
Materialized Views in Probabilistic Databases

For Information Exchange and Query Optimization

Christopher Ré
University of Washington

chrisre@cs.washington.edu

Dan Suciu
University of Washington

suciu@cs.washington.edu

ABSTRACT
Views over probabilistic data contain correlations between
tuples, and the current approach is to capture these corre-
lations using explicit lineage. In this paper we propose an
alternative approach to materializing probabilistic views, by
giving conditions under which a view can be represented by
a block-independent disjoint (BID) table. Not all views can
be represented as BID tables and so we propose a novel
partial representation that can represent all views but may
not define a unique probability distribution. We then give
conditions on when a query’s value on a partial representa-
tion will be uniquely defined. We apply our theory to two
applications: query processing using views and information
exchange using views. In query processing on probabilistic
data, we can ignore the lineage and use materialized views to
more efficiently answer queries. By contrast, if the view has
explicit lineage, the query evaluation must reprocess the lin-
eage to compute the query resulting in dramatically slower
execution. The second application is information exchange
when we do not wish to disclose the entire lineage, which
otherwise may result in shipping the entire database. The
paper contains several theoretical results that completely
solve the problem of deciding whether a conjunctive view
can be represented as a BID and whether a query on a par-
tial representation is uniquely determined. We validate our
approach experimentally showing that representable views
exist in real and synthetic workloads and show over three
magnitudes of improvement in query processing versus a lin-
eage based approach.

1. INTRODUCTION
A view over probabilistic data contains correlations be-

tween tuples which make views expensive to represent. Cur-
rently, materialized views are based on a complete approach
(e.g. [20, 36, 38]) which can represent any conjunctive view
but requires storing auxiliary information (e.g. lineage [20]).
Lineage (or provenance [17]) has many advantages, espe-
cially for scientific applications [8]. However, there are im-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

portant drawbacks with lineage for information exchange
and query optimization using views. In query optimization
using views, to compute probabilities correctly we must de-
termine how tuples are correlated. Inspecting the lineage of
tuples in a view at query execution time is expensive since
the lineage of a single tuple can be as large as the database.
In contrast, if we can prove that all tuples in the view are
independent, we do not need to examine the lineage at ex-
ecution time. Further, we can optimize our query to use
much more efficient query processing techniques (e.g. safe
plans [19, 18, 35, 36]). In some applications of exchang-
ing views of probabilistic data, using lineage to describe the
data semantics is not an option. For example, we may not
want to disclose any lineage (e.g. B2B applications) or the
size of the lineage may be prohibitive. We study if a view
can be understood without the full lineage.

In this paper, we consider the block-independent disjoint
(BID) formalism. Informally, each relation is partitioned
into blocks that are disjoint but, across blocks, tuples are
independent. The BID formalism captures many repre-
sentations previously discussed in the literature (e.g. tuple
independent [18, 30], p-or tables [25], ?-tables, x-relations
[20] and is essentially the same as [6]). We study the view
representation problem (Problem 1) which is to decide:
Given a conjunctive view V , is the output of V repre-
sentable as a BID table? Not all views can be represented
as BID tables and so we propose a partial representation
which can represent any view but may not specify how all
tuples in a view correlate. Because all correlations among
tuples are not defined, many probability distributions can
agree with a single partially representable view which can
cause a query’s value to fail to be uniquely defined. This
motivates us to study the partial view answering prob-
lem (Problem 2) which is: Given a query Q using partially
representable views, is Q’s value uniquely defined?

We validate our solutions using data given to us by iLike.com
[13], a service provided by the music site GarageBand which
provides users with recommendations for music and friends.
iLike has three characteristics which make it a good candi-
date for materialized views. First, the data are uncertain
because the recommendations are based on similarity func-
tions. Second, the database is large (e.g. tens of gigabytes)
and backs an interactive website with many users; hence,
query performance is important. Third, the database hosts
more than one service, implying that there are integration
issues. Probabilistic materialized views are a tool that ad-
dresses all three of these issues. Interestingly, materialized
views are present in iLike. Since there is no support for un-

certain views, the materialized views are constructed in an
ad-hoc manner and require care to use correctly. Our ex-
periments show that 80% of the materialized views in iLike
are representable by BID tables and more than 98.5% of
their workload could benefit from our optimizations. We
also experiment with synthetic workloads and find that the
majority of queries can benefit from our techniques. Using
the techniques described in this paper, we are able to achieve
speed ups of more than three orders of magnitude on large
probabilistic data sets (e.g. TPC 1G with additional prob-
abilities). A summary of our contributions:

• We solve the view representation problem for the case
of conjunctive views over BID databases (Def. 2.2)
which capture several representations in the literature
[11, 18, 36, 39, 41]. Specifically:

– We give a sound and complete algorithm for find-
ing a representation when one exists and prove
that the decision is ΠP

2 Complete in general. (Sec. 4.1)

– We give a polynomial time approximation for the
view representation problem which is sound, but
not complete. We show that it is complete for all
queries without self-joins. (Sec. 4.2)

• We solve the probabilistic materialized view answering
problem for the case of conjunctive queries and con-
junctive views.

– We propose a partial representation system to
handle views that are not representable. (Sec. 5.1)

– We give a sound and complete algorithm to decide
if Q correctly uses a partially represented view
and prove this decision is ΠP

2 -Complete. (Sec. 5.2)

– We give a polynomial time approximation for the
probabilistic materialized view answering problem
that is sound, but not complete. We show that
it is complete for queries without repeated prob-
abilistic views. (Sec. 5.3)

• We validate our techniques experimentally (Sec. 7),
showing that representable views exist in practice, that
our techniques yield several orders magnitude improve-
ment and that our practical algorithms are almost al-
ways complete.

2. PROBLEM DEFINITION

Our running example is a scenario in which a user, Al-
ice, maintains a restaurant database that is extracted from
web data and she wishes to send data to Bob. Alice’s data
are uncertain because they are the result of information ex-
traction [33, 26, 28] and sentiment analysis [23]. A natural
way for her to send data to Bob is to write a view, materi-
alize its result and send the result to Bob. We begin with
some preliminaries about probabilistic databases based on
the possible worlds model [5] and discuss the data in Fig. 1.

2.1 Representation Formalism
Definition 2.1 (Representation Syntax). A block

independent disjoint table description (BID table de-
scription) is a relational schema with the attributes parti-
tioned into three classes separated by semicolons:

R(K1, . . . , Kn; A1, . . . , Am;P)

where K = {K1, . . . , Kn} is called the possible worlds key,
A = {A1, . . . , Am} is called the value attribute set and
P is a single distinguished attribute called the probability
attribute; its type is a value in the half-open interval (0, 1].

Semantics. Representations contain probability attributes
(P) but the worlds they represent do not. For example,
a BID table description R(K; A;P) with distinguished at-
tribute P corresponds to a BID symbol Rp(K; A) with no
attribute P1. A representation yields a distribution on pos-
sible worlds over BID symbols.

Definition 2.2. Given an instance of a BID table de-
scription R(K; A;P) = {tr

1, . . . , t
r
n}, a possible world is a

subset of tuples, I, without the attribute P that satisfies the
key constraint K → A. Let AK(I) = {k | ∃i tr

i [K] = k∧∀t ∈
I tr

i [K] 6= t[K]}. The probability of possible world I, denoted
µ(I), is defined as:

µ(I) =

Present Tuples︷ ︸︸ ︷
(

n∏
i=1:tr

i [KA]∈I

tr
i [P]) (

∏
k∈AK(I)

(1−
n∑

j=1:tr
j [K]=k

tr
j [P]))

︸ ︷︷ ︸
Absent Tuples

Informally, Def. 2.2 says three things: The marginal prob-
ability of each tuple, µ(t), satisfies µ(t) = tr[P], any set of
tuples, t1, . . . , tm with distinct keys are independent (i.e.
µ(t1 ∧ · · · ∧ tm) =

∏m
i=1 µ(ti)) and any two distinct tu-

ples s, t that share the same possible worlds key are disjoint,
µ(s ∧ t) = 0.

We refer to a schema that contains both deterministic and
BID table descriptions as a BID schema and an instance
of a BID schema as a BID instance.

Definition 2.3. A possible world I for a BID instance I
with R1, . . . Rn consists of a n possible worlds I1, . . . , In with
measures µ1, . . . , µn, one for each Ri, and its probability is
defined as µI(I) =

∏n
i=1 µi(Ii), we will simply write µ when

I is clear from the context.

Definition 2.4 (Conjunctive View). A view is a con-
junctive query of the form:

V p(~h) :− g1, . . . , gn (1)

where each gi is a subgoal, that is either a BID symbol (e.g.
Rp) in which case we say gi is probabilistic or a deterministic
table (e.g. S). The set of variables in V p is denoted var(V p)

and list of the head variables ~h ⊆ var(V p).

The natural schema associated with V p(~h) is the set of
head variables denoted by H. For example, a view with

head V p(x, y, x) has ~h = (x, y, x) while H = {x, y}.

1To emphasize this distinction, we will use a typewriter
faced symbol with a superscripted p (e.g. Rp(K; A)) to de-
note the BID symbol corresponding to the BID table de-
scription R(K; A;P). For deterministic tables, this distinc-
tion is immaterial.

Chef Restaurant P
TD D. Lounge 0.9 (w1)
TD P. Kitchen 0.7 (w2)
MS C. Bistro 0.8 (w3)

Restaurant Dish
D. Lounge Crab Cakes
P. Kitchen Crab Cakes
P. Kitchen Lamb
C. Bistro Fish

Chef Dish Rating P

TD Crab Cakes
High 0.8 (r11)
Med 0.1 (r12)
Low 0.1 (r13)

TD Lamb
High 0.3 (r21)
Low 0.7 (r22)

MS Fish
High 0.6 (r31)
Low 0.3 (r32)

W(Chef,Restaurant;;P) (WorksAt) S(Restaurant,Dish) (Serves) R(Chef,Dish;Rating;P) (Rated)

Figure 1: Sample Restaurant Data in Alice’s Database. In WorksAt each tuple is independent. There is no
uncertainty about Serves. In Rated, each (Chef,Dish) pair has one true rating. Note that there may be more
than one uncertain attribute as described in Def. 2.1.

Definition 2.5 (View Semantics). Given a view V p(H),
the marginal probability of a tuple t in the output of V p is
denoted µ(V p(t)) and satisfies:

µ(V p(t)) =
∑

I:I |= V p(t)

µ(I)

The output of V p on the representation I is a set tu-
ples with marginal probabilities denoted O and defined by
O = {(t, p) | µI(V p(t)) = p > 0}, we denote the marginal
probability of t ∈ O as t[P].

2.2 Running Example
Sample data is shown in Fig. 1 for Alice’s schema that con-

tains three relations described in BID syntax: W (WorksAt), S
(Serves) and R (Rating). The relation W records chefs, who
may work at multiple restaurants in multiple cities. The
tuples of W are extracted from text and so are uncertain.
For example, (‘TD’, ‘D. Lounge’) (w1) in W signifies that
we extracted that ‘TD’ works at ‘D.Lounge’ with probabil-
ity 0.9. Our syntax tells us that all tuples are independent
because they all have different possible worlds keys. The
relation R records the rating of a chef’s dish (e.g. ‘High’
or ‘Low’). Each (Chef,Dish) pair has only one true rating.
Thus, r11 and r13 are disjoint because they rate the pair
(‘TD’, ‘Crab Cakes’) as both ‘High’ and ‘Low’. Because dis-
tinct (Chef,Dish) pair ratings are extracted independently,
they are associated to ratings independently.

Semantics. In W, there are 23 possible worlds. For exam-
ple, the probability of the singleton subset {(‘TD’, ‘D. Lounge’)}
is 0.9 ∗ (1 − 0.7) ∗ (1 − 0.8) = 0.054. This representation is
called a p-?-table [25], ?-table [20] or tuple independent [18].
The BID table R yields 3 ∗ 2 ∗ 3 = 18 possible worlds since
each (Chef,Dish) pair is associated with at most one rating.
When the probabilities shown sum to 1, there is at least one
rating for each pair. For example, the probability of the
world {r11, r21, r31} is 0.8 ∗ 0.3 ∗ 0.6 = 0.144. R is a slight
generalization of p-or-set-table [25] or x-table [20].

2.2.1 Representable Views
Alice wants to ship her data to Bob, who wants a view

with all chefs and restaurant pairs that make a highly rated
dish. Alice obliges by computing and sending the following
view:

V p
1 (c, r) :− W

p(c, r), S(r, d), Rp(c, d; ‘High’) (2)

In the following example data, we calculate the probability
of a tuple appearing in the output both numerically in the P
column and symbolically in terms of other tuple probabilities

of Fig. 1. We calculate the probabilities symbolically only
for exposition; the output of a query or view is a set of tuples
matching the head with associated probability scores.

Example 2.1 (Output of V p
1 from Eq. (2)).

C R P (Symbolic Probability)
to
1 TD D. Lounge 0.72 w1r11

to
2 TD P.Kitchen 0.602 w2(1− (1− r11)(1− r21))

to
3 MS C.Bistro 0.32 w3r31

The output tuples, to
1 and to

2, are not independent because
both depend on r11. This lack of independence is problem-
atic for Bob because a BID instance cannot represent this
type of correlation. Hence we say V p

1 is not a representable
view. For Bob to understand the data, Alice must ship the
lineage of each tuple. For example, it would be sufficient to
ship the symbolic probability polynomials in Ex. 2.1.

Consider a second view where we can be much smarter
about the amount of information necessary to understand
the view. In V p

2 , Bob wants to know which working chefs
make and serve a highly rated dish:

V p
2 (c) :− W

p(c, r), S(r, d), Rp(c, d; ‘High’) (3)

Example 2.2 (Output of V p
2 from Eq. (3)).

c P (Symbolic Probability)
TD 0.818 r11(1− (1− w1)(1− w2)) + (1− r11)(w2r21)
MS 0.48 w3r31

Importantly, Bob can understand the data in Ex. 2.2 with no
auxiliary information because the set of events contributing
to ‘TD’ and those contributing to ‘MS’ are independent. It
can be shown that over any instance, all tuples contributing
to distinct c values are independent. Thus, V p

1 is a rep-
resentable view. This motivates us to understand the
following fundamental question:

Problem 1 (View Representabilty). Given a view
V p, can the output of V p be represented as a BID table?

It is interesting to note that efficiency and representability
are distinct concepts: Computing the output of V p

1 can be
done in polynomial time but its result is not representable.
On the other hand, computing V p

2 can be shown to be #P-
Hard [18, 35], but V p

2 is representable. To process V p
2 , we

must use Monte Carlo procedures (e.g. [36]), which are or-
ders of magnitude more expensive than traditional SQL pro-
cessing. We do not discuss evaluation further because our
focus is not on efficiently evaluating views, but on represent-
ing the output of views.

2.2.2 Partially Representable Views
To optimize and share a larger class of views, we would

like to use the results of views that are not representable.
The output of a non-representable view still has meaning: It
contains the marginal probabilities that each tuple appears
in the view but may not describe how all tuples correlate.
Consider the output of V p

1 in Ex. 2.1: Tuples that agree
on c are correlated, but tuples with different c values are
independent. To capture this, we define a partially repre-
sentable view (def. 5.3) which has schema V p(KI ; D; A).
The intuition is that tuples that differ on KI are guaranteed
to be independent, and distinct tuples which agree on KID
are guaranteed to be disjoint. Tuples that agree on KI but
not on D may be correlated.

Example 2.3. Recall the view V p
1 in Eq. (2), whose nat-

ural schema is V p(C, R). It is partially representable as
V p

1 (C; R; ∅) (i.e. KI = {C}, D = {R} and A = ∅). Tuples
that differ on C are independent, but those that agree on C
but differ on R may be correlated in unknown ways. Thus,
the materialized view does have some meaning for Bob, but
does not contain sufficient information to completely deter-
mine a probability distribution on its possible worlds.

Trivially, any view V p(H) can be partially represented
by letting KI = A = ∅ and D = H. Thus the interesting
question is: What is the complexity to decide, for a given
KI , D, A, if a view V p is partially representable?

2.2.3 Using Views to Answer Queries
In an information exchange setting, we do not have access

to the base data and so for partially representable views may
not know how all tuples are correlated. Thus, to answer a
query Q, we need to ensure that the value of Q does not
depend on correlations that are not captured by the partial
representation. To illustrate, we attempt to use the output
of V p

1 , a partially representable view, to answer two queries.

Example 2.4. Suppose Bob has a local relation, Lp(d; r),
where d is a possible worlds key for L. Bob wants to answer
the following queries:

Qu(d) :− L
p(d; r), V p

1 (c, r) and Qn(c) :− V p
1 (c, r)

Since the materialized view V p
1 does not uniquely determine

a probability distribution on its possible worlds, it is not im-
mediately clear that Bob can answer these queries without
access to Alice’s database and to V p

1 ’s definition. However,
the query Qu is uniquely defined. For any fixed d0, the set
of ri values such that Lp(d0; ri) partition the possible worlds:

µ(Qu(d0)) =
∑

ri:I|=Lp(d0;ri)

µ(Lp(d0; ri) ∧ ∃c V p
1 (c, ri))

The partial representation V p
1 (C; R; ∅), tells us that distinct

values for c in V p
1 are independent. Thus, each term in

the summation is uniquely defined implying Qu is uniquely
defined. In contrast, Qn is not uniquely defined because
Qn(‘TD’) is true when either of to

1 or to
2 are present; our

partial representation does not capture the correlation of the
pair (to

1, t
o
2).

This example motivates the following problem:

Problem 2 (View Answering). Let V p be a partially
representable view. Given a query Q using V p, is the value
of Q uniquely defined?

If V p is representable, then this problem is trivial because
V p uniquely defines a probability distribution.

3. PRELIMINARIES
We define notations we need in the remainder of the paper.

Definition 3.1. A valuation v for a view V p is a map-
ping from variables and constants in V p to constants which
is identity on constants ([2]). Given a valuation we let im(v)
denote the image of v.

We define a subset of valuations called disjoint aware
valuations which associate each possible worlds key value
to exactly one attribute value. Recall the definition of a view

in Eq. (1); if gi is probabilistic, we let ~ki (resp. ~ai) denote
the list of variables or constants in the possible world key
attribute positions (resp. value attribute positions)2. For a
subgoal gi, pred(gi) denotes the predicate associated to gi.

Definition 3.2 (Disjoint Aware Valuation). A val-
uation, v, for a conjunctive view is disjoint aware if ∀i, j

pred(gi) = pred(gj) and v(~ki) = v(~kj) =⇒ v(~ai) = v(~aj)

Example 3.1 (Disjoint Aware Valuations).

V p
4 () :− R

p(x, y; ‘High’), Rp(x, z; ‘Low’) (4)

Any valuation v such that v(y) 6= v(z) is disjoint aware but
if v(y) = v(z), it is not.

We need to consider pairs of valuations that do not use
disjoint events, called compatible valuations.

Definition 3.3. A pair of disjoint aware valuations (v, w)
for a view V p is called compatible if the pair satisfies ∀i, j:

pred(gi) = pred(gj) and v(~ki) = w(~kj) =⇒ v(~ai) = w(~aj)

3.1 Generalizing Functional Dependencies
We consider three notions of functional dependencies over

variables in the body of the view: standard functional de-

pendencies, denoted V p |= ~a→ ~b, representation functional

dependencies, denoted V p |= ~a →r
~b, and possible worlds

dependencies, denoted V p |= ~a→p
~b.

Definition 3.4. For a pair of valuations (v, w) for V p,
let †(v, w) denote the property:

v(~a) = w(~a) =⇒ v(~b) = w(~b)

Then we write:

• V p |= ~a→ ~b if †(v, w) for any valuations.

• V p |= ~a →r
~b if †(v, w) for any disjoint aware valua-

tions.

• V p |= ~a→p
~b if †(v, w) for any compatible valuations.

2We assume deterministic tables do not have keys.

Algorithm 1 Decision Procedure for V p |= ~a→p
~b

Input: V p(~h) :− g1, . . . , gm and

~a,~b ⊆ var(V p) ∪ const(V p)

Output: ‘Yes’ iff V p |= ~a→p
~b else ‘No’

1: η is a function that is identity on ~a and const(V p) and
maps all other variables to distinct fresh variables.

2: V V (~b′, η(~b)) :− g1, . . . , gm, η(g1), . . . , η(gm)

3: Let V V ′(~b,~b′) = DJA(V V (~b, η(~b)))

4: if Chase Succeeds and ~b 6= ~b′ then

5: return ‘No’ (* V p 6|= ~a→p
~b *)

6: else
7: return ‘Yes’ (* V p |= ~a→p

~b *)

V p |= ~a → ~b if and only if ~b ⊆ ~a as sets of variables3. To
see how these definitions relate, it is immediate that:

V p |= ~a→ ~b =⇒ V p |= ~a→r
~b =⇒ V p |= ~a→p

~b

We show by example that both reverse implications fail:

Example 3.2. Consider a BID table U(K; A;P) and a
deterministic binary table D(B, C).

V p
5 (x, y, z) :− U

p(x; y), Up(x; z), D(y, z) (5)

Here V p
5 6|= xy → z but V p

5 |= xy →r z since, any disjoint
aware valuation for V5 must satisfy v(y) = v(z).

V p
6 () :− U

p(x; y) (6)

In this case, V p
6 6|= x→r y but V p

6 |= x→p y .

3.2 A Chase Procedure
Consider a view with body Up(x; y), Up(x; z), Tp(y; u), Tp(z; v).

Clearly, any disjoint aware valuation must equate y and z.
Hence, when evaluated over any possible world the query
is equivalent to Up(x; y), Up(x; y), Tp(y; u), Tp(y; v), where we
have equated y = z. We can repeat the argument to equate
u and v; this process is called a chase [22]:

Proposition 3.1. There is a polynomial time procedure
that takes as input a conjunctive view V p and produces as
output a view DJA(V p) (DisJoint Aware version of V p)
and surjective homomorphism θ from V p to DJA(V p) such
that DJA(V p) is equivalent to V p over all possible worlds
and the identity homomorphism on DJA(V p) is disjoint
aware. The Chase may fail if no such view exists.

Example 3.3. Consider V p
5 from Ex. 3.2, then 4

DJA(V p
5) = W (x, y, y) :− U

p(x; y), D(y, y)

The chase equates y and z because both have possible worlds
key x. In contrast, the chase will fail on

V (c, r) :− R
p(c, r; ‘High’), Rp(c, r; ‘Low’)

The chase cannot unify the constants ‘High’ and ‘Low’.

We show how to decide V p |= ~a→r
~b and V p |= ~a→p

~b.

3This fails when we add dependencies in Sec. 4.3.
4We are not doing minimization, only removing duplicates.

Proposition 3.2. If DJA(V p) exists, let θ be the chase
homomorphism, then the following holds:

DJA(V p) |= θ(~a)→ θ(~b) ⇐⇒ V p |= ~a→r
~b

We use Prop. 3.2 to decide V p |= ~a →r
~b. For example,

V p
5 |= xy →r z Eq. (5) because, the chase homomorphism θ

is given by θ(x, y, z) = (x, y, y). Thus, θ(z) ⊆ θ(xy).

We use Alg. 1 to efficiently decide V p |= ~a→p
~b.

Proposition 3.3. Algorithm 1 is a polynomial time sound

and complete algorithm to decide if V p |= ~a→p
~b.

Proof Sketch. Observe that if the chase fails there must
be some contradiction in the view so there are no disjoint

aware valuations for V p implying V p |= ~a →p
~b trivially

holds. If the chase succeeds, then by Prop. 3.1, V V ′ has
the property that the identity valuation is disjoint aware.
Thus, if our test outputs ‘No’, there is a disjoint aware val-

uation vv for V V p such that vv(~a) = vv(~a) but vv(~b) 6=
vv(~b′). Let v (resp. w) be the restriction of vv to g1, . . . , gm

(resp. η(g1), . . . , η(gn)). More precisely, (v, w) is a compat-
ible pair of valuations for V p such that v(~a) = w(~a) but

v(~b) 6= w(~b). Thus, V p 6|= ~a→p
~b. The reverse direction and

efficiency of the procedure follow directly from the Chase
and Prop. 3.1.

Example 3.4. Consider the view:

V p
7 () :− R

p(x, y; u), Up(x; z), Tp(x, z; u) (7)

We want to check V p
7 |= x →p u. Alg. 1 forms V V by

making copies of V p
7 and equating x in the copies as follows:

V V p
7 (u, u′) :− Rp(x, y ; u), Up(x; z), Tp(x, z ; y),

Rp(x, y′; u′),Up(x; z′),Tp(x, z′; y′)

The Chase first uses KU → AU to derive that z = z′, then
uses KT → AT to force y = y′ and finally, KT → AT to
make u = u′. Thus, the algorithm says ‘Yes’. If we drop
any subgoal, we can no longer derive u = u′ and so the
algorithm will say ‘No’.

4. PROBLEM 1: REPRESENTABILITY
The goal of this section is to give a solution to Problem

1, deciding if a view is representable, when the views are
described by conjunctive queries and the representation for-
malism is BID. Since representability is a property of a view
on an infinite family of representations, it is not immediately
clear that the property is decidable. Our main result is that
testing representability is decidable and is ΠP

2 -Complete in
the size of the view definition. The high complexity moti-
vates us to give an efficient sound (but not complete) test in
Sec. 4.2. For the important special case when all probabilis-
tic symbols used in the view definition are distinct, we show
that this test is complete as well. We then discuss how our
technical result relates to prior art in Sec. 4.3.

4.1 Statement of Main Results
There are two key properties of BID representations: Tu-

ples that differ on a possible worlds key are independent,
which we will call block independent, and distinct tuples
that share a possible worlds key must be disjoint, which we
call disjoint in blocks.

Definition 4.1. Given a view with schema V p(H) de-
fined in terms of BID symbols, K ⊆ H, we say V p is K-
block independent if for any BID instance I, denoting O
as the output of V p on I (Def. 2.5), ∀I ⊆ O satisfying
∀s, t ∈ I s[K] = t[K] =⇒ s = t, the following holds:

µ(
∧
s∈I

V p(s[H])) =
∏
s∈I

s[P]

For K′ ⊆ H, we say V p(K′, H − K′) is K′-disjoint in
blocks if for i = 1, 2, µ(V p(ti)) > 0, t1[K

′] = t2[K
′] and

t1 6= t2 then:

µ(V p(t1[H]) ∧ V p(t2[H])) = 0

We say a view V p is representable if there is some K
such that V p is K-block independent and K-disjoint in blocks.

In other words, V p is representable, i.e. K-block indepen-
dent and K-disjoint in blocks, if and only if we can represent
the output of V p as a BID table with BID table description
V(K; H −K;P). Deciding if the preceding definition holds
for a view is a formal definition of the view representability
problem. We first consider V p(H) and K ⊆ H as given and
return to the problem of deducing K from the view defini-
tion in Sec. 4.1.3.

4.1.1 Block Independence
Intuitively, two tuples in a view are not independent if

their value depends on two tuples with the same possible
worlds key value.

Definition 4.2. A tuple t is disjoint critical for a Boolean
view V p() if and only if there exists a possible world I such
that I |= V p() and I−{t} 6|= V p(). A pair of tuples (s, t) each
with the same arity as a probabilistic BID symbol Rp

i (Ki; Ai)
such that s[Ki] = t[Ki] is K-doubly critical for a view V p

if ∃so, to such that so[K] 6= to[K] and s (resp. t) is disjoint
critical for V p(so) (resp. V p(to)).

In the above definition, it is important to note that that
we do not require that s and t be different tuples, only that
they agree on the possible worlds key of some probabilistic
relation.

Example 4.1. Recall from Ex. 2.1 that the view V p
1 re-

turns three tuples {to
1, t

o
2, t

o
3}. For each t ∈ {to

1, t
o
2, t

o
3}, the tu-

ples referenced by the symbolic probability for V p
1 (t) are dis-

joint critical for V p
1 (t). For example, r11 is disjoint critical

for V p
1 (to

2) because we can take I = {w2, r11, S(‘D.Lounge’,
‘Crab Cakes’)} and I |= V p

1 (to
2) but I−{r11} 6|= V p

1 (to
2). Fur-

ther, r11 is also critical for V p
1 (to

1). Since to
1[CR] 6= to

2[CR],
the pair (r11, r11) is an example of a CR-doubly critical tu-
ple. Interestingly, there are no C-doubly critical tuples.

Lemma 4.1. Given a view V p(H) and K ⊆ H, there are
no K-doubly critical tuples if and only if V p is K-block in-
dependent.

The proof of this lemma requires a detailed examination
of the multilinear polynomials produced by a view on a
probabilistic instance and we leave it for the full paper [37].
Lem. 4.1 is the basis for Alg. 2, which decides K-block in-
dependence by looking for K-doubly critical tuples.

Algorithm 2 K-Block Independence

Input: A conjunctive view V p(H) and K ⊆ H
Output: ‘Yes’ iff V p is K-Block Independent
1: Let n = |var(V p)|, C = {c1, . . . , cn2} be fresh constants

2: Let ~h denote head variables, ~k variables at positions K
3: D = {u|u disjoint aware valuation for V p s.t.

∀x ∈ var(V p) u(x) ∈ C ∪ const(V p)}.
4: if ∀v, w ∈ D,∀s ∈ im(v), ∀t ∈ im(w).

v(~k) 6= w(~k), s ∈ v(Rp
i), t ∈ w(Rp

i) and s[Ki] = t[Ki] =⇒
im(v)− {s} |= V p(v(~h)) or im(w)− {t} |= V p(w(~h))

5: then return ‘Yes’ else ‘No’

Example 4.2 (Ex. 4.1 continued). In Ex. 4.1, we ob-
served that there are no C-doubly critical tuples for V p

1 ,
which implies that V p

1 is C-block independent. Also, we ob-
served that V p

1 is not CR-block independent, because of r11,
a CR-doubly critical tuple.

Algorithm Lemma 4.1 gives us the following test for
checking k-block independence: for every two instances I,
J , every tuples s ∈ I, t ∈ J , and every two output tuples
I |= V p(so), J |= V p(to) s.t. so[K] 6= to[K], check that
I − {s} |= V p(so) or J − {t} |= V p(to). This is not yet
an algorithm, because I and J range over infinitely many
instances. However, we can prove that it suffices to range
over instances consisting of the constants in the view plus at
most n2 additional constants. This leads us to Algorithm 2,
and also proves that the problem is in ΠP

2 . In addition, we
can also prove that the problem is hard for ΠP

2 (by reduction
from ∀∃ 3CNF), hence:

Theorem 4.1. Algorithm 2 is sound and complete. Fur-
ther, checking that no K-doubly critical exists for a conjunc-
tive view is ΠP

2 -Complete.

4.1.2 Disjoint in Blocks
Having established a test for block independence, we now

state how to decide if a query is disjoint within blocks. The
idea here is simple: A view fails to be K-disjoint within
blocks if and only if there exist distinct tuples which agree
on K but can occur in some possible world together. We give
a polynomial time algorithm based on a Chase (Sec. 3.2) and
the following lemma:

Lemma 4.2. Given a conjunctive view V p(H) and K ⊆
H then V p |= K →p H5 if and only if V p is K-disjoint in
blocks.

To see the forward direction, consider any two tuples s, t
which disagree on K. It must be the case that every valu-

ation such that v(~h) = s[H] and w(~h) = t[H] use at least
one tuple that is disjoint else V p 6|= K →p H. To see the
reverse direction, observe that if (v, w) is compatible then
im(v)∪ im(v) = I satisfies the constraints and is a possible
world. Hence, s and t are both answers to V p on I, which
is a contradiction to our assumption that V p is disjoint in
blocks.

Theorem 4.2. Algorithm 3 is a sound and complete PTIME
algorithm to decide given V p, K and H, if V p |= K →p H
and hence if V p is K-disjoint in blocks

5We use V p |= K →p H to mean V p |= ~k →p
~h where ~k (~h)

is the list of variables and constants at K (resp. H).

Algorithm 3 K-Disjoint in Blocks

Input: V p(H) and K ⊆ H
1: return V p |= K →p H (* See Alg. 1 *)

Example 4.3. Consider the following view:

V p
8 (d; r) :− L

p(d; r), V p
2 (c, r) (8)

where K = {D} and A = {R}. Any compatible pair of
disjoint aware valuations that agree on d must agree on r,
else they would be inconsistent. Thus, V p

8 is D-disjoint in
blocks. To see a negative example, observe that V p

1 Eq. (2)
is not C-disjoint in blocks because the pair of valuations,
v(c, r, d) = (‘TD’, ‘D.Lounge’, ‘Crab Cakes’) and w(c, r, d) =
(‘TD’, ‘P.Kitchen’, ‘Crab Cakes’), is compatible and v(c) =
w(c) but v(r) 6= w(r).

4.1.3 Finding Possible Worlds Keys
In previous sections, we assumed that the BID schema

for V p was part of the input; we now consider how to infer
the schema for V p from its definition. Interestingly, we can
efficiently find K such that if V p(K′; H−K′) is representable
for any K′ then V p(K; H −K) is representable. Formally,
we efficiently find a candidate key K for V p.

Definition 4.3. K is a candidate key for V p if V p is
representable if and only if V p is K-block independent.

The central observation to find a candidate K for a fixed
V p is the following:

Proposition 4.1. If V p is K-disjoint in blocks and K′-
block independent then V p |= K →r K′.

Proof Sketch. Suppose that V p 6|= K 6→r K′ then
there is a representation on which the output of V p con-
tains tuples s, t such that s[K] = t[K] but s[K′] 6= t[K′],
s[P] > 0 and t[P] > 0. Since s, t agree on K but, s 6= t
and V p is K-disjoint in blocks this implies s, t are disjoint.
On the other hand, they disagree on K′ which since V p is
K′-block independent implies s, t are independent. Since
a pair of events with positive probability cannot be both
independent and disjoint; we reach a contradiction.

This proposition says something interesting: Informally,
up to→r equivalence, there is a unique choice of K for which
V p(K; H − K) can be representable. Since we can infer
these dependencies in PTIME (Alg. 3), Prop. 4.1 suggests the
efficient algorithm in Alg. 4.

Algorithm 4 Finding a candidate key for V p

Input: V p, a conjunctive view
Output: Candidate key K for V p

1: W p(HW)← DJA(V p)
2: K ← HW

3: for each A ∈ H do
4: if V p |= K − {A} →p H then (* see Alg. 1 *)
5: K ← K − {A}
6: return K (* K is a minimal possible worlds key *)

Theorem 4.3. When there are no functional dependen-
cies in the representation, Algorithm 4 correctly finds a can-
didate key K.

Algorithm 5 Finding a K-Collision for V p

Input: V p(H) :− g1, . . . , gn and K
Output: ‘Yes’ iff V p has a collision
1: for each i, j ∈ 1, . . . , n do
2: (* Make a fresh copy of V p *)

V p
1 (K, H −K) :− g1, . . . , gn

V p
2 (K′,H −K′) :− g′1, . . . , g

′
n

3: if gi is probabilistic and pred(gi) = pred(g′j) then
4: Unify gi[Ki] = g′j [Kj].
5: Let W1 ← DJA(V1), W2 ← DJA(V2)
6: if Chase Succeeds and W1[K] 6= W2[K

′] then
7: return ‘Yes’ (* There is a Collision. *)
8: return ‘No’ (* There is no Collision. *)

Algorithm 6 Practical K-Block Independence

Input: V p(H) a conjunctive view and K ⊆ H
Output: ‘Yes’ only if V p is K-Block Independent

return ‘Yes’ if V p(K; H −K) has no K-Collision.

To get an intuition for Thm. 4.3, we observe that the
returned K ⊆ H satisfies V p |= K →r K′ for any repre-
sentable V p(K′; H). Prop. 3.2 implies that the chase homo-
morphism, θ satisfies θ(K′) ⊆ θ(K). If V p(K; H − K) is
not representable, we show that, θ(K′) ⊂ θ(K). This allows
us to construct a strict subset of K, call it K0, such that
V |= K0 →p H, which is a contradiction to K’s minimality.
In particular, take K0 = θ−1(K′)∩K, which is valid because
θ is surjective (Prop. 3.1).

4.1.4 A Solution for Problem 1
We have now established all the necessary ingredients to

solve problem 1 for conjunctive views, which we summarize
in the following theorem:

Theorem 4.4. Given a conjunctive view V p(H), decid-
ing if there is some K such that output of V p can be repre-
sented as a single BID relation V (K; H−K;P) is decidable.
Further, it is ΠP

2 Complete.

The algorithm first runs Alg. 4 which returns a candidate
key K, which we use as input to Alg. 2.

4.2 Practical Algorithm for Representability
Since the intractable portion of the representability check

is deciding K-block independence, we give a polynomial time
approximation for K-block independence that is sound, i.e.
it says a view is representable only if it is representable.
However, it may not be complete, declaring that a view is
not representable, when in fact it is. The central notion

is a ~k-collision, which intuitively says there are two output
tuples which may depend on input tuples that are not inde-
pendent (i.e. the same tuple or disjoint).

Definition 4.4. A ~k-collision for a view

V p(~k,~a) :− g1, . . . , gn

is a pair of disjoint aware valuations (v, w) such that v(~k) 6=
w(~k) but there exists i, j such that gi that is probabilistic,

pred(gi) = pred(gj) and v(~ki) = w(~kj).

Theorem 4.5. For a view V p(H) and K ⊆ H, if algo-
rithm 6 outputs ‘Yes’ then V p is guaranteed to be K-block
independent. Further, if V p does not contain repeated proba-
bilistic subgoals then algorithm 6 is complete. The algorithm
is PTIME.

When V p does not contain repeated probabilistic subgoals
the algorithm is complete because every probabilistic tuple
in the image of a valuation must be critical. In particu-
lar, the image of gi and gj in the definition of collision are
critical.

Example 4.4. Consider V p
2 (C) in Eq. (3), if we unify

any pair of probabilistic subgoals, we are forced to unify the
head, c. This means that a collision is never possible and we
conclude that V p

2 is C-block independent. Notice that we can
unify the S subgoal for distinct values of c, since S is deter-
ministic, this is not a collision. In V p

1 (c, r) Eq. (2), the fol-
lowing pair (v, w), v(c, r, d) = (‘TD’, ‘D.Lounge’,‘Crab Cakes’)
and w(c, r, d) = (‘TD’, ‘P.Kitchen’, ‘Crab Cakes’), is a col-
lision because v(c, r) 6= w(c, r) and we have unified the keys
of the Rp subgoal. Since there are no repeated probabilistic
subgoals, we are sure that V p

1 is not CR-block independent.

4.3 Extensions and Discussion
Extensions. In a BID instance, tuples in distinct views

must be independent. The following pair of views illustrates
the problem:

V p
x (x) :− T

p(x, y, z;) and V p
y (y) :− T

p(x, y, z;)

Each view is representable by itself. However, all tuples
in T contribute to each view, so the pair of views is not
representable. It is straightforward to extend our test to
handle independence of tuples in distinct views and is left
for the full paper. Additionally, we extend our results to
handle dependencies in the representation in the full paper.

Relation to Query Evaluation. We have observed that
efficient query evaluation for a view and representability are
distinct concepts. To see this, observe that Thm. 4.1 shows
that any single Boolean view is representable. Some Boolean
queries have high complexity (#P) [18, 35]. When a query
has a PTIME algorithm, it is called safe. This implies that
not every representable view is safe. On the other hand,
Ex. 2.1 gives an example of a non-representable view that
has a safe plan. However, not all queries have safe plans,
but for conjunctive queries there are efficient schemes to ap-
proximate probabilities to essentially any desired precision
[36]. Using the result of approximation schemes for materi-
alized view optimizations and providing error guarantees is
an interesting open question.

Complex Correlations. The problem of K-Block In-
dependence is to decide: For tuples s, t, is it the case that
µ(V p

1 (s) ∧ V p
2 (t)) = µ(V p

1 (s))µ(V p
2 (t))? In [32], a similar

problem was studied where V p
1 is a secret query and V p

2 is a
public view and our goal is to determine if the secret query
and public view are independent. It was shown that this
problem is ΠP

2 Complete6. That work used a more restric-
tive tuple independent model in which the FKG inequality
[3] µ(V p

1 (s)∧V p
2 (t)) ≥ µ(V p

1 (s))µ(V p
2 (t)) holds. Fig. 2 shows

that this inequality no longer holds in our setting by showing
a view V p

9 and family of representations such that tuples in

6However, there seems to be no direct reduction to our prob-
lem in the single view case.

K1 A1 P

c
H cH

T cT

K2 A2 P

a
H aH

T aT

b
H bH

T bT

K2 P
a aHcT + aT cH

b bHcT + bT cH

M1(K1; A1;P) M2(K2; A2;P) V p
9 (k2) :− M

p
1(k1; x),
M

p
2(k2; x)

aH bH cH µ(V p
9 (a) ∧ V p

9 (b))
(I) 0.5 0.5 0.5 0.25
(P) 0.9 0.9 0.5 0.41
(N) 0.9 0.1 0.5 0.09

On all three representations, µ(V p
9 (a))µ(V p

9 (b)) = 0.25.

Figure 2: Sample Data for Discussion. If all prob-
abilities are 0.5, V p

9 (a) and V p
9 (b) appear to be inde-

pendent. l ∈ {a, b, c} lH = 1− lT .

V p
9 are positively correlated, negatively correlated or even

independent depending on how we set the probabilities in
the representations. This technical difference is significant
because the proof in [32] is an inductive argument that relies
on the FKG inequality. Since the FKG inequality does not
hold, we must use a completely different technique.

Example 4.5. Consider the family of representations given
in Fig. 2. Consider the query:

V p
9 (k2) :− M

p
1(k1; x), Mp

2(k2; x) (9)

The probabilities are described symbolically in the figure.
Thus, µ(V p

9 (a) ∧ V p
9 (b)) = aHbHcT + aT bT cH . In case (I),

the tuples appear to be pairwise independent, but this does
not hold for every distribution. For example in case (P) the
two tuples are positively correlated, while in (N) they are
negatively correlated. These correlations are possible even
though V p

9 is a very simple conjunctive view. They are the
result of the more sophisticated BID representation system,
which allows disjoint events.

5. PROBLEM 2: QUERYING USING VIEWS
In this section, we study problem 2: Given a conjunctive

query Q written using a materialized view V p is the value
of µ(Q) uniquely defined? Of course, if V p is representable
this problem is trivial: Q’s value is always uniquely defined.

5.1 Partially Representable Views
In contrast to an ordinary probabilistic materialized view

that represents a unique probability distribution, a partially
represented view represents many probability distributions,
each of which we call agreeable.

Definition 5.1. A partial BID view description is a
relational schema with the attributes partitioned into four
classes:

V (KI ; D; A;P)

where KI is called the independence key, KID is called
the disjointness key, A is called the value attribute set
and P is called the probability attribute, a distinguished
attribute taking values in the half-open interval (0, 1].

Example 5.1. Recall that V p
1 (C, R) from Eq. (2) is not

representable. We show that it is partially representable with
syntax: V1(C; R; ∅;P).

The intuition is that a partial representation preserves
marginal probabilities but may not specify all correlations:
If a set of tuples differ on KI , they are independent. If two
distinct tuples agree on KID, they are disjoint. However,
if two tuples agree on KI but disagree on D, they may be
correlated in complicated ways.

Definition 5.2 (Semantics). Given a view V p(H) and
a partition KI , D, A of H, we say V p is partially repre-
sentable if V p is KI-block independent and KID-disjoint
in blocks.

Definition 5.3. A possible world is a set of tuples, I,
that satisfies KID → A. We say a distribution on possible
worlds, µ, agrees with V p(KI ; D; A) if for any set of tuples
I ⊆ O, the output of V p on I (Def. 2.5) such that s, t ∈ I,
s[KI] = t[KI] =⇒ s = t then

µ(
∧
t∈I

V p(t)) =
∏
t∈I

µ(V p(t))

In particular, if D = ∅, then Def. 5.3 coincides with Def 2.2
and so the partial representation uniquely defines a proba-
bility distribution. Any view has a trivial partial represen-
tation with KI = A = ∅ and D = H. In the previous
section, we showed that checking K-block independence is
ΠP

2 -Complete. Thus, the following is immediate:

Theorem 5.1. Given a conjunctive view V p with head H
and K, D, A such that their disjoint union is H i.e. K⊕D⊕
A = H, deciding if the output of V p is partially representable
as V (K; D; A;P) is ΠP

2 -Complete.

5.2 Statement of Main Results
Intuitively, a query’s value fails to be uniquely defined if

it depends on two tuples whose correlation is not specified
by the partial representation. Due to space constraints, we
present queries that use a single partially representable view.

Definition 5.4. A critical pair for a Boolean query Q()
is a pair of distinct tuples (s, t) such that there exists a pos-
sible world I satisfying

I−{s, t} 6|= Q(), I |= Q() and I−{s} |= Q() ⇐⇒ I−{t} |= Q()

Given a partially representable view V p(KI ; D; A), a pair
of tuples (s, t) is called V p-intertwined if s, t ∈ V p and
s[KI] = t[KI] but s[D] 6= t[D].

In contrast to K-doubly critical tuples, the possible world
I must be the same for s, t.

Example 5.2 (Running Example). Consider the par-
tial representation in Ex. 5.1 and the queries:

Q1() :− V p
1 (c, r) and Q2(c) :− V p

1 (c, ‘D.Lounge’)

to
1 and to

2 are a critical pair of tuples for Q1 and are V p
1 -

intertwined. For any fixed c0, there is no critical pair of
tuples of V p

1 -intertwined tuples for Q2(c0).

We state the link between intertwined tuples and distri-
butions that agree with a view.

Proposition 5.1. Given a partially representable view
V p(KI ; D; A), µ be a distribution that agrees with V p and
s, t ∈ V p that are V p-intertwined such that µ(s) 6= 1 and
µ(t) 6= 1 then there exists a distribution ν that agrees with
V p, such that µ(s ∧ t) 6= ν(s ∧ t) and µ(s ∨ t) 6= ν(s ∨ t).

5.2.1 Critical Intertwined Captures Uniqueness
A query Q() is uniquely defined if for any two agreeable

distributions,µ, ν, we have µ(Q()) = ν(Q()). We establish
that the existence of a critical pair of intertwined tuples
captures when a query fails to be uniquely defined.

Lemma 5.1. There exist a critical pair of intertwined tu-
ples for a conjunctive query Q() if and only if Q() is not
uniquely defined.

To see the forward direction consider a conjunctive query
Q. If there is a pair of critical tuples (s, t) for Q(), then there
are two cases: I − {s} |= Q(), in which case Q is satisfied
when either of s, t are present, or I − {s} 6|= Q(), in which
case Q() is satisfied only when s and t are both present.
Since I is a possible world, we can create a representation I
such that s, t are the only tuples with µ 6= 1. For a possible
world J of I, J |= Q() ⇐⇒ J |= s∧ t orJ |= Q() ⇐⇒ J |=
s ∨ t, by Prop. 5.1 neither is uniquely defined. The reverse
direction is an inductive proof that gives less information
and is in the full paper.

Example 5.3 (Continuing Ex. 5.2). A distribution, µ,
that always agrees with V p

1 is the result of inlining of V p
1 in

Q1. Here µ(Q1()) ≈ 0.905. A second distribution that agrees
with V p

1 , ν, is to assume independence. Thus, ν(Q1) =
1 − (1 − 0.72)(1 − 0.602)(1 − 0.32) ≈ 0.924. As we saw in
Ex. 5.2, Q1 does have a critical pair of intertwined tuples.
On the other hand, for each c value, the query Q2 is uniquely
defined, in the example its value is 0.72.

Theorem 5.2. Given a query Q using a partially repre-
sentable view V p, deciding if Q’s value is uniquely defined is
Πp

2 Complete.

Let n = |var(Q)| and C be a set of n2 fresh constants; a
complete algorithm checks that for all possible worlds with
domains in const(Q) ∪ C, there is not a critical pair of
intertwined tuples; this algorithm is in Πp

2.

5.3 Practical Test for Uniqueness

Definition 5.5. Given a schema with a single partially
representable view V p, an intertwined collision for a query
Q(H) is a pair of compatible valuations (v, w) such that

v(~h) = w(~h) and there exists a pair of subgoals, (gi, gj),

such that pred(gi) = pred(gj) = V p, v(~kii) = w(~kij) and

v(~di) 6= w(~dj) where ~kii (~kij) is the list of variables at KI

in gi (resp. gj) and ~di (~dj) is the list of variables at D in
gi (resp. gj).

The algorithm to find an intertwined collision is a straight-
forward extension of finding a K-collision. The key differ-
ence is that we use the Chase to ensure that the valuations
we find are compatible, not individually disjoint aware.

Theorem 5.3. If no intertwined collisions exist for a con-
junctive query Q, then its value is uniquely defined. If the
partially representable view symbol V p is not repeated, this
test is complete. The test can be implemented in PTIME.

Proof Sketch. We sketch the soundness argument in
the special case of a Boolean query Q(). We show that
if there exists a critical intertwined pair (s, t) for Q, then

there must be an intertwined collision. Let I be the instance
provided by Def. 5.4. Suppose, I − {s} |= Q(). Since I −
{s, t} 6|= Q(), the image of any valuation v that witnesses
I − {s} |= Q() must contain t. By symmetry, the image of
any valuation that witnesses I −{t} |= Q() must contain w.
It is easy to see that (v, w) is compatible and hence (v, w)
is an intertwined collision. If I − {s} 6|= Q() then there is
a single valuation v which uses both s, t. Thus, (v, v) is an
intertwined collision.

Example 5.4. In V p
1 , KI = {C} and D = {R}. An in-

tertwined collision for Q1 is v(c, r) = (‘TD’, ‘D.Lounge’) and
w(c, r) = (‘TD’, ‘P.Kitchen’), thus Q’s value is not uniquely
defined. On the other hand, in Q2, trivially there is no in-
tertwined collision and so Q2’s value is uniquely defined.

5.4 Discussion
Optimization. In an optimizer, we would like syntactic

independence [10], which is the ability to rewrite a query
Q that does not use a materialized view V into an equiv-
alent Q′ that does use V . The same theory applies, but
we must additionally check that Q′ correctly uses a view as
described in Sec. 5.2. A key difference in query optimiza-
tion is that we usually have access to the view definitions.
When the view definitions are present, a partial represen-
tation for a view essentially strips the view’s lineage. If a
query’s value is uniquely defined, its value is the same as
inlining the view definition. In the full paper, we show that
deciding uniqueness in this setting is Πp

2 complete and give
PTIME approximations.

Best Parital Representation. A view V p(H) may have
many partial representations, which differ in how H is par-
titioned into K, D, A. If V p(K; D; A) and V p(K′; D′; A′)
are valid partial representations then there is a valid partial
representation V p(K ∪K′; D′′, A′′) for some D′′, A′′. Thus,
there is a single best (i.e. largest) choice of K, but this K is
difficult to find (Thm. 5.1). In practice, a good choice for K
is the intersection of the possible worlds key of each prob-
abilistic subgoal. This choice is correct, i.e. there is some
choice of D, A such that V p(K; D; A) is representable, but
may there may be a larger K. Once we have chosen K, the
next step is to choose D and A. Ideally, D should be empty
and so V p is representable, but this is not always possible.
In general, there is no best choice for D, A (smallest D), e.g.

V p(x, y, z) :− R
p(x, y; z), Sp(x, z; y)

This view is not representable, so |D| ≥ 1. However, |D| = 1
is possible with either V p(x; y; z) or V p(x; z; y).

View Selection. Informally, the view selection problem
[12] is to select given a set of queries Q, the workload and
a space budget B, choose a set of views V to materialize
within the space budget B to minimize the cost of Q. In
the probabilistic setting, we now also check each q ∈ Q is
uniquely defined using V. The new twist is that the cost
function has a large step: If a query Q can be executed using
a safe plan [18, 35] over a view V , the cost of executing Q
is dramatically lower.

6. RELATED WORK
Materialized views are a fundamental technique used to

optimize queries [1, 10, 24, 27] and as a means to share,
protect and integrate data [32, 40] that are currently imple-
mented by all major database vendors. Because the com-
plexity of deciding when a query can use a view is high,

there has been a considerable amount of work on making
query answering using views algorithms scalable [24, 34]. In
the same spirit, we provide efficient practical algorithms for
our representability problems.

Recently, probabilistic databases have received attention
because of their ability to deal with uncertainty resulting
from data cleaning tasks [4, 36], information extraction [9,
26] and sensor data [21, 29]. This has resulted in several
systems [7, 21, 38, 41] with accompanying work on proba-
bilistic query processing [11, 18, 35, 36, 39]. Prior art has
considered using a representation system [20, 36, 38] that
can represent every conjunctive view. Typically, these sys-
tems use base tables that are similar to BID representations
but then introduce auxiliary information (e.g. lineage [41]
or factors [38]) to track correlations introduced by query
processing.

In prior art [20], the following question is studied: Given
a class of queries Q is a particular representation formalism
closed for all Q ∈ Q? In contrast, our test is more fine-
grained: For any fixed conjunctive Q, is the BID formalism
closed under Q? Also relevant for expanding the class of
practical algorithm is the recent work in [31].

7. EXPERIMENTS
In this section we answer three main questions: To what

extent do representable and partially representable views oc-
cur in real and synthetic data sets? How much do probabilis-
tic materialized views help query processing? How expensive
are our proposed algorithms for finding representable views?

7.1 Experimental Setup
Data Description. We experimented with a variety

of real and synthetic data sets including: a database from
iLike.com [13], the Northwind database (NW) [14], the Ad-
venture Works Database from SQL Server 2005 (AW)[15]
and the TPC-H benchmark (TPCH) [16]. We manually cre-
ated several probabilistic schemata based on the Adventure
Works [15], Northwind [14] and TPC-H data which are de-
scribed in Fig. 4.

Queries and Views. We interpreted all queries and
views with scalar aggregation as probabilistic existence op-
erators (i.e. computing the probability a tuple is present).
iLike, Northwind and Adventure Works had predefined views
as part of the schema. We created materialized views for
TPC-H using an exhaustive procedure to find all subqueries
that were representable, did not contain cross products and
joined at least two probabilistic relations.

Real data: iLike.com. We were given query logs and
the relational schema of iLike.com, which is interesting for
three reasons: It is a real company, a core activity of iLike is
manipulating uncertain data (e.g. similarity scores) and the
schema contains materialized views. iLike’s data, though
not natively probabilistic, is easily mapped to a BID repre-
sentation. The schema contains over 200 tables of which a
handful contain uncertain information. The workload trace
contains over 7 million queries of which more than 100,000
manipulated uncertain information contained in 5 views. Of
these 100,000 queries, we identified less than 10 query types
which ranged from simple selections to complicated many
way joins.

Performance Data. All performance experiments use
the TPC-H data set with a probabilistic schema contain-
ing uncertainty in the part, orders, customer, supplier

Figure 3: (a) Percentage by workload that are representable, non-trivially partially representable or not
representable. We see that almost all views have some non-trivial partial representation. (b) Running times
for Query 10 which is safe. (c) Retrieval times for Query 5 which is not safe. Performance data is TPC-H
(0.1, 0.5, 1G) data sets. All running times in seconds and on logarithmic scale.

Schema Tables (w/P)
AW 18 (6)
AW2 18 (3)
NW1 16 (2)
NW2 16 (5)
NW3 16 (4)

TPC-H 8 (5)

Size (w/P) Tuples (w/P)
0.1 (440M) 3.3M (2.4M)
0.5 (2.1G) 16M (11.6M)
1.0 (4.2G) 32M (23.2M)

(a) (b)

Figure 4: Schema and TPC Data statistics. (a) Num-

ber of tables referenced by at least one view and number

of probabilistic tables (i.e. with attribute P). (b) Size and

(w/P) are in Gb. The number of deterministic and proba-

bilistic tuples is in millions.

and lineitem tables. We used the TPC-H tool dbgen to
generate relational data. The data in each table marked
as probabilistic was then transformed by uniformly at ran-
dom injecting additional tuples such that each key value was
expected to occur 2.5 times. We allowed for entity uncer-
tainty, that is, the sum of probabilities for a possible worlds
key may be less than 1.

System Details. Our experimental machine was a Win-
dows Server 2003 machine running SQL Server 2005 with
4GB of RAM, 700G Ultra ATA drive and dual Xeon (3GHz)
processors. The Mystiq engine is a middleware system that
functions as a preprocessor and uses a complete approach
[7, 36]. The materialized view tools are implemented us-
ing approximately 5000 lines of OCaml. After importing all
probabilistic materialized views, we tuned the database us-
ing only the SQL Server Database Engine Tuning Advisor.

Execution Time Reporting Method. We reduced
query time variance by executing each query seven times,
dropping the highest and lowest times and averaging the re-
maining five times. In all reported numbers, the variance of
the five runs was less than 5% of query execution time.

7.2 Question 1: Do Representable and Par-
tially Representable views exist?

In Fig. 3(a), we show the percentage of views in each work-

load that is trivially representable because there are no prob-
abilities in the view (TRIVIAL), representable (REP), non-
trivially partially representable (PARTIAL) or only trivially
partially representable (NOTREP). In iLike’s workload, 4 of
the 5 views (80%) are representable. Further, 98.5% of the
over 100k queries that manipulate uncertain data use the
representable views. In synthetic data sets, representable
views exist as well. In fact, 50% or more of the views in
each data set except for AW are representable. Overall,
63% of views are representable. 45% of the representable
views are non-trivially representable. Additionally, almost
all views we examined have a non-trivial partial represen-
tations (over 95%). We conclude that that representable
and partially representable views exist and can be used in
practice.

7.3 Question 2: Do our techniques make query
processing more efficient?

The TPC data set is the basis for our performance exper-
iments because it is reproducible and the data can be scaled
arbitrarily. We present queries 5 and 10, because they both
have many joins (6 and 4) and they are contrasting: Query
10 is safe [18, 35], and so can be efficiently evaluated by
a modified SQL query. Query 5 is unsafe and so requires
expensive Monte Carlo techniques. Graphs 3(b) and 3(c)
report the time taken to execute the query and retrieve the
results. For query 10, this is the total time for execution
because it is safe. In contrast, query 5 requires additional
Monte Carlo techniques to compute output probabilities.

Graph Discussion. In Fig. 3(b), we see running times of
query 10 without probabilistic semantics (PTPC), as a safe
plan (SAFE), with a subview materialized and retaining lin-
eage (LIN) and the same subview without lineage (NOLIN).
LIN is equivalent to a standard materialized view optimiza-
tion; the lineage information is computed and stored as a
table. In NOLIN, we discard the lineage and retain only
the probability that a tuple appears in the view. The graph
confirms that materializing the lineage yields an order of
magnitude improvement for safe queries because we do not
need to compute three of the four joins at query execution

time. Interestingly, the bars for NOLIN show that precom-
puting the probabilities and ignoring the lineage yields an
additional order of magnitude improvement. This optimiza-
tion is correct because the materialized view is representable.
This is interesting because it shows that being aware of when
we can remove lineage is helpful even for safe plans.

As a baseline, Fig. 3(c) shows the query execution times
for query 5 without probabilistic semantics but using the
enlarged probabilistic tables (PTPC). Fig. 3(c) also shows
the cost of retrieving the tuples necessary for Monte Carlo
simulation (MC). Similarly, we also see the cost when ma-
terializing a view and retaining lineage (LIN) and when we
precompute the probabilities and discard the lineage (NO-
LIN). For (MC) and (LIN), the extra step of Monte Carlo
Simulation is necessary which for TPC 0.1 (resp. TPC 0.5,
TPC 1) requires an additional 13.62 seconds (resp. 62.32s,
138.21s). Interestingly, query 5 using the materialized view
does not require Monte Carlo Simulation because the rewrit-
ten query is safe. Thus, the time for NOLIN is an end-to-end
running time and so we conclude that our techniques offer
four order of magnitude improvement over materializing the
lineage alone (8.2s+138.21s with lineage v. 0.03s without).

7.4 Question 3: How costly are our algorithms?
All views listed in this paper were correctly classified by

our practical algorithm (Alg. 6), which always executes in
well under 1 second. Finding all representable or partially
representable sub-views for all but two queries completed in
under 145 seconds; the other two queries completed in under
an hour. Materializing views for unsafe queries completed
under 1.5 hours for all results reported in the paper. How-
ever, this is an offline process and can be parallelized because
it can utilize multiple separate Monte Carlo processes.

8. CONCLUSION
We have formalized and solved the problems of repre-

sentability and using partial representable views to answer
queries in the case of conjunctive views and queries. We have
shown that representable and partially representable views
exist in real and synthetic data sets and demonstrated that
understanding representability is a large optimization win
even in complete approaches.

Acknowledgements This work was partially supported
by NSF ITR IIS-0428168, NSF IIS- 0454425, Suciu’s CA-
REER NSF IIS-0092955 grant, and a gift from Microsoft.

9. REFERENCES
[1] S. Abiteboul and O. Duschka. Complexity of answering queries

using materialized views. pages 254–263, 1998.
[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations

of Databases. Addison Wesley Publishing Co, 1995.
[3] N. Alon and J. Spencer. The Probabilistic Method. John Wiley,

1992.
[4] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over

dirty databases. In ICDE, 2006.
[5] F. Bacchus, A.J. Grove, J.Y. Halpern, and D.Koller. Generating

new beliefs from old. In Proceedings of UAI, pages 37–45, 1994.
[6] Daniel Barbara, Hector Garcia-Molina, and Daryl Porter. The

management of probabilistic data. IEEE Trans. Knowl. Data
Eng., 4(5):487–502, 1992.

[7] J. Boulos, N .Dalvi, B. Mandhani, S. Mathur, C. Ré, and
D. Suciu. Mystiq: A system for finding more answers by using
probabilities. In SIGMOD, 2005. system demo.

[8] P. Buneman, A. Chapman, and J. Cheney. Provenance
management in curated databases. In SIGMOD Conference,
pages 539–550, 2006.

[9] M.J. Cafarella, C. Ré, D. Suciu, and O. Etzioni. Structured
querying of web text data: A technical challenge. In CIDR,
pages 225–234. www.crdrdb.org, 2007.

[10] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim.
Optimizing queries with materialized views. icde, 00:190, 1995.

[11] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD, 2003.

[12] R. Chirkova, A. Halevy, and D. Suciu. A formal perspective on
the view selection problem. In Proceedings of VLDB, Rome,
Italy, September 2001.

[13] Garage Band Corp. www.ilike.com.
[14] Microsoft Corp. Northwind for sql server 2000.
[15] Microsoft Corp. Sql server 2005 samples (feb. 2007).
[16] Transaction Processing Performance Council. Tpc-h (ad-hoc,

decision support) benchmark. http://www.tpc.org/.
[17] Y. Cui and J. Widom. Lineage tracing for general data

warehouse transformations. VLDBJ, 12(1):41–58, 2003.
[18] N. Dalvi and D. Suciu. Efficient query evaluation on

probabilistic databases. In VLDB, Toronto, Canada, 2004.
[19] N. Dalvi and D. Suciu. Management of probabilisitic data:

Foundations and challenges. In PODS, pages 1–12, 2007.
[20] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.

Working models for uncertain data. In ICDE, 2006.
[21] A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, and

W. Hong. Model-driven data acquisition in sensor networks. In
VLDB, pages 588–599, 2004.

[22] A. Deutsch, L. Popa, and V. Tannen. Physical data
independence, constraints and optimization with universal
plans. In VLDB, 1999.

[23] O. Etzioni, M .Banko, and M.J. Cafarella. Machine reading. In
AAAI. AAAI Press, 2006.

[24] J. Goldstein and P. Larson. Optimizing queries using
materialized views: a practical, scalable solution. In SIGMOD
2001, pages 331–342, New York, NY, USA, 2001. ACM Press.

[25] T.J. Green and V. Tannen. Models for incomplete and
probabilistic information. IEEE Data Engineering Bulletin,
29(1):17–24, March 2006.

[26] R. Gupta and S. Sarawagi. Curating probabilistic databases
from information extraction models. In Proc. of the 32nd Int’l
Conference on Very Large Databases (VLDB), 2006.

[27] A. Halevy. Answering queries using views: A survey. VLDB
Journal, 10(4):270–294, 2001.

[28] T.S. Jayram, R. Krishnamurthy, S. Raghavan,
S. Vaithyanathan, and H. Zhu. Avatar information extraction
system. IEEE Data Engineering Bulletin, 29(1), 2006.

[29] N. Khoussainova, M. Balazinska, and D. Suciu. Probabilistic
rfid data management. Technical Reprot TR2007-03-01,
University of Washington, Seattle, Washington, March 2007.

[30] L. Lakshmanan, N. Leone, R. Ross, and V.S. Subrahmanian.
Probview: A flexible probabilistic database system. ACM
Trans. Database Syst., 22(3), 1997.

[31] A. Machanavajjhala and J .Gehrke. On the efficiency of
checking perfect privacy. In Stijn Vansummeren, editor, PODS,
pages 163–172. ACM, 2006.

[32] G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. In SIGMOD, 2004.

[33] O.Etzioni, M.J. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soderland, D.S. Weld, and A. Yates. Web-scale
information extraction in knowitall: (preliminary results). In
WWW, pages 100–110, 2004.

[34] R. Pottinger and A. Halevy. Minicon: A scalable algorithm for
answering queries using views. The VLDB Journal,
10(2-3):182–198, 2001.

[35] C. Ré, N. Dalvi, and D. Suciu. Query evaluation on
probabilistic databases. IEEE Data Engineering Bulletin,
29(1):25–31, 2006.

[36] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation
on probabilistic data. In Proceedings of ICDE, 2007.

[37] C. Ré and D. Suciu. Materialized views in probabilsitic
databases for information exchange and query optimization
(full version). Technical Report TR2007-03-02, University of
Washington, Seattle, Washington, March 2007.

[38] P. Sen and A. Deshpande. Representing and querying
correlated tuples in probabilistic databases. In Proceedings of
ICDE, 2007.

[39] M. Soliman, I.F. Ilyas, and K. Chen-Chaun Chang. Top-k
query processing in uncertain databases. In Proceedings of
ICDE, 2007.

[40] J. D. Ullman. Information integration using logical views. In
ICDT, volume 1186 of Lecture Notes in Computer Science,
pages 19–40. Springer, 1997.

[41] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In CIDR, pages 262–276, 2005.

