
Distributed XQuery

Christopher Re∗ James Brinkley∗,† Kevin P. Hinshaw† Dan Suciu∗

1 Motivation

XQuery is increasingly being used for ad-hoc inte-
gration of heterogeneous data sources that are logi-
cally mapped to XML. For example, scientists need
to query multiple scientific databases, which are dis-
tributed over a large geographic area, and it is pos-
sible to use XQuery for that. However, the language
currently supports only the data shipping query eval-
uation model (through the document() function): it
fetches all data sources to a single server, then runs
the query there. This is a major limitation for many
applications, especially when some data sources are
very large, or when a data source is only a virtual
XML view over some other logical data model. We
propose here a simple extension to XQuery that al-
lows query shipping to be expressed in the language,
in addition to data shipping.

Example 1.1 For a simple illustration, consider
the following example:
Q1:
for $x in document("X.xml")/a/b[@c="123"],
$y in
document("http://Y.com/Y.xml")/d/e[@f=$x/@g]/h

return <answer> <x> { $x/u } </x>
<y> { $y/v } </y>

</answer>

This XQuery performs a join between two docu-
ments X.xml (residing on the local server) and Y.xml
(on a remote source). The query can be executed
today by any standard XQuery processor. How-
ever, the problem is that the query processor im-
plements data shipping only: it reads the entire file
Y.xml, only to extract a small fragment. Worse,
when Y.xml is not a real XML document but an
XML virtual view over, say, a relational database,
then this query cannot be executed at all, because
relational databases often do not export the entire
XML view. For example, SQL Server supports sim-
ple XPath expressions over a relational database,
but will not export a complex, multi-table database
in XML.

In our proposed extension, XQueryD, the same
query can be expressed using a new expression,
execute:

∗ Department of Computer Science, University of Wash-
ington.

†Structural Informatics Group, Department of Biological
Structure, University of Washington

Q2: for $x in document("X.xml")/a/b[@c="123"]
let $y := (execute at "http://Y.com"

xquery {
for $z in document(Y.xml)/d/e[@f=$x/@g]

return $z
})/h

return <answer> <x> { $x/u } </x>
<y> { $y/v } </y>

</answer>

The new execute expression instructs the pro-
cessor to send a subquery to Y.com and wait for
the result. The remote site has to execute a nor-
mal XQuery expression, and return only the answer
to that query (as opposed to the entire document).
For example, if the value of $x/@g is "456", then
the following query is shipped to Y.com:

for $z in document("Y.xml")/d/e[@f="456"]
return $z

This is a simple XPath expression supported by
any XML data source. Once it returns to the original
server, the result is interpreted as an XML fragment
and the variable $y is bound to its h children.

In this paper we propose a simple extension to
XQuery that supports the query shipping paradigm
in addition to the data shipping paradigm. The ex-
tension consists of a single new expression:

execute at <URL>
xquery { <EXPR> }
(handle <VAR>:<NAME-SPACE> <EXPR>)*

We call the resulting language XQueryD. In this
paper we illustrate the power of this simple construct
through several examples, describe the exception-
handling mechanisms (handle), describe a simple
implementation, and discuss some source-to-source
optimizations. We also illustrate with a real appli-
cation from the University of Washington Human
Brain Project [BMP+97, RM03].

1.1 Related Work

While simple, the language extension we propose
distills several ideas from distributed databases and
process calculi, which deserve a brief discussion here.

Optimizer vs. Language Approach Exist-
ing techniques in distributed query optimization can
transform a declarative query like Q1 into a dis-
tributed execution plan with query shipping, much

like Q2 [Kos00, Won00]. One does not need a lan-
guage extension in order to be able to run distributed
queries efficiently. Our proposal goes against the
data independence principle, requiring users to be
aware of the physical data distribution. However, in
order to support true data independence one needs a
sophisticated query processor with a distributed op-
timizer, and one also needs central control over all
data sources. This is definitely not possible in our
intended application: the exchange of scientific data.
In this case scientists use publicly available XQuery
query processors, which do not have distributed op-
timizers. Even if distributed optimizers were widely
available, they would still not be of immediate use
for the scientists, since the remote sources are out-
side of their control and thus are unlikely to expose
all the information required by the query optimizer
(source capabilities, statistics, etc). On the other
hand, scientists are rather savvy users: they won’t
mind writing queries in XQueryD if this allows them
to retrieve results immediately, rather than wait for
a sophisticated infrastructure to be deployed. A fi-
nal appeal of our light-weight approach is the ability
to handle exceptions, which are common in a dis-
tributed query environment, see Sec. 2.2.

Optimizations Our language-based approach
does not preclude optimizations, however. In-
stead, it makes them much easier to implement,
as source-to-source query rewritings, focused around
the execute expression: we illustrate this in Sec. 5
and in the Appendix. Importantly, the distributed
optimizer is no longer a prerequisite to achieve query
shipping, since this is already expressed in the lan-
guage.

Process calculi Our approach is mostly inspired
by the work on process calculi and their applica-
tion to database queries [ST01, GM03]. Unlike
ubQL [ST01], we use only one communication prim-
itive, namely the migration operator execute, and
omit channels and pipelining. Our emphasis is on
obtaining the highest benefits by having to do as
few changes to the language as possible.

Active XML This is a project for Webservices
developed recently at INRIA [ABC+03, ABM04,
ABC+04]. In the Active XML data model, an XML
tree may contain on its leaves calls to Webservices
which return other XML fragments, possible con-
taining more Webservice calls. Evaluating a query
over an Active XML document naturally leads to
distributed execution. XQueryD differs from Active
XML in several ways. In Active XML the data needs
to be modified by inserting Webservice calls: this is
perfectly reasonable in commercial systems, but it
is impractical in scientific data exchange. Queries in
Active XML are very simple, since users (in this case
end-customers) only see plain XML data, while the
distribution is handled completely by the system.
By contrast, in XQueryD the data does not need to
be modified, while queries require detailed knowl-

edge of the sources and their capabilities: again this
is better suited in the scientific domain. The techni-
cal challenges also differ: queries may not terminate
in Active XML (although in practice this is rarely
happens), while queries are guaranteed to terminate
in XQueryD.

2 XQueryD

The single extension to XQuery is the execute ex-
pression shown in Sec. 1. We first illustrate execute
with some examples, then describe the exception
handling mechanism (the handle clause), and finally
illustrate how to invoke foreign languages.

2.1 Execute

Dependent Joins The query Q2 in Example 1.1
contains a dependent join: for each value of the $x
variable, a query is sent to the remote site. The dis-
advantage is that the number of queries executed on
the remote site may be arbitrarily large, depending
on the data.

Joins Alternatively, we may express the same
query Q2 as join:

Q2’:
let $to_ship :=

(for $x in document("X.xml")/a/b[@c="123"]
return <x_at_g>$x/@g</x_at_g> <x_u>$x/u</x_u>)

return
execute at "http://Y.com"
xquery
{ for $t in $to_ship

return
<answer>

<x> { $t/x_u/child::node() } </x>
<y> { for $z in document("Y.xml")

/d/e[@f=$t/x_at_g/child::node()]
return $z/h})/v

}
</y>

</answer>
}

Here only one query is sent to Y.com, making it
more efficient than Q2, but it is also harder to write
and harder to read. It is possible, however, to trans-
late automatically Q2 to Q2’ using simple rewrite
rules: we show this in the appendix.

Joins over three sources Consider now:

Q3:
for $x in document("X.xml")/a/b[@c="123"]
let $y := (execute at "http://Y.com"

xquery
{for $z in document("Y.xml")/d/e[@f=$x/@g]
let $u :=

execute at "http://Z.com"
xquery
{ for $w in document("Z.xml")/m/n[@p=$z/@q]

return $w/v[@u=$x/@z]
}

return
<h> <z> { $z } </z>

<u> { $u } </u>
</h>}

)/h
return <answer> <x> { $x/u } </x>

<y> { $y } </y>
</answer>

As before, a subquery is sent repeatedly to Y.com.
However, this subquery contains in turn an execute
statement, instructing Y.com to send a query to
Z.com.

2.2 Exceptions

It is important to react to unforeseen events when
evaluating queries in a distributed environment,
such as time outs, server down, authorization fail-
ures, syntax errors, etc. XQueryD has a simple ex-
ception mechanism. An exception is defined by a
namespace, and the handle clause specifies how to
handle that specific exception. Each exception may
return parameters, which can be arbitrary XML val-
ues (of a schema defined by that particular excep-
tion) and are bound to a variable. The following
example illustrates this:

Q4: for $x in document("file.xml")/a/b
let $y := execute at "Y.com"

xquery { }
handle "www.cs.washington.edu/xqueryd/timeout"
{ <result> 123 </result> }

handle "www.cs.washington.edu/xqueryd/serverdown"
{ execute at "backup.site.com"

xquery {}
}

handle $e: "www.cs.washington.edu/xqueryd/syntaxerror"
{ <result>

<line> { $e/line/text() } </line>
<errorcode> { $e/errorcode/text() } </errorcode>

</result>
}

return . . .

Exception names are namespaces, and are shown
here as URLs; in general, XQuery namespaces can
be used. The first handle clause checks for a
timeout exception: if this happens, then a default
result of 123 is returned. The second handle checks
for a serverdown exception: in this case another re-
mote XQuery is executed, at a backup site. Finally,
the third handle checks for a syntax error. This
exception has a parameter, which is bound to the
variable $e. The result returned in this case includes
the line where the error occurred and the error code,
both extracted from the parameter $e.

2.3 Foreign

Finally, the execute statement can be used to invoke
queries in a foreign language, other than XQuery.
We found this to be necessary in order to integrate
data from sources that do not have XML wrappers.
The statement becomes:

execute at "site.com"
foreign { }

Any string can be included after foreign, and
it will not be parsed by the XQuery parser. The
pre-processor still substitutes variables, but now is
limited to substituting only text values: any other
value will generate a runtime error. We will uses
foreign in the next section.

3 Application to the UW Human
Brain Project

Our proposal is motivated by a real application
from the University of Washington Human Brain
Project [BMP+97, RM03]. This project seeks to de-
velop tools to help neuroscientists understand lan-
guage organization in the brain. The primary ap-
proach is to develop methods for accessing and inte-
grating multiple types of brain mapping data located
in multiple data sources. We illustrate here with
three sources that were particularly difficult to inte-
grate because they use totally different data models:
a relational database, an ontology, and an XML file.

Source 1: CSM (Cortical Stimulation Map-
ping) This is a patient-oriented relational database
stored in MySQL and recording data obtained at the
time of neurosurgery for epilepsy. The data repre-
sents the cortical locations of language processing in
the brain (detected by noting errors made by the
patient during electrical stimulation of those areas).
One piece of information in this database is the cor-
tical locations, e.g. middle part of superior temporal
gyrus. We have built an XML wrapper over CSM us-
ing SilkRoute [FKM+02, TKL+03], which converts
automatically all XQuery expressions to SQL and
returns results as XML. To illustrate, the XQuery
below finds the names of all structures over all pa-
tients, in which a CSM error of type 2 (semantic
paraphasia) occurred at least once in one patient:

Q5:
<results>
{for $trial in PublicView("Scrubbed.pv")

/patient/surgery/csmstudy/trial
where $trial/trialcode/term/abbrev/text()="2"
return $trial/stimsite/name()

}
</results>

Here PublicView indicates the file containing the
mapping from the relational database to XML.
SilkRoute translates the query automatically into a
complex SQL statement:

SELECT stimsite.name
FROM trial, csm, . . ., stimsite
WHERE term.type = ’CSM error code’ AND abbrev = ‘2’ AND . . .

Source 2: FMA (Foundational Model of
Anatomy) This is an ontology representing a
large semantic network [MBR03] of the entire
human anatomy. It is processed by a server
called OQAFMA, which accepts queries written in
StruQL [FFLS00], and returns results in XML. For
a simple illustration, the StruQL query below an-
swers the following: what is the middle part of the
superior temporal gyrus part of?

Q6: WHERE
Y->":NAME"->"Middle part of superior temporal gyrus",
X->"part"*->Y,
X->":NAME"->Parent

CREATE Concept(Parent);

The answer is:

<results>
<Concept> <Ancestor>Neocortex</Ancestor>
</Concept>

<Concept> <Ancestor>Telencephalon</Ancestor>
</Concept>

<Concept> <Ancestor>Forebrain</Ancestor>
</Concept>

<Concept> <Ancestor>Temporal lobe</Ancestor>
</Concept>

<Concept> <Ancestor>Nervous system</Ancestor>
</Concept>

<Concept> <Ancestor>Superior temporal gyrus</Ancestor>
</Concept>

.

</results>

Source 3: Image Manager This is a single
XML document containing collections of images.
Each image can have associated with it one or more
annotation sets, consisting of one or more anno-
tations. An annotation consists of a closed poly-
gon specified by a sequence of image coordinates
on the image and an anatomical name. We use
Galax [FS02] to query IM. For example the query
”Find all images annotated by the middle part of
the superior temporal gyrus” is expressed as:

Q7: for $image in document("image_db.xml")//image
where $image/annotation_set/image_annotation/name/text()

="middle part of the superior temporal gyrus"
return



Two Sources Query Q7 on IM returns the empty
set ! The reason is that middle part of the superior
temporal gyrus is a too specific anatomical name,
and the images stored in the database are annotated
with higher level names. Users unfamiliar with the
details of the IM data can get around that by refer-
ing to FMA, the authority on the human anatomy.
This is expressed as a distributed query, essentially
combining Q6 and Q7.

for $image in document("image_db.xml")//image,
$n in
(execute at "http://csm.biostr.washington.edu/oqafma"
foreign
{WHERE Y->":NAME"->"Middle part of superior temporal gyrus",

X->"part"*->Y,
X->":NAME"->Ancestor

CREATE Concept(Ancestor);
}

)/results/Concept/text()
where $image/annotation_set/image_annotation/name/text()

="middle part of the superior temporal gyrus"
return



Notice the use of the foreign keyword, needed to
express a subquery in a different language (StruQL).
The query with out the use of the ontology returned
the empty set. The modified query returns 191 im-
age oids.

All Three Now Scientists are especially inter-
ested in integrating CSM with IM. For example, find
the names of all structures over all patients, in which
a CSM error of type 2 (semantic paraphasia) oc-
curred at least once in one patient. For each of these
names find the IDs of all images annotated with this
name. However, it is not possible to join CSM and
IM directly because the regions in CSM are more
detailed than those in Image Manager (hence, we
would again obtain an empty result). The solution
is to use the FMA, to relate the anatomical names.
This results in the following query spanning three
different sources:

for $image in document("image_db.xml")//image
let $region_name :=

execute at "http://csm.biostr.washington.edu/axis/csm.jws"
xquery
{ for $trial in PublicView("Scrubbed.pv")

/patient/surgery/csmstudy/trial
where $trial/trialcode/term/abbrev/text()="2"
return $trial/stimsite/name()

},
$surrounding_regions :=

for $term in $region_name
return

<term>
{(execute at "http://csm.biostr.washington.edu/oqafma"

foreign
{WHERE Y->":NAME"->"$term",

X->("part")*->Y,
X->":NAME"->Ancestor

CREATE Concept(Ancestor);
}

)/results/Concept/text()
}

</term>
where $image/annotation_set/image_annotation/name/text()

= $surrounding_regions/text()
return $image/oid/text()

At this point the reader may appreciate the power
of our simple language extension. This last query in-
tegrates data from three different sources: MySQL,
an ontology, and an XML file. All three sources are
important for the scientists in order to retrieve rel-
evant results. While writing the query requires ex-
tensive knowledge of all three sources, we found that
scientists are willing to do that if that helps them
obtain the data they need. On the other hand, the
infrastructure needed to support such queries is min-
imal, and requires only minimal cooperation from
the source owners: we show this next.

4 Implementation

The implementation consists of two parts: (1) a
modified XQuery processor to support the XQueryD
language, and (2) a Webservice wrapper over each
data source.

(1) took a couple of weeks of work. We modified
Galax [FS02], a freely available XQuery processor,
adding the following two components: an extension
of the parser to accept an execute statement, and
a runtime rewriter that accepts the XQuery expres-
sion in the execute statement, scans it for variables,
and substitutes them with the current runtime val-
ues. Recall that in XQuery a variable may refer to

a sequence consisting of arbitrary XML elements or
scalars. Textual substitution is not possible. In-
stead we introduce a let binding in the query being
shipped, which assigns the same value. Of course,
this is not possible for foreign languages. Here the
substitution is textual, and is limited only to vari-
ables that are bound to strings. If a variable is bound
to an XML fragment, a runtime error is generated.
We currently support only very limited exceptions,
and have not implemented optimizations yet.

For (2), adding a Webservice interface to a data
source takes less than one hour of work. The inter-
face needs to accept an execute method, accepting
an XQuery or XQueryD string as input, and out-
putting an XML value, representing the answer. We
found that most data sources accept some form of
a query API (e.g. odbc, or some proprietary code),
and it is easy to write a uniform Webservice over
each such API.

5 Distributed Optimizations

We are currently implementing several rewrite rules
that allow the following optimizations to be ex-
pressed: replacing dependent joins with joins, semi-
join reduction, and pushing computations to the
sources. All three are well known from the database
literature, and they are all implemented as source-
to-source query rewritings. To illustrate, a typical
rewriting rule is:

execute at s xquery{ . . . E . . .}
--->

let $y := E
return execute at s xquery{ . . . $y . . . }

where E($x) is an expression without any occurrence
of a local variable in execute. The appendix illus-
trates more rewrite rules, showing how they can be
used to optimize Q2 into Q2’.

6 Conclusions

We have proposed a simple, lightweight extension
to XQuery that allows users to express queries over
multiple, heterogeneous data sources. While simple,
our approach is quite expressive, and, when used by
knowledgeable users, can become a very powerful
tool. We are now starting to use this in the UW
Human Brain Project. The approach is not well
suited in applications where queries are written by
end users, with little knowledge of the domain.

Future work will include further development of
the exception handling mechanism and the imple-
mentation of a few optimizations.

Acknowledgments This work was partially
funded by Human Brain Project Grant DC02310.
Suciu was partially supported by the NSF CAREER
Grant IIS-0092955, NSF Grants IIS-0140493 and
IIS-0205635, a gift from Microsoft, and a Sloan Fel-
lowship.

References
[ABC+03] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu,

and T. Milo. Dynamic xml documents with distri-
bution and replication. In SIGMOD, pages 527–538,
2003.

[ABC+04] S .Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,
T. Milo, and N. Preda. Lazy query evaluation for
active xml. In SIGMOD, 2004.

[ABM04] S .Abiteboul, O. Benjelloun, and T. Milo. Positive
active xml. In PODS, 2004.

[BMP+97] J. F. Brinkley, L. M. Myers, J. S. Prothero, G. H.
Heil, J. S. Tsuruda, K. R. Maravilla, G. A. Ojemann,
and C. Rosse. A structural information framework for
brain mapping. In Neuroinformatics: An Overview
of the Human Brain Project, pages 309–334. Mah-
wah, New Jersey: Lawrence Erlbaum, 1997. See also
http://sig.biostr.washington.edu/projects/brain/.

[FFLS00] Mary F. Fernandez, Daniela Florescu, Alon Y. Levy,
and Dan Suciu. Declarative specification of web sites
with strudel. VLDB Journal, 9(1):38–55, 2000.

[FKM+02] M. Fernandez, Y. Kadiyska, A. Morishima, D. Suciu,
and W. Tan. SilkRoute : a framework for publish-
ing relational data in XML. ACM Transactions on
Database Technology, 27(4), December 2002.

[FS02] M. Fernandez and J. Simeon. Galax: the XQuery im-
plementation for discriminating hackers, 2002. avail-
able from http://db.bell-labs.com/galax/.

[GM03] P. Gardner and S. Maffeis. Modelling dynamic Web
data. In Proceedings of DBPL, pages 75–84, Pots-
dam, Germany, 2003.

[Kos00] Donald Kossmann. The state of the art in distributed
query processing. ACM Comput. Surv., 32(4):422–
469, 2000.

[MBR03] P. Mork, J. F. Brinkley, and C. Rosse. OQAFMA
querying agent for the foundational model of
anatomy: a prototype for providing flexible and ef-
ficient access to large semantic networks. J. Biomed-
ical Informatics, 36(6):501–517, 2003.

[RM03] C. Rosse and J. L. V. Mejino. A reference ontology for
bioinformatics: the foundational model of anatomy.
Journal of Bioinformatics, 36(6):478–500, 2003.

[ST01] A. Sahuguet and V. Tannen. ubQL, a language for
programming distributed query systems. In WebDB,
pages 37–42, 2001.

[TKL+03] Z. Tang, Y. Kadiyska, H. Li, D. Suciu, and J. F.
Brinkley. Dynamic xml-based exchange of relational
data: application to the human brain project. In
Proceedings, Annual Fall Symposium of the Amer-
ican Medical Informatics Association, pages 649–
653, Washington, D.C., 2003.

[Won00] Limsoon Wong. The functional guts of the Kleisli
query system. In Proceedings of ICFP, pages 1–10,
2000.

A An Optimization using Rewrite Rules

We show here how a series or rewrite rules can transform query Q2, which uses dependent joins, into Q2’,
which uses a normal join. As we argued in the paper, Q2 is natural to write and easy to read but inefficient,
while Q2’ is efficient but hard to read.

for $x in document("X.xml")/a/b[@c="123"]
let $y := (execute at "http://Y.com"

xquery{ for $z in document("Y.xml")/d/e[@f=$x/@g] return $z})/h
return <answer> <x> { $x/u } </x>

<y> { $y/v } </y>
</answer>

Push h inside:

for $x in document("X.xml")/a/b[@c="123"]
let $y := (execute at "http://Y.com"

xquery{ for $z in document("Y.xml")/d/e[@f=$x/@g] return $z/h})
return <answer> <x> { $x/u } </x>

<y> { $y/v } </y>
</answer>

Replace y:

for $x in document("X.xml")/a/b[@c="123"]
return <answer> <x> { $x/u } </x>

<y> { (execute at "http://Y.com"
xquery{ for $z in document("Y.xml")/d/e[@f=$x/@g] return $z/h})/v } </y>

</answer>

Push result across:

for $x in document("X.xml")/a/b[@c="123"]
return execute at "http://Y.com"

xquery{ return
<answer> <x> { $x/u } </x>

<y> { for $z in document("Y.xml")/d/e[@f=$x/@g] return $z/h})/v }
<answer> }

Push down projections:

for $x in document("X.xml")/a/b[@c="123"]
let $x_at_g := $x/@g,

$x_u := $x/u
return execute at "http://Y.com"

xquery{ return
<answer> <x> { $x_u } </x>

<y> { for $z in document("Y.xml")/d/e[@f=$x_at_g] return $z/h})/v }
<answer> }

Combine dependents and push across:

let $to_ship := (for $x in for $x in document("X.xml")/a/b[@c="123"]
return <x_at_g>$x/@g</x_at_g>

<x_u>$x/u</x_u>)
return execute at "http://Y.com"

xquery{ for $t in $to_ship
return

<answer> <x> { $t/x_u/text() } </x>
<y> { for $z in document("Y.xml")/d/e[@f=$t/x_at_g/text()] return $z/h})/v }

