tuple is in
the output of the query, then we are sure the summation is
greater than k.

The Query. We construct a rounded query QR[SUM(y) ≤
n2] with the same body as QO. Let q be the skeleton of
both QO and QR, i.e., q = sk(QR) = sk(QO). We observe
that since n2 is polynomial in the instance size, the generic
semiring algorithm of Sec. 4.2 can be used to compute the
entire distribution q(W, τR) exactly in time polynomial in the
size of the instance. Since we will always use QR with the
rounded annotation function it makes sense to write W |= QR

if q(W, τR) ≤ n2. Similarly, we will always use QO with the
original annotation function so that it makes sense to write
W |= QO if q(W, τO) ≤ k.

Definition 21 Let W be a possible world from some BID in-
stance J. If W |= QO, then we call W an original solution. If
W |= QR then we call W a rounded solution. Further, denote
the set of original solutions with WO

J and rounded solutions
with WR

J :

WO
J =

{
W ∈ WJ | W |= QO

}
and WR

J =
{
W ∈ WJ | W |= QR

}
We drop the subscript J when the BID instance is clear from
the context.

We observe an essential property of our scheme: All
original solutions are rounded solutions, i.e., WO

J ⊆ WR
J . For-

mally,

Lemma 5 For any possible world W, W |= QO =⇒ W |=
QR, and more precisely, there exists a δ ∈ [0, n) such that
q(W, τR) = q(W, τO) − δ.

13 Recall that the query is fixed so if the database contains m tuples
then n = mO(1) where O(1) hides a constant depending only on q, e.g.,
the number of subgoals suffices.
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Proof Let q = sk(QO) = sk(QR) and V be the set of all
valuations for q. Let W be a possible world:

W |= QO ⇐⇒
∑

v∈V:im(v)⊆W

τO(v(g)) ≤ k

⇐⇒
∑

v∈V:im(v)⊆W

n2

k
τO(v(g)) ≤ n2

=⇒
∑

v∈V:im(v)⊆W

τR(v(g)) + δv ≤ n2

⇐⇒ W |= QR

Here, δv ∈ [0, 1) and accounts for the round-off of the
floor function. Since 0 ≤

∑
v δv < n, we have the more pre-

cise statement.

The importance of this lemma is that by sampling within
the rounded solutions, we have a chance of hitting any orig-
inal solution. Let W̃ be a random rounded solution created
using Alg. 6.3.2, then let f be the Boolean-valued estimator
(random variable) that takes value 1 iff W̃ |= QO. It is not
hard to see that this estimator satisfies:

EA[f] =
µJ

(
WO

)
µJ

(
WR)

Here,A is written to emphasize that the expectation is taken
with respect to the (random) choices of Alg. 6.3.2. Impor-
tantly, this is exactly an individual trial of Alg. 6.3.1.

6.3.2 Analysis of the convergence

Using Alg. 6.3.2, we can efficiently conduct an individual
(random) trial. The last technical piece to show that Alg. 6.3.1
is an , is to show that the number of trials m that are
needed to guarantee that the estimator converges is small
enough, i.e., m = poly(|J|). The first lemma that we need is
the standard {0, 1}-estimator lemma [36], which is an appli-
cation of a Chernoff Bound.

Lemma 6 ( [36]) Let m > 0 be an integer. Given a se-
quence of independent Boolean-valued ({0, 1}) random vari-
ables f1, . . . , fm with mean E[f], then the estimator

fm =
1
m

∑
i=1,m

fi

achieves a relative error of ε with probability 1− δ for some
m = O(E[f]−1ε−2 log δ−1).

Observe that the estimator used in Alg. 6.3.1 is exactly of
this type. The second lemma that we need is that the proba-
bility mass of the original solutions contained in the rounded
solutions is “big enough” so that our sampling scheme will
converge quickly.

Lemma 7 Let QR and QO defined as above, J be a BID in-
stance, and µJ be J’s induced probability measure, then,

(n + 1)−1β−1 ≤
µJ(WO)
µJ(WR)

≤ 1

where n =
∏

g∈goal(q) |pred(g)|.

This lemma is the technical heart of the argument: it in-
tuitively places bounds on the variance of our estimate. We
give a full proof in Appendix D. The importance of Lem. 7
is that it shows that E[f] =

µJ (WO)
µJ (WR) ≥ n−1β, and so, applying

Lem. 6, we see that we need at most m = O(nβ−1ε−2 log δ−1)
samples. We observe that a relative estimate for E[f] implies
that we have a relative estimate for E[f]µJ(WR) = µJ(WO),
the probability that we want to estimate. Thus, the algorithm
is efficient as long as the the number of samples is bounded
by a polynomial in |J|; a sufficient condition for this to hold
is β−1 = poly(|J|) which follows from the bounded odds as-
sumption. Thus, under the bounded odds assumption with
β = poly(|J|), we have:

Theorem 10 Let Q be a HAVING query Q[α θ k] with α =

SUM and θ ∈ {<,≤, >,≥}, if the skeleton of Q is safe then Q
has an .

Extending to Other Inequalities. A virtually identical
argument shows that θ = ‘ < ’ has an . To see that
≥ has an  with SUM on tuple independent database,
the key observation is that we can compute a number M =

maxW q(W, τ). Then, we create a new BID instance J̄ where
each tuple t ∈ J, we map t to t′ where t = t′ except that
t[P] = 1 − p. We then ask the query Q[SUM(y) < M − k],
which is satisfied precisely on a world W when Q[SUM(y) ≥
k].

6.4 The Limits of Any Approach and a Dichotomy

We now study the limit of any approach to approximating
HAVING queries. We see two interesting phenomenon: (1)
the approximation depends not only the aggregate, but also
the test. For example, Q[MIN ≤ k] has an  while, in
general, Q[MIN(y) ≥ k] does not. (2) The introduction of
self joins results in problems that are believed to be harder
to approximate than those without self joins; this suggests
a more interesting complexity landscape for approximate
query evaluation than exact query evaluation [17].

In this section, we only consider θ ∈ {=, <,≤, >,≥}, i.e.,
we omit , from consideration. To compactly specify aggre-
gate tests, e.g., (MIN, >), we write (α,Θ0) where α is an ag-
gregate and Θ0 is a set of tests, i.e., Θ0 ⊆ {=, <,≤, >,≥} =

Θ; (α,Θ0) is a short hand for the set
⋃
θ∈Θ0
{(α, θ)}. We let

Θ≤ = {≤, <,=} and Θ≥ = {≥, >,=}. With this notation, we
can state our first lemma.
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Lemma 8 Let (α, θ) be in {(MIN, Θ≥), (MAX, Θ≤), (COUNT, Θ≤),
(SUM, Θ≤)} then the following HAVING query is ]BIS-hard:

QBIS[α(y) θ k] D R(x), S (x, y),T (y)

Let Q[α(y) θ k] be a HAVING query such that sk(Q) is not
safe and consider only tuple-independent databases, then Q
is ]BIS-hard.

The second statement identifies the precise boundary of
hardness for approximation over tuple independent databases.

Proof We give a general construction that will be used in
every reduction used to prove that QBIS is ]BIS-hard. Given
a bipartite graph (U,V, E), we create an instance of three re-
lations R, S and T . The skeleton of our query in the reduc-
tion is R(x), S (x, y),T (y). Without loss, we assume that U,V
are labeled from 1, . . . |U | + |V |. Here, we encode a bipartite
graph with u ∈ U 7→ R(u) and v ∈ V 7→ T (v), we assign
each of these tuples probability 0.5. We let S encode E. It
is not hard to see that there is a bijection between possible
worlds and subsets of the graph. In particular, if a possible
world corresponds to an independent set then no tuples are
returned. We now add in a deterministic set of tuples, i.e.,
all probabilities are 1, as {R(a), S (a, a),T (a)} for some a that
we will set below. These tuples are always present in the an-
swer. Actually, only these tuples are present in the output if
and only if this world encodes a bipartite independent set.

To see the reduction for MAX, set a = 0. We observe that
MAX(y) ≤ 0 if and only if the only tuple returned are the
0 tuples, i.e., a bipartite independent set. For MIN let a =

|U | + |V | + 1, now check if MIN(y) ≥ a. The COUNT(y) ≤ 1
if only the a tuples are present. Similarly, SUM follows by
setting a = 1 and ensuring all values are encoded higher.
Thus, the bijection of the solution sets is the same.

Claim (2), that this reduction works for any unsafe query,
follows by a result of Dalvi and Suciu [12] that shows that
if a skeleton is not safe over tuple independent databases,
it must always contain the R(x), S (x, y),T (y) pattern used in
this reduction. All other relations can contain a single tuple.
This works because our reductions do not care about where
the distinguished variable y falls, so we can set everything
to 1 (or 0) in another relation.

As a consequence of this lemma, the positive results of
this paper, and the completeness of the safe plan algorithm
of Dalvi and Suciu [12], we have the following:

Theorem 11 Assume that ]BIS does not have an . Let
(α, θ) be in {(MIN, Θ), (MAX, Θ), (COUNT, Θ≤), (SUM, Θ≤)} then
for any HAVING query Q[α(y) θ k] over a tuple independent
database J, either (1) the query evaluation problem can be
approximated in randomized polynomial time and we call it
(α, θ)-apx-safe or (2) the query evaluation problem does not
have an  and we call it (α, θ)-hazardous. Further, we
can decide in which case Q falls in polynomial time.

sk(Q) (MIN, Θ<), (MAX, Θ>) (MIN, Θ>), (MAX, Θ<), (COUNT, Θ)
safe safe (P, Thm. 1) safe (P, Thm. 1)

not safe apx-safe (, Thm. 8)) hazardous (no , Thm. 11)

Fig. 7 Summary of results for MIN, MAX and COUNT. They form a tri-
chotomy over tuple independent databases.

In some cases deciding in which case a query falls is
trivial, e.g., a (MIN,≤) HAVING query is always (α, θ)-safe.
In the cases that the decision is non-trivial, we can reuse
the safe plan algorithm of Dalvi and Suciu [12] (applied to
sk(Q)). An immediate consequence of this dichotomy is a
trichotomy which is obtained by combining the relevant the-
orem from Sec. 4 with the above theorem. For example, to
get a trichotomy for the class of (COUNT,≤)-HAVING queries,
we combine Thm. 2 with the above theorem.

It is interesting to note that our positive algorithms work
for arbitrary safe plans over BID databases. However, it is
not immediately clear that the known hardness reductions
(based on polynomial interpolation [13]), can be used to
prove approximate hardness. Further, we leave the case of
COUNT and SUM with {>,≥} open.

7 Summary of Results

Fig. 7 summarizes our results for MIN, MAX and COUNT. If we
restrict to HAVING queries over tuple independent instances
the lines of the table are crisp and form a trichotomy: any
such HAVING query cleanly falls into exactly one bucket. The
positive results we have shown hold for all BID database.
Over general BID databases, however, we have only estab-
lished the weaker negative result that there exists some hard
query when the skeleton is unsafe14. For example, the query
R(x; y), S (y) is known to be ]P-hard [13]. Our results show
that Q[COUNT(y) ≥ y] D R(x; y), S (y) is ]P-hard, but leave
open whether it has an .

The state of the results with (SUM, <) over tuple-independent
databases is more interesting: If Q is SUM-safe, then its eval-
uation is in P-time (Thm. 5). If Q is not SUM-safe, but sk(Q)
is safe then Q is ]P-hard (Thm. 6), but does admit an 
(Thm. 10). We call Q (SUM, <)-apx-safe. If sk(Q) is not safe,
then evaluating Q is ]BIS-hard (Thm. 11), and so likely has
no . We call Q (SUM, <)-hazardous. We now show that
with the addition of self joins, even a simple pattern becomes
as hard to approximate as ]CLIQUE, which is as hard to ap-
proximate as any problem in ]P. This is interesting because
it points out that the complexity of approximation may be
richer than we have explored in this paper:

Lemma 9 Let (α, θ) be in {(MIN, Θ≤), (MAX, Θ≥), (COUNT, Θ≤),
(SUM,≤)} and consider the HAVING query:

QCLIQUE[α(y) θ k] D R(x), S (x, y),R(x)

14 It is an open problem to extend these results to all BID databases.
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then QCLIQUE is as hard to approximate as ]CLIQUE.

Proof The input instance of ]CLIQUE is G = (V, E): For each
v ∈ V , we create a tuple R(v) that has probability 1

2 and E en-
codes exactly the complement (symmetrically closed) edge
relation; Here, (v, v) < E. Notice that a possible world is
simply a subset of R. If in a possible world, q = sk(Q) is
satisfied then, this implies there is some pair of nodes (u, v)
that are not connected by an edge in G and so W does not
represent a clique. Hence the query is false precisely when
]CLIQUE is true. Using exactly the same encoding as we
used in the previous proof, we can then test the probability
of this condition.

8 Related Work

Probabilistic relational databases have been discussed by Bar-
bara et al. [4], the ProbView system [44], and more recently,
by Dalvi and Suciu [12], Ré et al. [41], Sen et al. [46],
MayBMS [2], MCDB [25], Orion [10], and Trio [51]. Trio,
Mystiq, and MayBMS approaches have representations that
are similar to BID tables, so our results could be applied
to these systems. Currently, all of these approaches omit
HAVING style aggregation. MCDB [25] does have richer ag-
gregation queries, but takes a statistical approach and so
does not provide formal guarantees.

Koch [30] formalizes a language that allows predication
on probabilities and discusses approximation algorithms for
this richer language, though he does not consider HAVING
aggregation. This is in part due to the fact that his aim is
to create a fully compositional language for probabilistic
databases [31]. Extending our style of aggregation to a fully
compositional language is an interesting open problem.

Soliman et al. [48] consider combining top-k with mea-
sures, such as SUM, which is similar in spirit to HAVING.
Their correlation model allows more complex distributions
to be specified much more succinctly, but they do not fo-
cus on complex queries involving joins. Combining ranking
with HAVING queries is a powerful, but currently unexplored
idea.

Cheng et al. [10] and Desphande et al. [15] consider
probabilistic databases resulting from sensor networks so
that the database models continuous values, such as tem-
perature. The focus here is on rich correlation models, but
simpler querying. In this settings, the natural aggregation
queries are effectively over a singe relation. In this work,
we consider a richer class of aggregation queries, but with
simpler probabilistic models.

The problem of generating a random world that satis-
fies a constraint is fundamental and is considered by Co-
hen et al. [11]. They point out that many applications for this
task, and use it to answer rich queries on probabilistic XML
databases. In this paper, we differ in the constraint language

we choose and that we use our sampling algorithm as a ba-
sis for an . There is also a connection to the recent
work of Koch and Olteanu on conditioning a probabilistic
database [32] who recognize the fundamental importance
of finding worlds conditioned on constraints, though they
do not consider constraints with SQL aggregation.

In the OLAP setting, Burdick et al. [6, 7] give efficient
algorithms for value aggregation in a model that is equiva-
lent to the single table model. Their focus is on the seman-
tics of the problem. As such, they consider how to assign the
correct probabilities, called the allocation problem, and han-
dling constraints in the data. The allocation problem is an
interesting and important problem. Our problem is orthogo-
nal: we assume the database has been specified and focus on
query evaluation.

Ross et al. [44] describe an approach to computing ag-
gregates on a probabilistic database, by computing bound-
ing intervals (e.g., the AVG is between [5600, 5700]). They
consider a richer class of aggregation functions than we dis-
cuss, but with an incomparable semantics. Their complex-
ity results show that computing bounding intervals exactly
is NP-Hard. In contrast, we are interested in a more fine-
grained static analysis: our goal is to find the syntactic bound-
ary of hardness. Trio also uses a bounded interval style ap-
proach [37].

There is work on value aggregation on a streaming prob-
abilistic databases [26]. In addition, they consider comput-
ing value approximations aggregates, such as AVG, in a stream-
ing manner. In contrast, computing the AVG for predicate ag-
gregates (as we do in this paper) on a single table is ]P-
Hard. One way to put these results together is that comput-
ing a value aggregate is the first moment (expectation) while
a HAVING aggregate allows us to capture the complete distri-
bution (in the exact case). Kanagal and Deshpande [28] also
work in the streaming context of aggregation that computes
an expected value style of aggregation. This work does not
look at complex queries, like joins.

Arenas et al. [3] consider the closely related problem
of the complexity of aggregate queries, similar to HAVING
queries, over data which violates functional dependencies.
They do not consider a probabilistic semantic, but instead
consider a semantic based on incomplete databases based on
repairs [5]. Hence, the query semantic of this work is great-
est lower bound or least upper bound on the set of all min-
imal repairs. They also consider multiple predicates, which
we leave for future work. There is a deep relationship be-
tween the repair semantics and probabilistic approaches. A
representative work in this direction is Andristos et al. [1].

Our trichotomy results are based on the conjecture that
]BIS does not have an . Evidence of this conjecture is
given by Dyer [16, 17] by establishing that this problem is
complete for a class of problems with respect to approxima-
tion preserving reductions. At this point, it would be fair to

21



say that this conjecture is less well established than ]P , P.
Any positive progress, i.e., showing that ]BIS does have an
, could be adapted to our setting. As we have shown,
some problems are as hard to approximate as any problem
in ]P, e.g., as hard as ]CLIQUE. An interesting open prob-
lem is to find if there is a corresponding syntactic bound-
ary of hardness: is it true that either a query is ]BIS-easy or
]CLIQUE-hard? We conjecture that such a syntactic bound-
ary exists, though it remains open.

The EXISTS results of this paper are from Dalvi and Su-
ciu [12], who later proved a more general dichotomy results
(allowing queries with self-joins) [14]. Recently, Olteanu et
al. [38] showed a dichotomy for conjunctive queries with in-
equality predicates. All of these results rely intimately on the
BID model. This model is complete if views are added [22,
41], but alternate approaches (such as graphical models) may
express some distributions much more succinctly. A more
succinct representation tends usually raise the complexity
of any problem. It is an open question how to extend these
results to more succinct models such as considered by Sen et
al. [46], Kanagal et al. [28], or to sample-based models mod-
els [25].

9 Conclusion

In this paper we examine the complexity of evaluating posi-
tive conjunctive queries with predicate aggregates over prob-
abilistic databases called HAVING queries. For each aggre-
gate, we discuss a novel method to evaluate these queries.
Our method is based on computing the distribution of ran-
dom variables in a semiring. We prove that for conjunctive
queries without self joins our methods are optimal. Addi-
tionally, we study the problem of generating a random world
that satisfies a semiring element and provide an efficient so-
lution. We apply this sampling algorithm as a subroutine to
design an approximation for queries that are hard to com-
pute exactly, thus expanding the border of known tractable
cases. We show that our approximations capture efficient ap-
proximation.
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41. C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on
probabilistic data. In Proceedings of ICDE, 2007.
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A Properties of Safe Plans

We formalize the properties that hold in safe extensional plans in the
following proposition:

Proposition 7 Let P = πI
−xP1 be a safe plan then for any tuples t1, . . . , tn ∈

D|var(P1)| that disagree on x, i.e., such that i , j implies that ti[var(P)] =

t j[var(P)] and ti[x] , t j[x] and then for any s1, . . . , sn ∈ S we have in-
dependence, that is the following equation holds:

µ

 ∧
i=1,...,n

ωP1 ,S (ti) = si

 =
∏

i=1,...,n

µ
(
ωP1 ,S (ti) = si

)
(1)

Similarily, let P = πDP1 then we have disjointness:

µ

 ∧
i=1,...,n

ωP1 ,S (ti) = 0

 =
∑

i=1,...,n

µ
(
ωP1 ,S (ti) = 0

)
− (n − 1) (2)

Let P = P1 Z P2, then for any tuples ti ∈ D|var(Pi)| for i = 1, 2 then
and s1, s2 ∈ S , we have independence:

µ
(
ωP1 ,S (t1) = s1 ∧ ωP1 ,S (t2) = s2

)
= µ

(
ωP1 ,S (t1) = s1

)
µ
(
ωP1 ,S (t2) = s2

)
(3)

Proof We prove Eq. 1. To see this observe that, directly from the def-
inition, the set of tuples that contribute to ti and t j (i , j) do not share
the same value for a key in any relation. It is not hard to see that ti
and t j are functions of independent tuples, hence are independent. The
equation then follows by definition of independence.

We prove Eq. 2. Assume for contradiction that the tuples are not
disjoint, that is there exists some possible world W such that for some
i , j

{
ti, t j

}
⊆ W. By the definition, there must exist some key goal

g such that key(g) ⊆ var(P). Thus, for ti and t j to be present in W
it must be that there are two distinct tuples with the same key value
– but different values for the attribute corresponding to x. This is a
contradiction to the key condition, hence the tuples are disjoint and the
equation follows.

We prove Eq. 3. In a safe plan, goal(P1) ∩ goal(P2) = ∅ and dis-
tinct relations are independent. As a result, the tuples themselves are
independent.

B Appendix: Full Proof for COUNT(DISTINCT)

Theorem 12 (Restatement of Thm. 3) Let Q be COUNT(DISTINCT)-
safe then its evaluation problem is in P.

Proof Since Q is COUNT(DISTINCT)-safe, then there is a safe plan P
for the skeleton of Q. In the following let P1 ≺ P2 denote the re-
lationship that P1 is a descendant in P of P2 (alternatively, contain-
ment). Let Py be a subplan which satisfies P−y = πI

−y(P′) ≺ P or
P−y = πD

−y(P′) ≺ P. P−y is a safe plan, hence S -safe for S = Z2,
i.e., the EXISTS algebra. For each t, we can write ω̂I

P−y
(t) = (1 − p, p),

i.e., t is present with probability p. From this, create a marginal vector
in Zk+1, as in COUNT, mt such that mt[0] = 1 − p and mt[1] = p and all
other entries 0. Notice that if t , t′ then t[y] , t[y′]. Informally, this
means all y values are distinct “after” Py.

Compute the remainder of P as follows: If P0 is not a proper an-
cestor or descendant of Py, then compute P0 as if you were using
the EXISTS algebra. To emphasize that P0 should be computed this
way, we shall denote the value of t under P0 as ω̂J

P0 ,EXISTS
(t). Since

P is COUNT(DISTINCT)-safe, any proper ancestor P0 of P−y is of the
form P0 = πD

−xP1 or P0 = P1 Z P2. If P0 = πD
−xP1 then ω̂J

P0
(t) =∐

t′∈P1
ω̂J

P1
(t); this is correct because the tuples we are combining are

disjoint, so which values are present does not matter. Else, we may as-
sume P0 = P1 Z P2 and without loss we assume that Py ≺ P1, thus we
compute:

ω̂J
P1 ,COUNT(DISTINCT)(t) = ω̂J

P1
(t1) ⊗ ω̂J

P2 ,EXISTS
(t2)
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This is an abuse of notation since we intend that ω̂J
P2
∈ Z2 is first

mapped into Zk+1 and then the convolution is performed. Since we are
either multiplying our lossy vector by the annihilator or the multiplica-
tive identity, this convolution has the effect of multiplying by the prob-
ability that t is in P2, since these events are independent this is exactly
the value of their conjunction.

B.1 Complexity

Proposition 8 (Second Half of Prop. 4) The following HAVING queries
are ]P-hard for i ≥ 1:

Q2,i[COUNT(DISTINCT y) θ k] D R1(x; y), . . . , Ri(x; y)

Proof We start with i = 1. The hardness of Q2,i is shown by a reduc-
tion counting the number of set covers of size k. The input is a set of
elements U = {u1, . . . , un} and a family of sets F = {S 1, . . . , S m}. A
cover is a subset of F such that for each u ∈ U there is S ∈ S such
that u ∈ S . For each element u ∈ U, let S u = {S ∈ F | u ∈ S }, add a
tuple R(u; S ; |S u|

−1) where S ∈ S u. Every possible world corresponds
to a set cover and hence, if Wk is the number of covers of size k then
µ(Q) = Wk(

∏
u∈U |S u|

−1). Notice that if use the same reduction i > 1,
we have that µ(Q) = Wk(

∏
u∈U |S u|

−i).

We show that if Q contains self joins and is not COUNT(DISTINCT)-
safe, then Q has ]P data complexity. First, we observe a simple fact:

Proposition 9 Let Q be a HAVING query with an unsafe skeleton then
Q has ]P-hard data complexity. Further, if Q is connected and safe
but not COUNT(DISTINCT)-safe then there must exist x , y such that
∀g ∈ goal(Q), x ∈ key(g).

Proof We simply observe that the count of distinct variables is ≥ 1
exactly when the query is satisfied, which is ]P-hard. The other ag-
gregates follow easily. Since the skeleton of Q is safe, there is a safe
plan for Q that is not COUNT(DISTINCT)-safe. This implies that there
is some projection independent πI

−x on all variables.

Definition 22 For a conjunctive query q, let Fq
∞ be the least fixed point

of Fq
0 , F

q
1 , . . . , where

Fq
0 = {x | ∃g ∈ goal(Q) s.t. key(g) = ∅ ∧ x ∈ var(g)}

and

Fq
i+1 = {x | ∃g ∈ goal(Q) s.t. key(g) ⊆ Fi ∧ x ∈ var(g)}

Intuitively, Fq
∞ is the set of variables “fixed” in a possible world.

Proposition 10 If q is safe and x ∈ Fq
∞ then there is a safe plan P such

that πD
−x ∈ P and for all ancestors of πD

−x they are either πD
−zP1 for some

z or P1 Z P2.

Proof Consider the smallest query q such that the proposition fails
where the order is given by number of subgoals then number of vari-
ables variables. Let x1, . . . , xn according to the partial order xi ≺ x j
if exists Fq

k such that xi ∈ Fq
k but x j < Fq

k . If q = q1q2 such that
x ∈ var(q1) and var(q1) ∩ var(q2) = ∅ then P1 satisfies the claim and
P1 Z P2 is a safe plan. Otherwise let P1 be a safe plan for q[x1 → a]
for some fresh constant a. Since this has fewer variables P1 satisfies
the claim and π−xP1 is safe immediately from the definition.

We now define a set of rewrite rules⇒ which transform the skele-
ton and preserve hardness. We use these rewrite rules to show the fol-
lowing lemma:

Lemma 10 Let Q be a HAVING query using COUNT(DISTINCT) such
that q = sk(Q) is safe, but Q is not COUNT(DISTINCT)-safe; and let
there be some g such that y < key(g) and y < Fq

∞ then Q has ]P-hard
data complexity.

For notational convenience, we shall work with the skeleton of a
HAVING query Q[α(y) θ k] and assume that y is a distinguished vari-
able.

1) q⇒ q[z→ c] if z ∈ Fq
∞

2) q⇒ q1 if q = q1q2 and var(q1) ∩ var(q2) = ∅ and y ∈ var(q1)
3) q⇒ q[z→ x] if x, z ∈ key(g) and z , y
4) q, g⇒ q, g′ if key(g) = key(g′), var(g) = var(g′) and arity(g) < arity(g)′

5) q, g⇒ q if key(g) = var(g)
We let q ⇒∗ q′ denote that q′ is the result of any finite sequence

of rewrite rules applied to q.

Proposition 11 If q ⇒∗ q′ and q′ has ]P-hard data complexity, then
so does q.

Proof For rule 1, we can simply restrict to instances where z→ c. For
rule 2, if q1 is hard then q is hard because we can fill out each relation
in q2 with a single tuple and use q to answer q1. Similarly, for rule 3
we can consider instances where z = x so q will answer q1. For rule 4,
we apply the obvious mapping on instances (to the new subgoal). For
rule 5, we fill out g with tuples of probability 1 and use this to answer
q.

Proof (Prop. 10) By Prop. 9, there is some x such that x ∈ key(g)
for any g ∈ goal(Q). Let q = sk(Q), we apply rule 1 and 2 to a fixed
point, which removes any products. We then apply the rule 3 as ∀z , y,
q[z→ x]. Thus, all subgoals have two variables, x and y. We then apply
rule 4 to a fixed point and finally rule 5 to a fixed point. It is easy to see
that all remaining subgoals are of the form R(x; y) which is the hard
pattern. Further, it is easy to see that g⇒∗ Ri(x; y) for some i.

We can now prove the main result:

Lemma 11 If Q is a HAVING query without self joins and Q is not
COUNT(DISTINCT)-safe then the evaluation problem for Q is ]P-hard.

Proof If q is unsafe, then Q has ]P-hard data complexity. Thus, we
may assume that q is safe but Q is not COUNT(DISTINCT)-safe. If Q
contains g ∈ goal(Q) such that y ∈ var(g) but y < key(g) then Q
has ]P-hard data complexity by Lem. 10. Thus, we may assume that y
appears only in key positions.

First apply rewrite rule 2, to remove any products and so we may
assume Q is connected. If Q is a connected and y ∈ key(g) for every g
then Q is COUNT(DISTINCT)-safe. Thus, there are at least two subgoals
and one contains a variable x distinct from y call them g and g′ respec-
tively. Apply the rewrite rule 3 as q[z→ x] for each z ∈ var(q)− {x, y}.
Using rules 4 and 5, we can then drop all subgoals but g, g′ to obtain
the pattern R(x), S (x, y), which is hard.

C Appendix: Full Proofs for SUM and AVG

C.1 AVG hardness

Definition 23 Given a set of nonnegative integers a1, . . . , an,
the ]NONNEGATIVE SUBSET-AVG problem is to count the number of
non-empty subsets S ⊆ 1, . . . , n such that

∑
s∈S as|S |−1 = B for some

fixed integer B.

Proposition 12 ]NONNEGATIVE SUBSET-AVG is ]P-hard.
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Proof We first observe that if we allow arbitrary integers, then we can
reduce any ]NONNEGATIVE SUBSET-SUM with B = 0, which is ]P-
hard. Since the summation of any set is 0 if and only if their average
is 0. Thus, we reduce from this unrestricted version of the problem.
Let B = mini ai then we simply make a′i = ai + B, now all values are
positive, we then ask if the average is B. For any set S we have :∑
s∈S

a′s|S |
−1 =

∑
s∈S

(as + B)|S |−1 =
∑
s∈S

(as + B)|S |−1 =
∑
s∈S

|S |−1as + B

Thus, it is clear that the average is satisfied only when
∑

s∈S as = 0.

C.2 Proof of Thm. 6

It is sufficient to show the following lemma:

Lemma 12 Let q = sk(Q), if If q is safe, but Q is not SUM-safe then
there is an instance I then for any set of values y1, . . . , yn let qi = q[y→
yi] and S ⊆ 1, . . . , n we have µ(

∧n
s∈S qs) =

∏
s∈S µ(qs) = 2−|S |. Further,

on any world W and qi there is a single valuation v for qi such that
im(qi) ⊆ W.

Armed with his lemma we can always construct the distribution
used in Prop. 5.

Proof We observe that y < Fq
∞ else there would be a SUM- and AVG-

safe plan by Prop. 10. Now consider the rewriting q[x → ’a’] for any
x ∈ F∞ and q[x→ y] if x < F∞. Thus, in any subgoal y = var(g). Pick
one and add each y1 value with probability 1

2 independently. Notice
that every relation either contains yi in each tuple or the constant a.
Since there are no self joins, this implies in any valuation either it must
use a tuple containing yi or the relation contains a single tuple with a
for every attribute. Hence, the multiplicity of yi is ≤ 1 in any possible
world. Since there is only one relation with probabilistic tuples and all
tuples have µ(t) = 0.5, we have µ(∧s∈S qs) = 2−|S | as required.

Proposition 13 If Q[SUM(y) = k] is not SUM-safe and on a tuple inde-
pendent instance, then Q does not have an .

Proof We observe that (SUM,=) is hard to approximate on even a single
tuple-independent as a consequence of the previous reduction, which
gives a one-to-one reduction showing (SUM,=) is as hard as
]SUBSET-SUM, an NP-hard problem and so has no .

D Convergence Proof of Lemma 7

In the proof of this lemma, we need a technical proposition:

Proposition 14 Let q be a conjunctive query without self joins and R
any relation contained in goal(q), then q(W, τ) =

∑
t∈R q ((W − R) ∪ {t} , τ).

Here, the summation is in the semiring S .

Proof By definition, the value of the query q(W) can be written as
q(W, τ) =

∑
v∈V

∏
g∈g τ(v(g)). Since q does not contain self joins, each

valuation contains exactly one member of R. Hence, there is a bijection
between the between the two sums. Since semirings are associative,
this completes the proof.

We can now prove Lemma 7.

Proof (Lemma 7) We first observe that WO ⊆ WR, by Lem. 5, which
shows µ(WO)

µ(WR) ≤ 1. To see the other inequality, we construct a function

f : WR → WO such that for any W ∈ WO, µ(W)
µ( f −1(W)) ≥ (n + 1)−1β−1.

This is sufficient to prove the claim. We describe f : if W ∈ WO then

f (W) = W else, W ∈ WR−WO then we show that there is a tuple t ∈ W
such that W − {t} ∈ WO, f (W) = W − {t}. Since there are at most n
possible tuples to remove, this shows that

∣∣∣ f −1(W)
∣∣∣ ≤ (n+1), Using the

bounded odds equation, we have that µ(W)
µ( f −1(W)) ≥ (n + 1)−1β−1. Thus, all

that remains to be shown is that we can always find such a tuple, t.
Consider W ∈ WR − WO, which means that q(W, τO) > k and

q(W, τR) ≤ n2. There must exist a tuple t such that q(W, τO) − q(W −
{t} , τO) > k/n otherwise q(W, τO) ≤ k, which is a contradiction. To see
this, consider any relation R in the query, we apply the above proposi-
tion to observe that:∑
t∈R

q(W − {t} , τO) =
∑
t∈R

∑
s∈R:s,t

q(W − R ∪ {s} , τO)

= (|R| − 1)
∑
t∈R

q(W − R ∪ {t} , τO)

= (|R| − 1)q(W, τO)

The second to last equality follows by counting how many times each
term appears in the summation and that the semiring is embeddable in
the rational numbers (Q).

q(W, τO) − q(W − {t} , τO) ≤ k/n

=⇒ |R| q(W, τO) +
∑
t∈R

q(W − {t} , τO) ≤ k

=⇒ |R| q(W, τO) + (|R| − 1)q(W, τO) = q(W, τO) ≤ k

The second line follows by summing over t in R, using the previous
equation, and using that |R| ≤ n. Thus, we can conclude there is some t
such that q(W, τO) − q(W − {t} , τO) > k/n. By Lem. 5 we have:

q(W, τR) ≤ n2 =⇒
n2

k
q(W, τR) − δ ≤ n2

Where δ ∈ [0, n). In turn, this implies

q(W, τO) ≤
k
n2 δ + k ≤ k +

k
n

Since, q(W, τO)− q(W − {t} , τO) > k/n, we have that q(W − {t} , τO) ≤ k
and so W − {t} |= QO and hence, W − {t} ∈ WO.
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