
Materialized Views in Probabilistic Databases

For Information Exchange and Query Optimization

(Full Version)

University of Washington Technical Report

#TR2007-03-02

Christopher Ré

University of Washington

chrisre@cs.washington.edu

Dan Suciu

University of Washington

suciu@cs.washington.edu

Abstract

Views over probabilistic data contain correlations between tuples, and the current approach is to capture these correla-

tions using explicit lineage. In this paper we propose an alternative approach to materializing probabilistic views, by giving

conditions under which a view can be represented by a block-independent disjoint (BID) table. Not all views can be rep-

resented as BID tables and so we propose a novel partial representation that can represent all views but may not define a

unique probability distribution. We then give conditions on when a query’s value on a partial representation will be uniquely

defined. We apply our theory to two applications: query processing using views and information exchange using views.

In query processing on probabilistic data, we can ignore the lineage and use materialized views to more efficiently answer

queries. By contrast, if the view has explicit lineage, the query evaluation must reprocess the lineage to compute the query

resulting in dramatically slower execution. The second application is information exchange when we do not wish to disclose

the entire lineage, which otherwise may result in shipping the entire database. The paper contains several theoretical results

that completely solve the problem of deciding whether a conjunctive view can be represented as a BID and whether a query

on a partial representation is uniquely determined. We validate our approach experimentally showing that representable

views exist in real and synthetic workloads and show over three magnitudes of improvement in query processing versus a

lineage based approach.

1

1 Introduction

A view over probabilistic data contains correlations between tuples which make views expensive to represent. Currently,

materialized views are based on a complete approach (e.g. [20, 37, 38]) which can represent any conjunctive view but

requires storing auxiliary information (e.g. lineage [20]). Lineage (or provenance [18]) has many advantages, especially

for scientific applications [7]. However, there are important drawbacks with lineage for information exchange and query

optimization using views. In query optimization using views, to compute probabilities correctly we must determine how

tuples are correlated. Inspecting the lineage of tuples in a view at query execution time is expensive since the lineage of a

single tuple can be as large as the database. In contrast, if we can prove that all tuples in the view are independent, we do

not need to examine the lineage at execution time. Further, we can optimize our query to use much more efficient query

processing techniques (e.g. safe plans [19, 36, 37]). In some applications of exchanging views of probabilistic data, using

lineage to describe the data semantics is not an option. For example, we may not want to disclose any lineage (e.g. B2B

applications) or the size of the lineage may be prohibitive. We study if a view can be understood without the full lineage.

In this paper, we consider the block-independent disjoint (BID) formalism. Informally, each relation is partitioned into

blocks that are disjoint but, across blocks, tuples are independent. The BID formalism captures many representations previ-

ously discussed in the literature (e.g. tuple independent [19, 31], p-or tables [26], ?-tables and x-relations [20]). We study the

view representation problem (Problem 1) which is to decide: Given a conjunctive view V , is the output of V representable

as a BID table? Not all views can be represented as BID tables and so we propose a partial representation which can

represent any view but may not specify how all tuples in a view correlate. Because all correlations among tuples are not

defined, many probability distributions can agree with a single partially representable view which can cause a query’s value

to fail to be uniquely defined. This motivates us to study the partial view answering problem (Problem 2) which is: Given

a query Q using partially representable views, is Q’s value uniquely defined?

We validate our solutions using data given to us by iLike.com [13], a service provided by the music site GarageBand

[12] which provides users with recommendations for music and friends. iLike has three characteristics which make it a

good candidate for materialized views. First, the data are uncertain because the recommendations are based on similarity

functions. Second, the database is large (e.g. tens of gigabytes) and backs an interactive website with many users; hence,

query performance is important. Third, the database hosts more than one service, implying that there are integration issues.

Probabilistic materialized views are a tool that addresses all three of these issues. Interestingly, materialized views are present

in iLike. Since there is no support for uncertain views, the materialized views are constructed in an ad-hoc manner and require

care to use correctly. Our experiments show that 80% of the materialized views in iLike are representable by BID tables and

more than 98.5% of their workload could benefit from our optimizations. We also experiment with synthetic workloads and

find that the majority of queries can benefit from our techniques. Using the techniques described in this paper, we are able

2

Chef Restaurant P
TD D. Lounge 0.9 (w1)
TD P. Kitchen 0.7 (w2)
MS C. Bistro 0.8 (w3)

Restaurant Dish
D. Lounge Crab Cakes
P. Kitchen Crab Cakes
P. Kitchen Lamb
C. Bistro Fish

Chef Dish Rating P

TD Crab Cakes
High 0.8 (r11)
Med 0.1 (r12)
Low 0.1 (r13)

TD Lamb High 0.3 (r21)
Low 0.7 (r22)

MS Fish High 0.6 (r31)
Low 0.3 (r32)

W(Chef,Restaurant;;P) (WorksAt) S(Restaurant,Dish) (Serves) R(Chef,Dish;Rating;P) (Rated)

Figure 1. Sample Restaurant Data in Alice’s Database. In WorksAt each tuple is independent. There
is no uncertainty about Serves. In Rated, each (Chef,Dish) pair has one true rating. The syntax is
described in def. 2.1.

to achieve speed ups of more than three orders of magnitude on large probabilistic data sets (e.g. TPC 1G with additional

probabilities). A summary of our contributions:

• We solve the view representation problem for the case of conjunctive views over BID databases (def. 2.2) which capture

several representations in the literature [10, 19, 37, 39, 41]. Specifically:

– We give a sound and complete algorithm for finding a representation when one exists and prove that the decision

is ΠP
2 Complete in general. (Sec. 4.1)

– We give a polynomial time approximation for the view representation problem which is sound, but not complete.

We show that it is complete for all queries without self-joins. (Sec. 4.2)

• We solve the probabilistic materialized view answering problem for the case of conjunctive queries and conjunctive

views.

– We propose a partial representation system to handle views that are not representable. (Sec. 5.1)

– We give a sound and complete algorithm to decide if Q correctly uses a partially represented view and prove this

decision is ΠP
2 -Complete. (Sec. 5.2)

– We give a polynomial time approximation for the probabilistic materialized view answering problem that is

sound, but not complete. We show that it is complete for queries without repeated probabilistic views. (Sec. 5.3)

• We validate our techniques experimentally (Sec. 7), showing that representable views exist in practice, that our tech-

niques yield several orders magnitude improvement and that our practical algorithms are almost always complete.

2 Problem Definition

3

Our running example is a scenario in which a user, Alice, maintains a restaurant database that is extracted from web

data and she wishes to send data to Bob. Alice’s data are uncertain because they are the result of information extraction

[34, 27, 29] and sentiment analysis [23]. A natural way for her to send data to Bob is to write a view, materialize its result and

send the result to Bob. We begin with some preliminaries about probabilistic databases based on the possible worlds model

[5] and will discuss the data in Fig. 1.

2.1 Representation Formalism

Definition 2.1 (Syntax for Representations). A block independent disjoint table description (BID table description) is a

relational schema with the attributes partitioned into three classes separated by semicolons:

R(K1, . . . ,Kn; A1, . . . , Am; P)

where K = {K1, . . . ,Kn} is called the possible worlds key, A = {A1, . . . , An} is called the value attribute set and P is a single

distinguished attribute called the probability attribute; its type is a value in the half-open interval (0, 1].

Semantics. Representations contain probability attributes (P) but the worlds they represent do not. For example, a BID

table description R(K; A; P) with distinguished attribute P corresponds to a BID symbol Rp(K; A) with no attribute P1. A

representation yields a distribution on possible worlds over BID symbols.

Definition 2.2. Given an instance of a BID table description R(K; A; P) = {tr
1, . . . , t

r
n}, a possible world is a subset of tuples,

I, without the attribute P that satisfies the key constraint K → A. Let AK(I) = {k | ∃i tr
i [K] = k ∧ ∀t ∈ I tr

i [K] , t[K]}. The

probability of possible world I, denoted µ(I), is defined as:

µ(I) =

Present Tuples︷ ︸︸ ︷
(

n∏
i=1:tr

i [KA]∈I

tr
i [P]) (

∏
k∈AK(I)

(1 −
n∑

j=1:tr
j[K]=k

tr
j[P]))

︸ ︷︷ ︸
Absent Tuples

Informally, Def. 2.2 says three things: The marginal probability of each tuple, µ(t), satisfies µ(t) = tr[P], any set of tuples,

t1, . . . , tm with distinct keys are independent (i.e. µ(t1 ∧ · · · ∧ tm) =
∏m

i=1 µ(ti)) and any two distinct tuples s, t that share the

same possible worlds key are disjoint, µ(s ∧ t) = 0.

We shall refer to a schema that contains both deterministic and BID table descriptions as a BID schema and an instance

of a BID schema as a BID instance.
1To emphasize this distinction, we will use a typewriter faced symbol with a superscripted p (e.g. Rp(K; A)) to denote the BID symbol corresponding to

the BID table description R(K; A; P). For deterministic tables, this distinction is immaterial.

4

Definition 2.3. A possible world I for a BID instance R1, . . . Rn consists of a n possible worlds I1, . . . , In with measures

µ1, . . . , µn, one for each Ri, and its probability is defined as µ(I) =
∏n

i=1 µi(Ii).

Definition 2.4 (Conjunctive View). A view is a conjunctive query of the form:

V p(~h) D g1, . . . , gn (1)

where each gi is a subgoal, that is either a BID symbol (e.g. Rp) in which case we say gi is probabilistic or a deterministic

table (e.g. S). The set of variables in V p is denoted var(V p) and the set of head variables ~h ⊆ var(V p). The natural schema

associated with V p is the list of head variables denoted by H.

Definition 2.5 (View Semantics). Given a view V p(H), the marginal probability of a tuple t in the output of V p is denoted

µ(V p(t)) and satisfies:

µ(V p(t)) =
∑

I:I |= V p(t)

µ(I)

We will denote by V p(I), the output of the view on the representation which is the set {(t1, p1), . . . , (tm, pm)} such that for

each i ∈ {1, . . .m}, µ(V p(ti)) = pi > 0. pi is the marginal probability that V p(ti) is satisfied.

2.2 Running Example

Sample data is shown in Fig. 1 for Alice’s schema that contains three relations described in BID syntax: W (WorksAt), S

(Serves) and R (Rating). The relation W records chefs, who may work at multiple restaurants in multiple cities. The tuples

of W are extracted from text and so are uncertain. For example, (‘TD’, ‘D. Lounge’) (w1) in W signifies that we extracted

that ‘TD’ works at ‘D.Lounge’ with probability 0.9. Our syntax tells us that all tuples are independent because they all have

different possible worlds keys. The relation R records the rating of a chef’s dish (e.g. ‘High’ or ‘Low’). Each (Chef,Dish)

pair has only one true rating. Thus, r11 and r13 are disjoint because they rate the pair (‘TD’, ‘Crab Cakes’) as both ‘High’ and

‘Low’. Because distinct (Chef,Dish) pair ratings are extracted independently, they are associated to ratings independently.

Semantics. In W, there are 23 possible worlds. For example, the probability of the singleton subset {(‘TD’, ‘D. Lounge’)}

is 0.9 ∗ (1− 0.7) ∗ (1− 0.8) = 0.054. This representation is called a p-?-table [26], ?-table [20] or tuple independent [19]. The

BID table R yields 3 ∗ 2 ∗ 3 = 18 possible worlds since each (Chef,Dish) pair is associated with at most one rating. When the

probabilities shown sum to 1, there is at least one rating for each pair. For example, the probability of the world {r11, r21, r31}

is 0.8 ∗ 0.3 ∗ 0.6 = 0.144. R is a slight generalization of p-or-set-table [26] or x-table [20].

5

2.2.1 Representable Views

Alice wants to ship her data to Bob, who wants a view with all chefs and restaurant pairs that make a highly rated dish. Alice

obliges by computing and sending the following view:

V p
1 (c, r) D Wp(c, r), S(r, d), Rp(c, d; ‘High’) (2)

In the following example data, we calculate the probability of a tuple appearing in the output both numerically in the P

column and symbolically in terms of other tuple probabilities of Fig. 1. We calculate the probabilities symbolically only for

exposition; the output of a query or view is a set of tuples matching the head with associated probability scores.

Example 2.1 (Output of V p
1 from Eq. (2)).

C R P (Symbolic Probability)

to
1 TD D. Lounge 0.72 w1r11

to
2 TD P.Kitchen 0.602 w2(1 − (1 − r11)(1 − r21))

to
3 MS C.Bistro 0.32 w3r31

The output tuples, to
1 and to

2, are not independent because both depend on r11. This lack of independence is problematic for

Bob because a BID instance cannot represent this type of correlation. Hence we say V p
1 is not a representable view. For Bob

to understand the data, Alice must ship the lineage of each tuple. For example, it would be sufficient to ship the symbolic

probability polynomials in Ex. 2.1.

Consider a second view where we can be much smarter about the amount of information necessary to understand the view.

In V p
2 , Bob wants to know which working chefs make and serve a highly rated dish:

V p
2 (c) D Wp(c, r), S(r, d), Rp(c, d; ‘High’) (3)

Example 2.2 (Output of V p
2 from Eq. (3)).

c P (Symbolic Probability)

TD 0.818 r11(1 − (1 − w1)(1 − w2)) + (1 − r11)(w2r21)

MS 0.48 w3r31

Importantly, Bob can understand the data in Ex. 2.2 with no auxiliary information because the set of events contributing

to ‘TD’ and those contributing to ‘MS’ are independent. It can be shown that over any instance, all tuples contributing

to distinct c values are independent. Thus, V p
1 is a representable view. This motivates us to understand the following

fundamental question:

Problem 1 (View Representabilty). Given a view V p, can the output of V p be represented as a BID table?

6

It is interesting to note that efficiency and representability are distinct concepts: Computing the output of V p
1 can be done

in polynomial time but its result is not representable. On the other hand, computing V p
2 can be shown to be #P-Hard [19, 36],

but V p
2 is representable. To process V p

2 , we must use Monte Carlo procedures (e.g. [37]), which are orders of magnitude

more expensive than traditional SQL processing. We do not discuss evaluation further because our focus is not on efficiently

evaluating views, but on representing the output of views.

2.2.2 Partially Representable Views

To optimize and share a larger class of views, we would like to use the results of views that are not representable. The output

of a non-representable view still has meaning: It contains the marginal probabilities that each tuple appears in the view but

may not describe how all tuples correlate. Consider the output of V p
1 in Ex. 2.1: Tuples that agree on c are correlated, but

tuples with different c values are independent. To capture this, we define a partially representable view (def. 5.3) which has

schema V p(KI ; D; A). The intuition is that tuples that differ on KI are guaranteed to be independent, and distinct tuples which

agree on KI D are guaranteed to be disjoint. Tuples that agree on KI but not on D may be correlated.

Example 2.3. Recall the view V p
1 in Eq. (2), whose natural schema is V p(C,R). It is partially representable as V p

1 (C; R; ∅)

(i.e. KI = {C}, D = {R} and A = ∅). Tuples that differ on C are independent, but those that agree on C but differ on R may

be correlated in unknown ways. Thus, the materialized view does have some meaning for Bob, but does not contain sufficient

information to completely determine a probability distribution on its possible worlds.

Trivially, any view V p(H) can be partially represented by letting KI = A = ∅ and D = H. Thus the interesting question is:

What is the complexity to decide, for a given KI ,D, A, if a view V p is partially representable?

2.2.3 Using Views to Answer Queries

In an information exchange setting, we do not have access to the base data and so for partially representable views may not

know how all tuples are correlated. Thus, to answer a query Q, we need to ensure that the value of Q does not depend on

correlations that are not captured by the partial representation. To illustrate, we attempt to use the output of V p
1 , a partially

representable view, to answer two queries.

Example 2.4. Suppose Bob has a local relation, Lp(d; r), where d is a possible worlds key for L. Bob wants to answer the

following queries:

Qu(d) D Lp(d; r),V p
1 (c, r) and Qn(c) D V p

1 (c, r)

Since the materialized view V p
1 does not uniquely determine a probability distribution on its possible worlds, it is not immedi-

ately clear that Bob can answer these queries without access to Alice’s database and to V p
1 ’s definition. However, the query

7

Qu is uniquely defined. For any fixed d0, the set of ri values such that Lp(d0; ri) partition the possible worlds:

µ(Qu(d0)) =
∑

ri:I|=Lp(d0;ri)

µ(Lp(d0; ri) ∧ ∃c V p
1 (c, ri))

The partial representation V p
1 (C; R; ∅), tells us that distinct values for c in V p

1 are independent. Thus, each term in the

summation is uniquely defined implying Qu is uniquely defined. In contrast, Qn is not uniquely defined because Qn(‘TD’) is

true when either of to
1 or to

2 are present; our partial representation does not capture the correlation of the pair (to
1, t

o
2).

This example motivates the following problem:

Problem 2 (View Answering). Let V p be a partially representable view. Given a query Q using V p, is the value of Q uniquely

defined?

If V p is representable, then this problem is trivial because V p uniquely defines a probability distribution.

3 Preliminaries

We define notations we need in the remainder of the paper.

Definition 3.1. A valuation v for a view V p is a mapping from variables and constants in V p to constants which is identity

on constants ([2]). Given a valuation we let im(v) denote the image of v.

We define a subset of valuations called disjoint aware valuations which associate each possible worlds key value to

exactly one attribute value. Recall the definition of a view in Eq. (1); if gi is probabilistic, we let ~ki (resp. ~ai) denote the

list of variables or constants in the possible world key attribute positions (resp. value attribute positions)2. For a subgoal gi,

pred(gi) denotes the predicate associated to gi.

Definition 3.2 (Disjoint Aware Valuation). A valuation, v, for a conjunctive view is disjoint aware if

∀i, j pred(gi) = pred(g j) and v(~ki) = v(~k j) =⇒ v(~ai) = v(~a j)

Example 3.1 (Disjoint Aware Valuations).

V p
4 () D Rp(x, y; ‘High’), Rp(x, z; ‘Low’) (4)

Any valuation v such that v(y) , v(z) is disjoint aware but if v(y) = v(z), it is not.

2We assume deterministic tables do not have keys.

8

We need to consider pairs of valuations that do not use disjoint events, called compatible valuations.

Definition 3.3. A pair of disjoint aware valuations (v,w) for a view V p is called compatible if the pair satisfies:

∀i, j pred(gi) = pred(g j) and v(~ki) = w(~k j) =⇒ v(~ai) = w(~a j)

3.1 Generalizing Functional Dependencies

There are three distinct notions of functional dependencies over variables in the body of a view that we need to consider:

standard functional dependencies, denoted V p |= ~a → ~b, representation functional dependencies, denoted V p |= ~a →r ~b, and

possible worlds dependencies, denoted V p |= ~a→p ~b.

Definition 3.4. For a pair of valuations (v,w) for V p, let †(v,w) denote the property:

v(~a) = w(~a) =⇒ v(~b) = w(~b)

Then we write:

• V p |= ~a→ ~b if †(v,w) for any valuations.

• V p |= ~a→r ~b if †(v,w) for any disjoint aware valuations.

• V p |= ~a→p ~b if †(v,w) for any compatible valuations.

V p |= ~a→ ~b if and only if ~b ⊆ ~a as sets of variables3. To see how these definitions relate, it is immediate that:

V p |= ~a→ ~b =⇒ V p |= ~a→r ~b =⇒ V p |= ~a→p ~b

We show by example that both reverse implications fail:

Example 3.2. Consider a BID table U(K; A; P) and a deterministic binary table D(B,C).

V p
5 (x, y, z) D Up(x; y), Up(x; z), D(y, z) (5)

Here V p
5 6|= xy→ z but V p

5 |= xy→r z since, any disjoint aware valuation for V5 must satisfy v(y) = v(z).

V p
6 () D Up(x; y) (6)

3This fails when we add dependencies in Sec. 4.3.

9

Algorithm 1 Decision Procedure for V p |= ~a→p ~b

Input: V p(~h) D g1, . . . , gm and
~a, ~b ⊆ var(V p) ∪ const(V p)

Output: ‘Yes’ iff V p |= ~a→p ~b else ‘No’
1: η is a function that is identity on ~a and const(V p) and maps all other variables to distinct fresh variables.
2: VV(~b′, η(~b)) D g1, . . . , gm, η(g1), . . . , η(gm)
3: Let VV ′(~b, ~b′) = DJA(VV(~b, η(~b)))
4: if Chase Succeeds and ~b , ~b′ then
5: return ‘No’ (* V p 6|= ~a→p ~b *)
6: else
7: return ‘Yes’ (* V p |= ~a→p ~b *)

In this case, V p
6 6|= x→r y but V p

6 |= x→p y .

3.2 A Chase Procedure

The important property we need of the chase is that it constructs a universal plan ([22]), which equates exactly those

variables that must be equated by any disjoint aware valuation.

Proposition 3.1 (Chase [22]). There is a polynomial time procedure that takes as input a conjunctive view V p and produces

as output a view DJA(V p) and surjective homomorphism θ from V p to DJA(V p) such that DJA(V p) is equivalent to V p over

all possible worlds and the identity homomorphism on DJA(V p) is disjoint aware. The Chase may fail if no such view exists.

Example 3.3. Consider V p
5 from Ex. 3.2, then 4

DJA(V p
5) = W(x, y, y) D Up(x; y), D(y, y)

The chase equates y and z because both have possible worlds key x. In contrast, the chase will fail on

V(c, r) D Rp(c, r; ‘High’), Rp(c, r; ‘Low’)

The chase cannot unify the constants ‘High’ and ‘Low’.

We show how to decide V p |= ~a→r ~b and V p |= ~a→p ~b.

Proposition 3.2. If DJA(V p) exists, let θ be the chase homomorphism, then the following holds:

DJA(V p) |= θ(~a)→ θ(~b) ⇐⇒ V |= ~a→r ~b

4We are not doing minimization, only removing duplicates.

10

We use Prop. 3.2 to decide V p |= ~a →r ~b. For example, V p
5 |= xy →r z Eq. (5) because, the chase homomorphism θ is

given by θ(x, y, z) = (x, y, y). Thus, θ(z) ⊆ θ(xy).

We use Alg. 1 to efficiently decide V p |= ~a→p ~b.

Proposition 3.3. Algorithm 1 is a polynomial time sound and complete algorithm to decide if V p |= ~a→p ~b.

Sketch. Observe that if the chase fails there must be some contradiction in the view so there are no disjoint aware valuations

for V p implying V p |= ~a →p ~b trivially holds. If the chase succeeds, then by Prop. 3.1, VV ′ has the property that the

identity valuation is disjoint aware. Thus, if our test outputs ‘No’, there is a disjoint aware valuation vv for VV p such that

vv(~a) = vv(~a) but vv(~b) , vv(~b′). Let v (resp. w) be the restriction of vv to g1, . . . , gm (resp. η(g1), . . . , η(gn)). More precisely,

(v,w) is a compatible pair of valuations for V p such that v(~a) = w(~a) but v(~b) , w(~b). Thus, V p 6|= ~a →p ~b. The reverse

direction and efficiency of the procedure follow directly from the Chase and Prop. 3.1. �

Example 3.4. Consider the view:

V p
7 () D Rp(x, y; u), Up(x; z), Tp(x, z; u) (7)

We want to check V p
7 |= x→p u. Alg. 1 forms VV by making copies of V p

7 and equating x in the copies as follows:

VV p
7 (u, u′) D Rp(x, y ; u), Up(x; z), Tp(x, z ; y),

Rp(x, y′; u′),Up(x; z′),Tp(x, z′; y′)
The Chase first uses KU → AU to derive that z = z′, then uses KT → AT to force y = y′ and finally, KT → AT to make

u = u′. Thus, the algorithm says ‘Yes’. If we drop any subgoal, we can no longer derive u = u′ and so the algorithm will

say ‘No’.

4 Problem 1: Representability

The goal of this section is to give a solution to Problem 1, deciding if a view is representable, when the views are

described by conjunctive queries and the representation formalism is BID. Since representability is a property of a view on

an infinite family of representations, it is not immediately clear that the property is decidable. Our main result is that testing

representability is decidable and is ΠP
2 -Complete in the size of the view definition. The high complexity motivates us to give

an efficient sound (but not complete) test in Sec. 4.2. For the important special case when all probabilistic symbols used in

the view definition are distinct, we show that this test is complete as well. We then discuss how our technical result relates to

prior art in Sec. 4.3.

4.1 Statement of Main Results

There are two key properties of BID representations: Tuples that differ on a possible worlds key are independent, which

we will call block independent, and distinct tuples that share a possible worlds key must be disjoint, which we call disjoint

11

in blocks.

Definition 4.1. Given a view with schema V p(H) defined in terms of BID symbols. For K ⊆ H, we say V p is K-block

independent if and only if for any BID instance I and I ⊆ V p(I) (def. 2.5) satisfying ∀s, t ∈ I s[K] = t[K] =⇒ s = t, the

following equation holds:

µ(
∧
s∈I

V p(s[H])) =
∏
s∈I

s[P]

For K′ ⊆ H, we say V p(K′,H − K′) is K′-disjoint in blocks if s, t ∈ V p(I) such that s[K′] = t[K′] and s , t then:

µ(V p(s[H]) ∧ V p(t[H])) = 0

We say a view V p is representable if there is some K such that V p is K-block independent and K-disjoint in blocks.

In other words, V p is representable, i.e. K-block independent and K-disjoint in blocks, if and only if we can represent the

output of V p as a BID table with BID table description V(K; H − K; P). Deciding if the preceding definition holds for a view

is a formal definition of the view representability problem. We will first consider V p(H) and K ⊆ H as given and return to

the problem of deducing K from the view definition in Sec. 4.1.3.

4.1.1 Block Independence

Intuitively, two tuples in a view are not independent if their value depends on two tuples with the same possible worlds key

value.

Definition 4.2. A tuple t is disjoint critical for a Boolean view V p() if and only if there exists a possible world I such that

V p(I) , V p(I − {t}). A pair of tuples (s, t) each with the same arity as a probabilistic BID symbol Rp
i (Ki; Ai) such that

s[Ki] = t[Ki] is K-doubly critical for a view V p if ∃so, to such that so[K] , to[K] and s (resp. t) is disjoint critical for V p(so)

(resp. V p(to)).

In the above definition, it is important to note that that we do not require that s and t be different tuples, only that they

agree on the possible worlds key of some probabilistic relation.

Example 4.1. Recall from Ex. 2.1 that the view V p
1 returns three tuples {to

1, t
o
2, t

o
3. For each t ∈ {to

1, t
o
2, t

o
3}, the tuples referenced

by the symbolic probability for V p
1 (t) are disjoint critical for V p

1 (t). For example, r11 is disjoint critical for V p
1 (to

2) because

we can take I = {w2, r11, S(‘D.Lounge’, ‘Crab Cakes’)} and I |= V p
1 (to

2) but I − {r11} 6|= V p
1 (to

2). Further, r11 is also critical

for V p
1 (to

1). Since to
1[CR] , to

2[CR], the pair (r11, r11) is an example of a CR-doubly critical tuple. Interestingly, there are no

C-doubly critical tuples.

Lemma 4.1. Given a view V p(H) and K ⊆ H, there are no K-doubly critical tuples if and only if V p is K-block independent.

12

Algorithm 2 K-Block Independence
Input: A conjunctive view V p(H) and K ⊆ H
Output: ‘Yes’ iff V p is K-Block Independent

1: Let n = |var(V p)|, C = {c1, . . . , cn2 } be fresh constants
2: Let ~h denote head variables, ~k variables at positions K
3: D = {u|u disjoint aware valuation for V p s.t.

∀x ∈ var(V p) u(x) ∈ C ∪ const(V p)}.
4: if ∀v,w ∈ D,∀s ∈ im(v), ∀t ∈ im(w).

v(~k) , w(~k), s, t ∈ Rp
i and s[Ki] = t[Ki] implies

im(v) − {s} |= V p(v(~h)) and im(w) − {t} |= V p(w(~h))
5: then return ‘Yes’ else ‘No’

The proof of this lemma requires a detailed examination of the multilinear polynomials produced by a view on a probabilis-

tic instance and we leave it for the appendix (Sec. 10). Lem. 4.1 is the basis for Alg. 2, which decides K-block independence

by looking for K-doubly critical tuples.

Example 4.2 (Ex. 4.1 continued). In Ex. 4.1, we observed that there are no C-doubly critical tuples for V p
1 , which implies

that V p
1 is C-block independent. Also, we observed that V p

1 is not CR-block independent, because of r11, a CR-doubly critical

tuple.

Complexity. Alg. 2 is in exponential time. However, it is also a ΠP
2 algorithm because it consists of nested ∀∃ quantifiers

which range over polynomially sized choices5. We show in appendix (Sec. 10), that the decision is ΠP
2 hard as well, hence

complete for ΠP
2 . The proof showing ΠP

2 -Hardness is a lengthy direct reduction from ∀∃3-CNF. Although deciding K-block

independence is in general hard, our approximation algorithm in Sec. 4.2 is almost always complete in practice.

Main Result. Summarizing our discussion, we have the following theorem:

Theorem 4.1. Algorithm 2 is sound and complete. Further, checking that no K-doubly critical exists for a conjunctive view

is ΠP
2 -Complete.

4.1.2 Disjoint in Blocks

Having established a test for block independence, we now state how to decide if a query is disjoint within blocks. The idea

here is simple: A view fails to be K-disjoint within blocks if and only if there exist distinct tuples which agree on K but can

occur in some possible world together. We give a polynomial time algorithm based on a Chase (Sec. 3.2) and the following

lemma:

Lemma 4.2. Given a conjunctive view V p(H) and K ⊆ H then V p |= K →p H6 if and only if V p is K-disjoint in blocks.

To see the forward direction, consider any two tuples s, t which disagree on K. It must be the case that every valuation

such that v(~h) = s[H] and w(~h) = t[H] use at least one tuple that is disjoint else V p 6|= K →p H. To see the reverse direction,
5Line 4 begins with ∀ quantified variables. The |= statements are equivalent to the existence of homomorphisms.
6We use V p |= K →p H to mean V p |= ~k →p ~h where ~k (~h) is the list of variables and constants at K (resp. H).

13

observe that if (v,w) is compatible then im(v) ∪ im(v) = I satisfies the constraints and is a possible world. Hence, s and t are

both answers to V p on I, which is a contradiction to our assumption that V p is disjoint in blocks.

Algorithm 3 K-Disjoint in Blocks
Input: V p(H) and K ⊆ H

1: return V p |= K →p H (* See Alg. 1 *)

Theorem 4.2. Algorithm 3 is a sound and complete PTIME algorithm to decide given V p,K and H, if V p |= K →p H and

hence if V p is K-disjoint in blocks

Example 4.3. Consider the following view:

V p
8 (d; r) D Lp(d; r),V p

2 (c, r) (8)

where K = {D} and A = {R}. Any compatible pair of disjoint aware valuations that agree on d must agree on r, else they would

be inconsistent. Thus, V p
8 is D-disjoint in blocks. To see a negative example, observe that V p

1 Eq. (2) is not C-disjoint in blocks

because the pair of valuations, v(c, r, d) = (‘TD’, ‘D.Lounge’, ‘Crab Cakes’) and w(c, r, d) = (‘TD’, ‘P.Kitchen’, ‘Crab Cakes’),

is compatible and v(c) = w(c) but v(r) , w(r).

4.1.3 Finding Possible Worlds Keys

In previous sections, we assumed that the BID schema for V p was part of the input; we now consider how to infer the schema

for V p from its definition. Interestingly, we can efficiently find K such that if V p(K′; H − K′) is representable for any K′ then

V p(K; H − K) is representable. Formally, we efficiently find a candidate key K for V p.

Definition 4.3. K is a candidate key for V p if V p is representable if and only if V p is K-block independent.

The central observation to find a candidate K for a fixed V p is the following:

Proposition 4.1. If V p is K-disjoint in blocks and K′-block independent then V p |= K →r K′.

Sketch. Suppose that V p 6|= K 9r K′ then there is a representation on which the output of V p contains tuples s, t such

that s[K] = t[K] but s[K′] , t[K′], s[P] > 0 and t[P] > 0. Since s, t agree on K but, s , t and V p is K-disjoint in

blocks this implies s, t are disjoint. On the other hand, they disagree on K′ which since V p is K′-block independent implies

s, t are independent. Since a pair of events with positive probability cannot be both independent and disjoint; we reach a

contradiction. �

This proposition says something interesting: Informally, up to →r equivalence, there is a unique choice of K for which

V p(K; H − K) can be representable. Since we can infer these dependencies in PTIME (Alg. 3), Prop. 4.1 suggests the efficient

algorithm in Alg. 4.

14

Algorithm 4 Finding a candidate key for V p

Input: V p, a conjunctive view
Output: Candidate key K for V p

1: W p(HW)← DJA(V p)
2: K ← HW

3: for each A ∈ H do
4: if V p |= K − {A} →p H then (* see Alg. 1 *)
5: K ← K − {A}
6: return K (* K is a minimal possible worlds key *)

Theorem 4.3. When there are no functional dependencies in the representation, Algorithm 4 correctly finds a candidate key

K.

To get an intuition for Thm. 4.3, we observe that the returned K ⊆ H satisfies V p |= K →r K′ for any representable

V p(K′; H). Prop. 3.2 implies that the chase homomorphism, θ satisfies θ(K′) ⊆ θ(K). If V p(K; H − K) is not representable,

we show that, θ(K′) ⊂ θ(K). This allows us to construct a strict subset of K, call it K0, such that V |= K0 →p H, which is a

contradiction to K’s minimality. In particular, take K0 = θ
−1(K′) ∩ K, which is valid because θ is surjective (Prop. 3.1).

4.1.4 A Solution for Problem 1

We have now established all the necessary ingredients to solve problem 1 for conjunctive views, which we summarize in the

following theorem:

Theorem 4.4. Given a conjunctive view V p(H), deciding if there is some K such that output of V p can be represented as a

single BID relation V(K; H − K; P) is decidable. Further, it is ΠP
2 Complete.

The algorithm first runs Alg. 4 which returns a candidate key K, which we use as input to Alg. 2.

Remark 4.1. One may suspect that the hardness is the result of the strong independence requirement. However, in the

appendix (Sec. 10.7), we show that checking even much weaker probabilistic requirements remains ΠP
2 Complete.

4.2 Practical Algorithm for Representability

Since the intractable portion of the representability check is deciding K-block independence, we give a polynomial time

approximation for K-block independence that is sound, i.e. it says a view is representable only if it is representable. However,

it may not be complete, declaring that a view is not representable, when in fact it is. The central notion is a ~k-collision, which

intuitively says there are two output tuples which may depend on input tuples that are not independent (i.e. the same tuple or

disjoint).

Definition 4.4. A ~k-collision for a view

V p(~k, ~a) D g1, . . . , gn

15

Algorithm 5 Finding a K-Collision for V p

Input: V p(H) D g1, . . . , gn and K
Output: ‘Yes’ iff V p has a collision

1: for each i, j ∈ 1, . . . , n do
2: (* Make a fresh copy of V p *)

V p
1 (K, H − K)D g1, . . . , gn

V p
2 (K′,H − K′)D g′1, . . . , g

′
n

3: if gi is probabilistic and pred(gi) = pred(g′j) then
4: Unify gi[Ki] = g′j[K j].
5: Let W1 ← DJA(V1),W2 ← DJA(V2)
6: if Chase Succeeds and W1[K] , W2[K′] then
7: return ‘Yes’ (* There is a Collision. *)
8: return ‘No’ (* There is no Collision. *)

Algorithm 6 Practical K-Block Independence
Input: V p(H) a conjunctive view and K ⊆ H
Output: ‘Yes’ only if V p is K-Block Independent

return ‘Yes’ if V p(K; H − K) has no K-Collision.

is a pair of disjoint aware valuations (v,w) such that v(~k) , w(~k) but there exists i, j such that gi that is probabilistic,

pred(gi) = pred(g j) and v(~ki) = w(~k j).

Theorem 4.5. For a view V p(H) and K ⊆ H, if algorithm 6 outputs ‘Yes’ then V p is guaranteed to be K-block independent.

Further, if V p does not contain repeated probabilistic subgoals then algorithm 6 is complete. The algorithm is PTIME.

When V p does not contain repeated probabilistic subgoals the algorithm is complete because every probabilistic tuple in

the image of a valuation must be critical. In particular, the image of gi and g j in the definition of collision are critical.

Example 4.4. Consider V p
2 (C) in Eq. (3), if we unify any pair of probabilistic subgoals, we are forced to unify the head,

c. This means that a collision is never possible and we conclude that V p
2 is C-block independent. Notice that we can unify

the S subgoal for distinct values of c, since S is deterministic, this is not a collision. In V p
1 (c, r) Eq. (2), the following pair

(v,w), v(c, r, d) = (‘TD’, ‘D.Lounge’,‘Crab Cakes’) and w(c, r, d) = (‘TD’, ‘P.Kitchen’, ‘Crab Cakes’), is a collision because

v(c, r) , w(c, r) and we have unified the keys of the Rp subgoal. Since there are no repeated probabilistic subgoals, we are

sure that V p
1 is not CR-block independent.

4.3 Extensions and Discussion

Extending to Many Views. In a BID instance, tuples in distinct views must be independent. The following pair of views

illustrates the problem:

V p
x (x) D Tp(x, y, z;) and V p

y (y) D Tp(x, y, z;)

Each view is representable by itself. However, all tuples in T contribute to each view, so the pair of views is not representable.

16

It is straightforward to extend our test to handle independence of tuples in distinct views and is left for the full paper.

Dependencies. We can extend each of the algorithms to handle dependencies in a straightforward way with the exception

of the search for candidate keys. To deduce the appropriate K from the definition of V p such that V p(K; H − K) is repre-

sentable, the algorithm of Sec. 4.1.3 relies on only trivial functional dependencies holding in the representation. The naive

adaptation of this algorithm requires time polynomial in the number of functional dependencies which can be exponential

in the number of head variables. In the appendix (Sec.10.4), we give an algorithm to handle finding candidate keys when

functional dependencies are present.

Relation to Query Evaluation. We have observed that efficient query evaluation for a view and representability are

distinct concepts. To see this, observe that Thm. 4.1 shows that any single Boolean view is representable. Some Boolean

queries have high complexity (#P) [19, 36]. When a query has a PTIME algorithm, it is called safe. This implies that not every

representable view is safe. On the other hand, Ex. 2.1 gives an example of a non-representable view that has a safe plan.

However, not all queries have safe plans, but for conjunctive queries there are efficient schemes to approximate probabilities

to essentially any desired precision [37]. Using the result of approximation schemes for materialized view optimizations and

providing error guarantees is an interesting open question.

Complex Correlations. The problem of K-Block Independence is to decide: For tuples s, t, is it the case that µ(V p
1 (s) ∧

V p
2 (t)) = µ(V p

1 (s))µ(V p
2 (t))? In [33], a similar problem was studied where V p

1 is a secret query and V p
2 is a public view and our

goal is to determine if the secret query and public view are independent. It was shown that this problem isΠP
2 Complete7. That

work used a more restrictive tuple independent model in which the FKG inequality [3] µ(V p
1 (s) ∧ V p

2 (t)) ≥ µ(V p
1 (s))µ(V p

2 (t))

holds. Fig. 2 shows that this inequality no longer holds in our setting by showing a view V p
9 and family of representations

such that tuples in V p
9 are positively correlated, negatively correlated or even independent depending on how we set the

probabilities in the representations. This technical difference is significant because the proof in [33] is an inductive argument

that relies on the FKG inequality. Since the FKG inequality does not hold, we must use a completely different technique.

Example 4.5. Consider the family of representations given in Fig. 2. Consider the query:

V p
9 (k2) D Mp

1 (k1; x), Mp
2 (k2; x) (9)

The probabilities are described symbolically in the figure. Thus, µ(V p
9 (a) ∧ V p

9 (b)) = aHbHcT + aT bT cH . In case (I), the

tuples appear to be pairwise independent, but this does not hold for every distribution. For example in case (P) the two tuples

are positively correlated, while in (N) they are negatively correlated. These correlations are possible even though V p
9 is a

very simple conjunctive view. They are the result of the more sophisticated BID representation system, which allows disjoint

events.
7However, there seems to be no direct reduction to our problem in the single view case.

17

K1 A1 P

c
H cH

T cT

K2 A2 P

a
H aH

T aT

b
H bH

T bT

K2 P
a aHcT + aT cH

b bHcT + bT cH

M1(K1; A1; P) M2(K2; A2; P) V p
9 (k2) DMp

1 (k1; x),
M

p
2 (k2; x)

aH bH cH µ(V p
9 (a) ∧ V p

9 (b))
(I) 0.5 0.5 0.5 0.25
(P) 0.9 0.9 0.5 0.41
(N) 0.9 0.1 0.5 0.09

On all three representations, µ(V p
9 (a))µ(V p

9 (b)) = 0.25.

Figure 2. Sample Data for Discussion. If all probabilities are 0.5, V p
9 (a) and V p

9 (b) appear to be inde-
pendent. l ∈ {a, b, c} lH = 1 − lT .

5 Problem 2: Querying using Views

In this section, we study problem 2: Given a conjunctive query Q written using a materialized view V p is the value of

µ(Q) uniquely defined? Of course, if V p is representable this problem is trivial: Q’s value is always uniquely defined.

5.1 Partially Representable Views

In contrast to an ordinary probabilistic materialized view that represents a unique probability distribution, a partially

represented view represents many probability distributions, each of which we call agreeable.

Definition 5.1. A partial BID view description is a relational schema with the attributes partitioned into four classes:

V(KI ; D; A; P)

where KI is called the independence key, KI D is called the disjointness key, A is called the value attribute set and P is called

the probability attribute, a distinguished attribute taking values in the half-open interval (0, 1].

Example 5.1. Recall that V p
1 (C,R) from Eq. (2) is not representable. We will show that it is partially representable with

syntax: V1(C; R; ∅; P).

The intuition is that a partial representation preserves marginal probabilities but may not specify all correlations: If a set

of tuples differ on KI , they are independent. If two distinct tuples agree on KI D, they are disjoint. However, if two tuples

agree on KI but disagree on D, they may be correlated in complicated ways.

Definition 5.2 (Semantics). Given a view V p(H) and a partition KI , D, A of H, we say V p is partially representable if V p is

KI-block independent and KI D-disjoint in blocks.

18

Definition 5.3. A possible world is a set of tuples, I, that satisfies KI D → A. We say a distribution on possible worlds, µ,

agrees with V p(KI ; D; A) if for any set of tuples I ⊆ V p(I) without P that satisfy s[KI] = t[KI] =⇒ s = t then

µ(
∧
t∈I

V p(t)) =
∏
t∈I

µ(V p(t))

In particular, if D = ∅, then Def. 5.3 coincides with Def 2.2 and so the partial representation uniquely defines a probability

distribution. Any view has a trivial partial representation with KI = A = ∅ and D = H. In the previous section, we showed

that checking K-block independence is ΠP
2 -Complete. Thus, the following is immediate:

Theorem 5.1. Given a conjunctive view V p with head H and K,D, A satisfying K ⊕ D ⊕ A = H, deciding if the output of V p

is partially representable as V(K; D; A; P) is ΠP
2 -Complete.

5.2 Statement of Main Results

Intuitively, a query’s value fails to be uniquely defined if it depends on two tuples whose correlation is not specified by the

partial representation. Due to space constraints, we present queries that use a single partially representable view.

Definition 5.4. A critical pair for a Boolean query Q() is a pair of distinct tuples (s, t) such that there exists a possible world

I satisfying

Q(I − {s, t}) , Q(I) and Q(I − {s}) = Q(I − {t})

Given a partially representable view V p(KI ; D; A), a pair of tuples (s, t) is called V p-intertwined if s, t ∈ V p and s[KI] = t[KI]

but s[D] , t[D].

In contrast to K-doubly critical tuples, the possible world I must be the same for s, t.

Example 5.2 (Running Example). Consider the partial representation in Ex. 5.1 and the queries:

Q1() D V p
1 (c, r) and Q2(c) D V p

1 (c, ‘D.Lounge’)

to
1 and to

2 are a critical pair of tuples for Q1 and are V p
1 -intertwined. For any fixed c0, there is no critical pair of tuples of

V p
1 -intertwined tuples for Q2(c0).

We state the link between intertwined tuples and distributions that agree with a view.

Proposition 5.1. Given a partially representable view

V p(KI ; D; A), µ be a distribution that agrees with V p and s, t ∈ V p that are V p-intertwined such that µ(s) , 1 and µ(t) , 1

then there exists a distribution ν that agrees with V p, such that µ(s ∧ t) , ν(s ∧ t) and µ(s ∨ t) , ν(s ∨ t).

19

5.2.1 Critical Intertwined Captures Uniqueness

A query Q() is uniquely defined if for any two agreeable distributions,µ, ν, we have µ(Q()) = ν(Q()). We establish that the

existence of a critical pair of intertwined tuples captures when a query fails to be uniquely defined.

Lemma 5.1. There exist a critical pair of intertwined tuples for a conjunctive query Q() if and only if Q() is not uniquely

defined.

To see the forward direction consider a conjunctive query Q. If there is a pair of critical tuples (s, t) for Q(), then there are

two cases: I − {s} |= Q(), in which case Q is satisfied when either of s, t are present, or I − {s} 6|= Q(), in which case Q() is

satisfied only when s and t are both present. Since I is a possible world, we can create a representation I such that s, t are the

only tuples with µ , 1. For a possible world J of I, J |= Q() ⇐⇒ J |= s ∧ t orJ |= Q() ⇐⇒ J |= s ∨ t, by Prop. 5.1 neither

is uniquely defined. The reverse direction is an inductive proof that gives less information and is in the appendix (Sec. 12.1).

Example 5.3 (Continuing Ex. 5.2). A distribution, µ, that always agrees with V p
1 is the result of inlining of V p

1 in Q1. Here

µ(Q1()) ≈ 0.905. A second distribution that agrees with V p
1 , ν, is to assume independence. Thus, ν(Q1) = 1 − (1 − 0.72)(1 −

0.602)(1 − 0.32) ≈ 0.924. As we saw in Ex. 5.2, Q1 does have a critical pair of intertwined tuples. On the other hand, for

each c value, the query Q2 is uniquely defined, in the example its value is 0.72.

Theorem 5.2. Given a query Q using a partially representable view V p, deciding if Q’s value is uniquely defined is Πp
2

Complete.

Let n = |var(Q)| and C be a set of n2 fresh constants; a complete algorithm checks that for all possible worlds with

domains in const(Q) ∪C, there is not a critical pair of intertwined tuples; this algorithm is in Πp
2 .

5.3 Practical Test for Uniqueness

Definition 5.5. Given a schema with a single partially representable view V p, an intertwined collision for a query Q(H) is

a pair of compatible valuations (v,w) such that v(~h) = w(~h) and there exists a pair of subgoals, (gi, g j), such that pred(gi) =

pred(g j) = V p, v(~kii) = w(~ki j) and v(~di) , w(~d j) where ~kii (~ki j) is the list of variables at KI in gi (resp. g j) and ~di (~d j) is the

list of variables at D in gi (resp. g j).

The algorithm to find an intertwined collision is a straightforward extension of finding a K-collision. The key difference

is that we use the Chase to ensure that the valuations we find are compatible, not individually disjoint aware.

Theorem 5.3. If no intertwined collisions exist for a conjunctive query Q, then its value is uniquely defined. If the partially

representable view symbol V p is not repeated, this test is complete. The test can be implemented in PTIME.

20

Sketch. We sketch the soundness argument in the special case of a Boolean query Q(). We show that if there exists a critical

intertwined pair (s, t) for Q, then there must be an intertwined collision. Let I be the instance provided by Def. 5.4. Suppose,

I − {s} |= Q(). Since I − {s, t} 6|= Q(), the image of any valuation v that witnesses I − {s} |= Q() must contain t. By symmetry,

the image of any valuation that witnesses I − {t} |= Q() must contain w. It is easy to see that (v,w) is compatible and hence

(v,w) is an intertwined collision. If I − {s} 6|= Q() then there is a single valuation v which uses both s, t. Thus, (v, v) is an

intertwined collision. �

Example 5.4. In V p
1 , KI = {C} and D = {R}. An intertwined collision for Q1 is v(c, r) = (‘TD’, ‘D.Lounge’) and w(c, r) =

(‘TD’, ‘P.Kitchen’), thus Q’s value is not uniquely defined. On the other hand, in Q2, trivially there is no intertwined collision

and so Q2’s value is uniquely defined.

5.4 Extensions and Discussion

Optimization. In an optimizer, we would like syntactic independence [9], which is the ability to rewrite a query Q that

does not use a materialized view V into an equivalent Q′ that does use V . The same theory applies, but we must additionally

check that Q′ correctly uses a view as described in Sec. 5.2. A key difference in query optimization is that we usually have

access to the view definitions. When the view definitions are present, a partial representation for a view essentially strips the

view’s lineage. If a query’s value is uniquely defined, its value is the same as inlining the view definition. In the appendix

(Sec. 12.2), we show that deciding uniqueness in this setting is Πp
2 complete and give PTIME approximations.

View Selection. Informally, the view selection problem [11] is to select given a set of queries Q, the workload and a space

budget B, choose a set of views V to materialize within the space budget B to minimize the cost of Q. In the probabilistic

setting, we now also check each q ∈ Q is uniquely defined usingV. The new twist is that the cost function has a large step:

If a query Q can be executed using a safe plan [19, 36] over a view V , the cost of executing Q is dramatically lower.

6 Related Work

Materialized views are a fundamental technique used to optimize queries [1, 9, 25, 28] and as a means to share, protect

and integrate data [33, 40] that are currently implemented by all major database vendors. Because the complexity of deciding

when a query can use a view is high, there has been a considerable amount of work on making query answering using views

algorithms scalable [25, 35]. In the same spirit, we provide efficient practical algorithms for our representability problems.

Recently, probabilistic databases have received attention because of their ability to deal with uncertainty resulting from

data cleaning tasks [4, 37], information extraction [8, 27] and sensor data [21, 30]. This has resulted in several systems

[6, 21, 38, 41] with accompanying work on probabilistic query processing [10, 19, 36, 37, 39]. Prior art has considered

using a representation system [20, 37, 38] that can represent every conjunctive view. Typically, these systems use base tables

21

Figure 3. (a) Percentage by workload that are representable, non-trivially partially representable or not
representable. We see that almost all views have some non-trivial partial representation. (b) Running
times for Query 10 which is safe. (c) Retrieval times for Query 5 which is not safe. Performance data
is TPC-H (0.1, 0.5, 1G) data sets. All running times in seconds and on logarithmic scale.

that are similar to BID representations but then introduce auxiliary information (e.g. lineage [41] or factors [38]) to track

correlations introduced by query processing.

In prior art [20], the following question is studied: Given a class of queries Q is a particular representation formalism

closed for all Q ∈ Q? In contrast, our test is more fine-grained: For any fixed conjunctive Q, is the BID formalism closed

under Q? Also relevant for expanding the class of practical algorithm is the recent work in [32].

7 Experiments

In this section we answer three main questions: To what extent do representable and partially representable views occur in

real and synthetic data sets? How much do probabilistic materialized views help query processing? How expensive are our

proposed algorithms for finding representable views?

7.1 Experimental Setup

Data Description. We experimented with a variety of real and synthetic data sets including: a database from iLike.com

[13], the Northwind database (NW) [14], the Adventure Works Database from SQL Server 2005 (AW)[15] and the TPC-

H/R benchmark (TPCH) [16, 17]. We manually created several probabilistic schemata based on the Adventure Works [15],

Northwind [14] and TPC-H data which are described in Fig. 4.

Queries and Views. We interpreted all queries and views with scalar aggregation as probabilistic existence operators

(i.e. computing the probability a tuple is present). iLike, Northwind and Adventure Works had predefined views as part

of the schema. We created materialized views for TPC-H using an exhaustive procedure to find all subqueries that were

22

Schema Tables (w/P)
AW 18 (6)
AW2 18 (3)
NW1 16 (2)
NW2 16 (5)
NW3 16 (4)

TPC-H 8 (5)

Size (w/P) Tuples (w/P)
0.1 (440M) 3.3M (2.4M)
0.5 (2.1G) 16M (11.6M)
1.0 (4.2G) 32M (23.2M)

(a) (b)

Figure 4. Schema and TPC Data statistics. (a) Number of tables referenced by at least one view and number of probabilistic tables (i.e. with

attribute P). (b) Size and (w/P) are in Gb. The number of deterministic and probabilistic tuples is in millions.

representable, did not contain cross products and joined at least two probabilistic relations.

Real data: iLike.com We were given query logs and the relational schema of iLike.com, which is interesting for three

reasons: It is a real company, a core activity of iLike is manipulating uncertain data (e.g. similarity scores) and the schema

contains materialized views. iLike’s data, though not natively probabilistic, is easily mapped to a BID representation. The

schema contains over 200 tables of which a handful contain uncertain information. The workload trace contains over 7

million queries of which more than 100,000 manipulated uncertain information contained in 5 views. Of these 100,000

queries, we identified less than 10 query types which ranged from simple selections to complicated many way joins.

Performance Data All performance experiments use the TPC-H data set with a probabilistic schema containing un-

certainty in the part, orders, customer, supplier and lineitem tables. We used the TPC-H tool dbgen to generate

relational data. The data in each table marked as probabilistic was then transformed by uniformly at random injecting addi-

tional tuples such that each key value was expected to occur 2.5 times. We allowed for entity uncertainty, that is, the sum of

probabilities for a possible worlds key may be less than 1.

System Details. Our experimental machine was a Windows Server 2003 machine running SQL Server 2005 with 4GB of

RAM, 700G Ultra ATA drive and dual Xeon (3GHz) processors. The Mystiq engine is a middleware system that functions

as a preprocessor and uses a complete approach [6, 37]. The materialized view tools are implemented using approximately

5000 lines of OCaml. After importing all probabilistic materialized views, we tuned the database using only the SQL Server

Database Engine Tuning Advisor.

Execution Time Reporting Method. We reduced query time variance by executing each query seven times, dropping the

highest and lowest times and averaging the remaining five times. In all reported numbers, the variance of the five runs was

less than 5% of query execution time.

23

7.2 Question 1: Do Representable and Partially Representable views exist?

In Fig. 3(a), we show the percentage of views in each workload that is trivially representable because there are no proba-

bilities in the view (TRIVIAL), representable (REP), non-trivially partially representable (PARTIAL) or only trivially partially

representable (NOTREP). In iLike’s workload, 4 of the 5 views (80%) are representable. Further, 98.5% of the over 100k

queries that manipulate uncertain data use the representable views. In synthetic data sets, representable views exist as well.

In fact, 50% or more of the views in each data set except for AW are representable. Overall, 63% of views are representable.

45% of the representable views are non-trivially representable. Additionally, almost all views we examined have a non-trivial

partial representations (over 95%). We conclude that that representable and partially representable views exist and can be

used in practice.

7.3 Question 2: Do our techniques make query processing more efficient?

The TPC data set is the basis for our performance experiments because it is reproducible and the data can be scaled

arbitrarily. We present queries 5 and 10, because they both have many joins (6 and 4) and they are contrasting: Query 10

is safe [19, 36], and so can be efficiently evaluated by a modified SQL query. Query 5 is unsafe and so requires expensive

Monte Carlo techniques. Graphs 3(b) and 3(c) report the time taken to execute the query and retrieve the results. For query

10, this is the total time for execution because it is safe. In contrast, query 5 requires additional Monte Carlo techniques to

compute output probabilities.

Graph Discussion. In Fig. 3(b), we see running times of query 10 without probabilistic semantics (PTPC), as a safe

plan (SAFE), with a subview materialized and retaining lineage (LIN) and the same subview without lineage (NOLIN). LIN is

equivalent to a standard materialized view optimization; the lineage information is computed and stored as a table. In NOLIN,

we discard the lineage and retain only the probability that a tuple appears in the view. The graph confirms that materializing

the lineage yields an order of magnitude improvement for safe queries because we do not need to compute three of the four

joins at query execution time. Interestingly, the bars for NOLIN show that precomputing the probabilities and ignoring the

lineage yields an additional order of magnitude improvement. This optimization is correct because the materialized view is

representable. This is interesting because it shows that being aware of when we can remove lineage is helpful even for safe

plans.

As a baseline, Fig. 3(c) shows the query execution times for query 5 without probabilistic semantics but using the enlarged

probabilistic tables (PTPC). Fig. 3(c) also shows the cost of retrieving the tuples necessary for Monte Carlo simulation

(MC). Similarly, we also see the cost when materializing a view and retaining lineage (LIN) and when we precompute the

probabilities and discard the lineage (NOLIN). For (MC) and (LIN), the extra step of Monte Carlo Simulation is necessary

which for TPC 0.1 (resp. TPC 0.5, TPC 1) requires an additional 13.62 seconds (resp. 62.32s, 138.21s). Interestingly, query

24

5 using the materialized view does not require Monte Carlo Simulation because the rewritten query is safe. Thus, the time

for NOLIN is an end-to-end running time and so we conclude that our techniques offer four order of magnitude improvement

over materializing the lineage alone (8.2s + 138.21s with lineage v. 0.03s without).

7.4 Question 3: How costly are our algorithms?

All views listed in this paper were correctly classified by our practical algorithm (Alg. 6), which always executes in well

under 1 second. Finding all representable or partially representable sub-views for all but two queries completed in under 145

seconds; the other two queries completed in under an hour. Materializing views for unsafe queries completed under 1.5 hours

for all results reported in the paper. However, this is an offline process and can be parallelized because it can utilize multiple

separate Monte Carlo processes.

8 Conclusion

We have formalized and solved the problems of representability and using partial representable views to answer queries

in the case of conjunctive views and queries. We have shown that representable and partially representable views exist in

real and synthetic data sets and demonstrated that understanding representability is a large optimization win even in complete

approaches.

References

[1] S. Abiteboul and O. Duschka. Complexity of answering queries using materialized views. pages 254–263, 1998.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley Publishing Co, 1995.

[3] N. Alon and J. Spencer. The Probabilistic Method. John Wiley, 1992.

[4] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty databases. In ICDE, 2006.

[5] F. Bacchus, A.J. Grove, J.Y. Halpern, and D.Koller. Generating new beliefs from old. In Proceedings of UAI, pages

37–45, 1994.

[6] J. Boulos, N .Dalvi, B. Mandhani, S. Mathur, C. Ré, and D. Suciu. Mystiq: A system for finding more answers by using

probabilities. In SIGMOD, 2005. system demo.

[7] P. Buneman, A. Chapman, and J. Cheney. Provenance management in curated databases. In S. Chaudhuri, V. Hristidis,

and N. Polyzotis, editors, SIGMOD Conference, pages 539–550. ACM, 2006.

25

[8] M.J. Cafarella, C. Ré, D. Suciu, and O. Etzioni. Structured querying of web text data: A technical challenge. In CIDR,

pages 225–234. www.crdrdb.org, 2007.

[9] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing queries with materialized views. icde,

00:190, 1995.

[10] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In SIGMOD, pages

551–562, 2003.

[11] R. Chirkova, A. Halevy, and D. Suciu. A formal perspective on the view selection problem. In Proceedings of VLDB,

Rome, Italy, September 2001.

[12] Garage Band Corp. http://www.garageband.com/.

[13] Garage Band Corp. www.ilike.com.

[14] Microsoft Corp. Northwind for sql server 2000.

[15] Microsoft Corp. Sql server 2005 samples (feb. 2007).

[16] Transaction Processing Performance Council. Tpc-h (ad-hoc, decision support) benchmark. http://www.tpc.org/.

[17] Transaction Processing Performance Council. Tpc-r (decision support) benchmark (obsolete). http://www.tpc.org/.

[18] Y. Cui and J. Widom. Lineage tracing for general data warehouse transformations. VLDBJ, 12(1):41–58, 2003.

[19] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In VLDB, Toronto, Canada, 2004.

[20] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for uncertain data. In ICDE, 2006.

[21] A. Deshpande, C. Guestrin, S. Madden, J.M. Hellerstein, and W. Hong. Model-driven data acquisition in sensor net-

works. In VLDB, pages 588–599, 2004.

[22] A. Deutsch, L. Popa, and V. Tannen. Physical data independence, constraints and optimization with universal plans. In

VLDB, 1999.

[23] O. Etzioni, M .Banko, and M.J. Cafarella. Machine reading. In AAAI. AAAI Press, 2006.

[24] G.Miklau and Dan Suciu. Preprint: A formal analysis of information disclosure in data exchange. JCSS, To appear.

http://www.cs.washington.edu/homes/suciu/miklau_suciu_jcsspreprint.pdf.

[25] J. Goldstein and P. Larson. Optimizing queries using materialized views: a practical, scalable solution. In SIGMOD

2001, pages 331–342, New York, NY, USA, 2001. ACM Press.

26

http://www.cs.washington.edu/homes/suciu/miklau_suciu_jcsspreprint.pdf

[26] T.J. Green and V. Tannen. Models for incomplete and probabilistic information. IEEE Data Engineering Bulletin,

29(1):17–24, March 2006.

[27] R. Gupta and S. Sarawagi. Curating probabilistic databases from information extraction models. In Proc. of the 32nd

Int’l Conference on Very Large Databases (VLDB), 2006.

[28] A. Halevy. Answering queries using views: A survey. VLDB Journal, 10(4):270–294, 2001.

[29] T.S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H. Zhu. Avatar information extraction system.

IEEE Data Engineering Bulletin, 29(1), 2006.

[30] N. Khoussainova, M. Balazinska, and D. Suciu. Probabilistic rfid data management. Technical Reprot TR2007-03-01,

University of Washington, Seattle, Washington, March 2007.

[31] L. Lakshmanan, N. Leone, R. Ross, and V.S. Subrahmanian. Probview: A flexible probabilistic database system. ACM

Trans. Database Syst., 22(3), 1997.

[32] A. Machanavajjhala and J .Gehrke. On the efficiency of checking perfect privacy. In Stijn Vansummeren, editor, PODS,

pages 163–172. ACM, 2006.

[33] G. Miklau and D. Suciu. A formal analysis of information disclosure in data exchange. In SIGMOD, 2004.

[34] O.Etzioni, M.J. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland, D.S. Weld, and A. Yates. Web-

scale information extraction in knowitall: (preliminary results). In S.I. Feldman, M. Uretsky, M. Najork, and C.E. Wills,

editors, WWW, pages 100–110. ACM, 2004.

[35] R. Pottinger and A. Halevy. Minicon: A scalable algorithm for answering queries using views. The VLDB Journal,

10(2-3):182–198, 2001.

[36] C. Ré, N. Dalvi, and D. Suciu. Query evaluation on probabilistic databases. IEEE Data Engineering Bulletin, 29(1):25–

31, 2006.

[37] C. Ré, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data. In Proceedings of ICDE, 2007.

[38] P. Sen and A. Deshpande. Representing and querying correlated tuples in probabilistic databases. In Proceedings of

ICDE, 2007.

[39] M. Soliman, I.F. Ilyas, and K. Chen-Chaun Chang. Top-k query processing in uncertain databases. In Proceedings of

ICDE, 2007.

27

[40] J. D. Ullman. Information integration using logical views. In ICDT, volume 1186 of Lecture Notes in Computer Science,

pages 19–40. Springer, 1997.

[41] J. Widom. Trio: A system for integrated management of data, accuracy, and lineage. In CIDR, pages 262–276, 2005.

28

9 Appendix A: Proofs for Preliminaries

9.1 Proof of Prop. 3.2

Proposition 9.1. Let θ be the chase homomorphism, then if v is a disjoint aware valuation for V then if θ(x) = θ(y) implies

v(x) = v(y).

Sketch. To start, θ is identity and so the claim holds vacuously. Since during execution, we only equate two variables if any

mapping that did not equate them would violate the key constraint, it holds after each chase step. �

Proposition 9.2 (Restatement of Prop. 3.2). Let DJA(V) exist then V |= ~a→r ~b iff DJA(V) |= θ(~a)→ θ(~b)

Proof. Let W = DJA(V), which exists by assumption. By the chase, there is a chase homomorphism θ : V → W.

Forward direction Let v′,w′ be valuations for W. We assume for contradiction that v′(A) = w′(A) but v′(B) , w′(B). If

v,w are disjoint aware, then we immediately get a contradiction to V |= ~a→ ~b, because we find, by composition v = v′ ◦ θ, a

v and w such that v(A) = w(A) and v(B) , w(B) and are disjoint aware.

We now how to transform (v′,w′) into a new valuation v∗ for W such that v∗(A) = w∗(A), v∗(B) , w∗(B) with v∗,w∗ disjoint

aware. By our previous argument, this results in a contradiction. At each step we reduce the number of potentially violated

keys: where a key is potentially violated if it has the same value as another key. We may create new violations but once we

fix a pair of subgoals, it will be shown the two subgoals can never be in conflict in the execution of the algorithm. Thus, the

algorithm terminates in at most O(n2) steps.

Since v′ is not disjoint aware, there is some (Ki, Ai) and (K j, A j) such that v′(Ki) = v′(K j) but v′(Ai) , v(A j). We

observe that Ki , K j, because W is the result of the chase and this would imply Ai = A j. Thus, there are is a variable

x ∈ Ki ∆ K j (symmetric difference) that differs in a position. Suppose x < B − A, then consider new valuations v0,w0 such

that v0(x) = w0(x) = c where c is a fresh constant. Then it is the case that v0(A) = w0(A) and v0(B) , v0(B). If x ∈ B − A, if x

is the only variable in B which they differ x to the same constant could make v0(B) = w0(B). So we may assume they differ

on only x. However, since the Ki , K j the variable in the same position in K j is not x, call it y. Thus, we can map y to a fresh

constant as above. Since each time we fix a pair of subgoals, one set of keys contains a fresh constant in a given position,

which is never added again, this shows that the subgoals will never again be in conflict.

Reverse Direction If v is a valuation for V then v restricted to var(DJA(V)) is a valuation for DJA(V). This is because

the chase only equates variables. Then, it must be that θ(B) has equated these variables, but this contradicts our proposition

above.

�

29

10 Appendix B: Representability

The goal of this section is to give a solution to problem 1 in the case where the views are described by conjunctive queries

and the representation formalism is BID. Our main result is that testing representability is ΠP
2 -Complete in the size of the

view definition. In sec. 10.2, we extend our test to handle sets of views with no increase in complexity. The high complexity

motivates us to give an efficient sound (but not complete) test in sec. 4.2. For the important special case when all symbols

used in the view definition are distinct, we show that this test is complete as well.

10.1 Proof of Lemma. 4.1

Lemma 10.1 (Restatement of 4.1). Given a view V p(H) and K ⊆ H, there are no K-doubly critical tuples if and only if V p

is K-block independent.

In this section, we give an overview of the proof of Lemma 4.1. Our proof requires an examination of the polynomials

produced by queries, which we relate to a special kind of Boolean functions related to DNFs on possible worlds.

Overview of Section. In sec. 10.1.1, we prove our main technical lemma that two Boolean functions are independent

as long as they do not share an influential variable (def. 10.3). This is similar to the result obtained in [33], but there is a

major technical difference, the proof relies on the FKG inequality but that inequality does not hold here. We then translate

this technical lemma into a database style test, showing that queries are not independent if there exist doubly critical tuples

(def. 10.5). We then establish testing that doubly critical tuples do not exist is ΠP
2 -Complete.

10.1.1 EDNF Formula

In this section we define EDNF formula which are a generalization of Boolean formula well-suited for our application.

Definition 10.1. An Equality Disjunctive Normal Form (EDNF) formula on variables X = {x1, . . . , xn} with value space

Ξ = ξ1 × · · · × ξn is a syntactic formula defined by the following grammar:

EQTermH EQTerm ∧ EQTerm | xi = a j and a j ∈ ξi − {⊥i}

EDNF H EDNF ∨ EDNF | EQTerm.

where ⊥i is a distinct symbol for each xi.

An assignment is a tuple θ ∈ Ξ. A formula is satisfied by an assignment in the obvious way.

Relation to Query Answering. The existence of a tuple in the output of a query can be viewed as a DNF ([37]), EDNFs

are just a convenient way to think about them. To each distinct key value (e.g. ki) in the representation, we associate a

variable (e.g. xi). The possible values of the value attributes associated with ki is represented by ξi. Thus, an assignment

30

corresponds to a possible world, specifically θxi = a implies that the value associated with ki is a. Further, θxi =⊥i implies

that no tuple with key value ki is present under θ, which corresponds to entity uncertainty. Each disjoint aware valuation v

for Q on a representation I correspond to a single monomial in the EDNF. In

Example 10.1. The EDNF formula corresponding to V p
2 (‘TD’) in example 2.2 is

(w1 = 1 ∧ r1 = ‘High’) ∨ (w1 = 1 ∧ r2 = ‘High’) ∨ (w2 = 1 ∧ r2 = ‘High’)

where θw1 = 1, implies w1 is present.

Distributions on EDNFs. For any i, let mi = |ξi|. A valid value distribution distribution on ξi can be described by a list of

non-negative numbers pi,1, . . . , pi,mi satisfying
∑mi−1

j=1 pi, j ≤ 1. Thus, our convention is that pi,mi does not need to be specified

and satisfies pmi =
∑mi−1

j=1 pi, j. Since we will consider only product distributions, a distribution on all of Ξ can be described

by a list ~p = {p1,1, . . . p1,m1−1, p2,1, . . . pn,mn−1}. We say ~p is valid value space distribution for Ξ if for each i ∈ 1, . . . n,

{pi,1, . . . , pi,mi−1} is a valid value distribution. Thus the probability of an assignment θ can be computed as
∏

i∈1,...,n pi,θi .

Given an EDNF formula φ and a valid value space distribution ~p we denote the probability of a satisfying assignment with

Pr~p[φ].

We recall a useful fact from functional analysis.

Proposition 10.1. Let h be a polynomial and q ∈ N in Rq if h = 0 on any open ball in then h is the zero polynomial.

The next proposition is the motivation behind choosing our specification of probability distributions. Specifically, it is

easy to see using this specification that the space of valid probability distributions contains an open ball of Rq for some q.

Proposition 10.2. For a fixed value space Ξ = ×n
i=1ξi, the space of valid value space distributions can be viewed as as subset

of Rq where q =
∑n

i=1(mi − 1) that contains an open ball.

For an EDNF formula φ, we now describe the probability that φ is satisfied under distribution described by ~p denoted

Pr~p[φ] as a polynomial in ~p.

Proposition 10.3. Let f be a polynomial such that f (~p) = Pr~p[φ] then three facts hold: First, f is a polynomial in ~p and is

unique. Second, f has degree 1 in every variable. Third, ∀i, j , j′ f contains no term containing pi, j ∗ pi, j′

Proof. Pr[φ] is a summation of possible world probabilities, hence a polynomial. Our fact above gives that f is unique since

the space of all probabilities contains an open ball. The probability associated with each world is of degree 1 in each variable.

In addition, pi, j and pi, j′ for j , j′ represent disjoint events thus no probability for a possible world can contain both of these

either. �

An immediate corollary is that we can write the polynomials in a particularly simply form.

31

Corollary 10.1. Let f be a polynomial corresponding to Pr~p[φ] then for any variable xi, we can write f = f1 pi,1 + f2 pi,2 +

. . . fm−1 pi,m−1 + g where f1, . . . , fm−1, g are polynomials that do not contain pi, j for any j. We call this the decomposition with

respect to xi. Further, the decomposition is unique.

Definition 10.2. We say that f is independent of xi if and only if its decomposition with respect to xi the polynomials

f1, . . . , fm−1 satisfy f1 = f2 = · · · = fm−1 = 0.

We now show that independence in polynomials is equivalent to probabilistic independence for every valid value distribu-

tion.

Lemma 10.2. Given two formulas φ and ψ on variables X. Pr~p[φ∧ψ] = Pr~p[ψ] Pr~p[φ] for every valid value space distribution

~p if and only if for each xi at least one of the polynomials corresponding to Pr~p[φ] or Pr~p[ψ] is independent of xi.

Proof. We first observe that if Pr[φ∧ψ] = Pr[ψ] Pr[φ] for every distribution, then they are the same polynomial. This follows

because they agree on P which contains an open ball.

Forward Direction Assume for contradiction that Pr~p[φ∧ψ] = Pr~p[φ] Pr~p[ψ] for every distribution but Pr~p[φ] and Pr~p[ψ]

are not independent of some xi. Consider their factorization with respect to xi. Notice that their product will contain a non-

zero term either of of degree 2 in some pi, j or the term pi, j pi, j′ . By our previous proposition Pr~p[φ ∧ ψ] can contain no such

term with a non-zero coefficient. Since their coefficients are equal, this is a contradiction.

Reverse Direction If at least one of Pr~p[φ] and Pr~p[ψ] are independent of each xi implies they can both be written entirely

in terms not sharing a single variable. Thus every assignment ~x can be written as (~y,~z) where ~y contains all variables not

independent of Pr~p[φ] and ~z all those variables independent of ~z.

We break the computation in to pieces Pr~p[φ ∧ ψ] =
∑
~x φ(x) ∧ ψ(x) =

∑
~y
∑
~z φ(~y) ∗ ψ(~z). The last step follows since if the

polynomials do not contain same terms, multiplication is always valid. Thus, the value of φ(~y) is independent of ~z thus, we

can rewrite this as
∑
~y φ(~y)(

∑
~z φ(~z)). Since

∑
~z φ(~z) = Pr~p[φ] we have Pr~p[φ](

∑
~y φ(~y)) = Pr~p[φ] Pr~p[ψ] as desired. �

We give an example to show that a stronger statement, that independence with respect to a single distribution implies

independence in polynomials is false. In particular, we give a single distribution such that Pr~p[φ∧ ψ] = Pr~p[ψ] Pr~p[φ] but the

polynomials are not independent.

Example 10.2. There are three random variables x, y, z taking values in {H,T }. We denote the probability that x takes value

h (resp. t) as xh (resp. xh).

Pr[φ] = xhyt + xtyh and Pr[ψ] = yhzt + ytzh

Thus, Pr[φ ∧ ψ] = xhytzh + xtyhzt. Consider when all probabilities are equal to 0.5. Then we have: Pr[ψ] Pr[φ] = 0.25 =

Pr[φ∧ψ] even though φ and ψ are both influenced by y. However, this is not a counter example to our theorem which requires

32

the stronger hypothessis that they should be independent with respect to every distribution. Consider xh = yh = zh =
2
3 and

xt = yt = zt =
1
3 , in this case it is straightforward to check that Pr[ψ] Pr[φ] = 20

81 ,
18
81 = Pr[ψ ∧ φ].

10.1.2 Influential Variables

Definition 10.3. Given an EDNF formula φ on variables X, we say a variable x ∈ X is influential for φ if there exists a pair

of assignments (θ, θ′) such that ∀y ∈ Y y , x =⇒ θy = θ
′
y and φ(θ) , φ(θ′).

We now relate the notion of independent polynomials to influential variables:

Theorem 10.1. Given two EDNF formula φ, ψ on a common set of variables X. Pr~p[φ ∧ ψ] = Pr~p[φ] Pr~p[ψ] for every

probability distribution ~p if and only if there does not exist a variable influential for both ψ and φ.

Proof. By our previous theorem, we need only show that there exists an influential variable if and only if Pr[φ] and Pr[ψ] is

not independent on xi. We first show that a variable is influential for an arbitrary single formula φ if and only if Pr[φ] is not

independent of xi. This then establishes the theorem because there is an influential variable for both φ and ψ if and only if

there is a shared variable on which they are not independent.

Suppose x is influential for a single formula φ, then there are θ and θ′ such that θ(φ) , θ′(φ) but agree everywhere but x.

This implies that there is at least one term in Pr[φ] involving px,1, . . . , px,m. In other words, φ is not independent of x. �

Example 10.3. Consider the following EDNF formula, shown with their associated probabilistic polynomials.

φ = ((X = H) ∧ (Y = T)) ∨ ((X = T) ∧ (Y = H)) xhyt + xtyh

ψ = ((Y = H) ∧ (Z = T)) ∨ ((Y = T) ∧ (Z = H)) yhzt + ytzh

It is straightforward that Y is influential for both formula, which correctly implies that these formula are not independent

for some setting of probabilities. Since these polynomials are the same as in ex. 10.2, we have already confirmed this fact.

10.1.3 Block Independence

The main result of this section says that if two output tuples share a single tuple (t) that affect their output value then they

cannot be independent.

Definition 10.4. A tuple t is a disjoint critical tuple for V p() if and only if t is in a probabilistic relation and there exists

possible worlds I satisfying I |= V p() and I − {t} 6|= V p().

Definition 10.5. A pair of tuples (s, t) is K-doubly critical for a view V p(H) if and only if ∃so, to both agreeing with K

such that so , to and such that s is disjoint critical for Q(so) and t is disjoint critical for Q(to), pred(s) = pred(t) and

key(s) = key(t).

33

We have shown:

Theorem 10.2. The output of a conjunctive view V p(H) is guaranteed to be block independent if and only if for all possible

worlds I there do not exist a doubly critical tuples s, t.

10.2 Extension: Sets of Representable Views

In the previous section, we established a test for a view, in isolation, to be representable. However, the BID model makes

the assumption that tuples in different relations/views are independent. In this section, we give an extension to handle when

a set of views is representable.

Definition 10.6. A set of views {V p
1 . . . ,V

p
m} is representable if for i ∈ 1, . . . , n V p

i is representable and for any set of tuples T

such that each t ∈ T appears in at most one V p
i we have independence for every instance:

Pr[
∧
t∈T

t] =
∏
t∈T

Pr[t]

In the spirit of the previous definitions, we give the following generalization of critical tuples:

Definition 10.7. A tuple is t doubly critical for a pair of views V p
1 ,V

p
2 if exists so, to such t is disjoint critical for V p

1 (so) and

V p
2 (to).

We state the following theorem for completeness, its proof is straightforward.

Theorem 10.3. A set of views {V p
1 , . . . ,V

p
n } is representable if and only if there does not exist a views V p

i and V p
j and a tuple

t that is critical for V p
i and V p

j . Further, this test is ΠP
2 -Complete.

The previous ΠP
2 -algorithm works in this more general setting. Additionally, the special case when the views are Boolean

and contain only independent tuples has already been shown Π2-Hard in [33].

The following corollary is immediate from Thm. 10.3.

Corollary 10.2. The output of V1(H) and V2(H) is guaranteed to be independent if and only if for all representations I there

does not exist a tuple s, t that is disjoint critical for some h and h′ V1(h) and V2(h′).

10.3 Representability Completeness: Thm. 4.1

10.3.1 Membership in ΠP
2

Lemma 10.3. Algorithm 2 is correct

34

Proof. Using Lem. 4.1, the algorithm is sound because the image of the homomorphisms is exactly the required witness.

Consider I such that I |= Q() and I − {t} 6|= Q(), we construct I′ = im(f), for some homomorphism f which shows complete-

ness. We can take f to be the homomorphism that witnesses I |= Q(). Since im(f) ⊆ I, if there where a homomorphism from

Q to im(f) − {t}, since im(f) − {t} ⊆ I − {t}, we would be one to I − {t} as well, a contradiction. �

10.3.2 Hardness

We prove the hardness, the second half of Thm. 4.1 in its own section of the appendix, Sec. 11, because of its length.

10.4 Finding Possible Worlds Keys: R-Equivalence Version

In this section, we prove that the complexity of finding candidate keys does not dominate the costs of checking repre-

sentability. Our algorithm is very likely to be suboptimal. In this section, we will use the attribute notation because it is

slightly more natural.

Proposition 10.4. If V p |= K →r K′ and V p |= K′ →r K then V p(K; H − K) and V p(K′; H − K′).

Proof. If V p |= K →r K′ then any disjoint aware valuation that agrees on K agrees on K′. So suppose that there is some s, t

such that s[K] = t[K] but s[K′] , t[K′] this implies there is a disjoint aware valuation with the same property, contradicting

the hypothesis that K ≡r K′. Thus, block independence follows. Also by transitivity, disjoint in blocks follows. �

Theorem 10.4. If K is minimal as a set such that V p |= K →p H then K is a candidate key.

Proof. Suppose not, assume that V p(K; H − K) is not representable but V p(K′; H − K′) is. Then by proposition in the paper

V p |= K →r K′. Since only trivial functional dependencies hold in the representation, we have θ(K′) ⊆ θ(K). Since K is

not representable, it must be that V 6|= K′ →r K else K ≡r K′ and the previous proposition shows that V p(K; H − K) is

representable, a contradiction. Thus, the inclusion is strict, that is θ(K′) ⊂ θ(K). Now consider K0 = θ
−1(K′) ∩ K. Clearly

θ(K′) ⊆ θ(K0). Thus, K0 →r K′ which implies that K0 →p H. However, K0 ⊂ K, since θ−1(K′) , K, which contradicts K’s

minimality. �

Proposition 10.5. Fix a view V p(H). If K ⊆ H is block disjoint and K′ ⊆ H is block independent then K →R K′.

Proof. Suppose not, then there are two tuples s[K] = t[K] such that s[K′] , t[K′]. This implies that s, t are disjoint since

s[K] = t[K] and K is block disjoint. On the other hand, s and t are not disjoint, since s[K′] , t[K′] and K′ is block

independent (positive suffices). �

Say that K ≡R K′ if V p |= K →R K′ ∧ K′ →R K.

Corollary 10.3. If V p(K, A) and V p(K′, A′) are representable then K ≡R K′.

35

Definition 10.8. Given K1, . . . ,Kn sets of attributes then the greatest common dependency is a set of attributes G such that

∀iKi →R G and if G′ ⊆ G with the same property G′ = G. We denote this as GCDR(K1, . . . ,Kn)

This can be seen to be defined as G =
⋂n

i=1 K∗i .

Proposition 10.6. If K1, . . . ,Kn are block disjoint then K′ ⊆ H is block independent implies that K′ ⊆ GCDR(K1, . . . ,Kn)

Proposition 10.7 (Completness of GCD). For a fixed V p(H) let K = {K | K →p H} and K∞ = GCDR(K) then ∃K such that

V p(K,H − K) is representable iff V p(K∞,H − K) is.

Proof. The reverse direction is trivial K = K∞. Suppose that V p(K,H − K) is representable then K →R K∞ by definition. If

K∞ →R K then we’re done, so suppose not. Suppose K∞ 9R K, but ∀iKi →R K, then K ⊆ K∞, a contradiction. So we may

assume that for some K′ ∈ K we have K′ 9R K and K′ →p H. However, since K is assumed to be independent (positive),

this is a contradiction to prop. 10.5 �

10.5 A ∆P
2 Algorithm for GCD

We give an PNP algorithm for GCD. The problem is thatK , can contain exponentially many possible world keys. We want

a running time that does not depend on the number of |K| but only on V . Specifically, we get a ∆P
2 algorithm in terms of the

number of the attributes in the head of V denoted H. The algorithm makes the following call:

Oracle Question. Given a set of attributes ~C = {C1, . . . ,Cm} and a query V p(H), return a subset ~K satisfying:

1. V p 6|= ~K 9R ~C

2. V p |= ~K →p H

The guess is simply ~K. Both properties can be verified in PTIME, which implies that the guess is in NP. However, if no such

B exists, the algorithm returns “NO”. This subroutine is in PNP = ∆P
2 .

Algorithm. Let C0 = H. Let Ki+1 be the result of calling the above routine on input Ci. Let Ci+1 = K∗i (the R-closure).

Return Ki such that the above routine returns “No” on Ci+1. We will denote this step by K∞ and show that it converges.

Convergence. We observe that Ci+1 ⊂ Ci so the process can only run for a finite number of steps. Since, Ci+1 = K∗i , this

implies it is a strict subset of Ci (property 1 above). Thus, the algorithm runs for at most n of these steps.

Correctness. Clearly GCDR(K1, . . . ,Kn) ⊆ K∞ since K∞ is the intersection of a subset of the Ki. Suppose that K∞ is a

proper super set, this implies there is some K such that K 9R K∞. This K would be returned by the subroutine, hence

K∞ = GCDR(K1, . . . ,Kn)

Relationship. This shows that our algorithm is in ΠP
2 because we can run this algorithm to get K which is runnable by our

more powerful coNPNP machine to get K, then run the standard machine. Alternately, it can be seen that this is closure under

intersection as ΠP
2 languages.

36

10.6 Practical Algorithm (Proof of Thm. 4.5)

Theorem 10.5 (Restatement of Thm. 4.5). For a view V p(H) and K ⊆ H, if algorithm 6 outputs ‘Yes’ then V p is guaranteed

to be K-block independent. Further, if V p does not contain repeated probabilistic subgoals then algorithm 6 is complete. The

algorithm is PTIME.

Proof. Suppose there is no collision, but must be tuples s, t that agree on some K and are critical, but since they are critical

there must disjoint aware be valuations whose image contains each of s and t, these valuations are collisions. If there are no

repeated subgoals, then every tuple in the image of a valuation is critical, which shows completeness. Since the algorithm

must only check each pair of goals, it is bounded by n2 calls to the DJA algorithm and is efficient. �

10.7 Remark 4.1: Weaker probabilistic remain hard

Checking that all tuples that disagree on a set of attributes, seems like a strong condition. One may expect that a weaker

probabilistic requirement would be easier to check. For example, if our representation is block independent on K, we know

that if s[K] , t[K] then s and t must be independent. We could imagine checking something much weaker: If s[K] , t[K],

can we promise that s, t are not disjoint? We state this problem formally and show that even checking this much weaker

property remains ΠP
2 Complete.

Definition 10.9. We say that V is K-positive given a view V p(H) and K ⊆ H, ∀s, t ∈ V such that s[K] , t[K] and any BID

representation I does there exist a possible world I such that I |=D Q(s)∧Q(t)? The positivity problem is given a view V p(H)

and K ⊆ H decide if V is K-positive.

Proposition 10.8. The positivity problem is ΠP
2 -Hard.

Sketch. We omit some formal details but explain the gist of the reduction. Consider a ∀∃ 3CNF formula: ∀x1, . . . , xn∃y1, . . . , ymφ(~x, ~y).

Let X1, . . . , Xn be query variables corresponding to the variables x1, . . . , xn. Let Y1, . . . ,Ym be query variables correspond-

ing to y1, . . . , ym. The schema consists of four BID relations R0(∅; A1, A2, A3; P), R1(A1; A2, A3; P), R2(A1, A2; A3; P), R3(A1A2, A3; ∅; P).

The cardinality of the possible worlds key and the subscript of a relation is the same. The head of the query is V p(X1, . . . , Xn,Z)

where Z is a fresh variable and K = {X1, . . . , Xn,Z}. The dummy variable ensures will ensure that all assignments are consid-

ered.

For each clause (say i) e.g. X1∨ Ȳ2∨Y3 create a term Ri where i is the number of positive terms in the clause. The possible

worlds key are all positive terms and the value attributes are all negative terms (e.g. R2(X1,Y3 ; Y2).

Consider any input tuple pair, if s[X1] = t[X1] then consider X1 false and true otherwise. Abusing notation, I will denote

the valuations and the tuples identically. Thus, it makes sense to write t[Y1] even though t does not appear in the head. With

this notation, we will say that Y1 is true if s[Y1] = t[Y1].

37

The claim is that are consistent assignments to the Y for any set of X iff and only if the formula is satisfied. Consider any

term: R2(X1,Y3 ; Y2) if s[X1] = t[X1] and s[Y3] = t[Y3] but s[Y2] , t[Y2] then the valuations are not compatible and hence

cannot form a possible world. Further in any consistent world both terms are satisfied. Thus, they can be compatible if and

only if the valuations satisfy each term and hence if the formula is satisfied. �

Remark 10.1. This proposition is interesting because we need to use the disjoint events in the BID representation, else the

problem is trivial. This is in contrast to the hardness discussed in the next section.

Remark 10.2. In Prop. 10.5, we only need positivity - not independence.

38

11 Appendix C: Hardness Proof

We prove the second half of Thm. 4.1, the ΠP
2 Hardness. We consider a tuple independent representation (i.e. all the

attributes of each relation form a possible worlds key) and conjunctive queries, from which hardness of the BID situation

follows. If all tables contain only independent tuples, it is immediate from Def. 4.2 that there must be a single tuple that is

doubly critical for two distinct output tuples.

We reduce from ∀∃3CNF using a construction similar to [24]. Given a ∀∃3CNF formula, ∀~x ∀~y φ(~x, ~y), we produce a

pair (V(h),T) where V(h) is a view and T is a subset of subgoals of V . We then show that φ holds if and only if for all

homomorphisms f for V(h) and t satisfying f −1(t) ⊆ T , im(f) − {t} |= V(f (h)). To complete the proof, we then show that

the view V(h) produced in the pair (V(h),T) has a doubly critical tuple t if and only if there is a homomorphism f such that

f −1(t) ⊆ T and im(f) − {t} |= V(f (h)). Thus, finding a doubly critical is at least as hard as deciding satisfaction for ∀∃3CNF.

11.1 Setups

We shall construct the view V in stages below and select the set T .

Definition 11.1. A triple (f ,T, t) where f is a homomorphism for V, T is a set of subgoals and t is a tuple satisfying f −1(t) ⊆ T

is called a setup. We say that a setup is unsat if im(f) − {t} 6|= V(f (h)) and sat otherwise.

We show that we can restrict the class of setups we need to consider, to fine setups. Essentially, in a fine setup variables

not in var(f −1(t)) are mapped to distinct constants.

Definition 11.2. Given a setup (f ,T, t), let Gt = {g1, . . . , gn} = f −1(t) be the set of subgoals mapped by f to t. We say that

(f ,T, t) is fine if x ∈ var(V) − var(Gt), y ∈ var(V) then x , y implies f (x) , f (y).

Proposition 11.1. If there is a setup that is unsat, there is a fine setup that is unsat.

Proof. Consider an unsat setup (f ,T, t) that is not fine. We construct a setup (g,T, t) that is fine, and by way of contradiction,

we can assume that any fine setup is sat. This implies there is a homomorphism g′ from V to im(g) − {t} = J. We exhibit a

homomorphism h such that g′ ◦ h is a homomorphism of V to im(f) − {t}, a contradiction proving the claim.

First, we define the fine setup, let g(x) = f (x) if x ∈ var(Gt) otherwise let g(x) map to a distinct constant. (g,T, t) is a fine

setup by construction. Every value in the active domain of im(g) can be described as g(x), so we h(g(x)) = f (x). This mapping

is well-defined: if g−1(x) contains two distinct variables x, y, it must be that x, y ∈ var(Gt) hence g(x) = f (x) = g(y) = f (y)

and there is no ambiguity. It is a homomorphism from im(g) → im(f). We show that h−1(t) = t. First, h−1(t) , ∅ because

h(t) = t. So suppose t′ is such that h(t′) = t. Since t′ is the image of some subgoal gi, g(gi) = t′ and since h(t′) = t we can

conclude that f (gi) = t, this implies gi ∈ Gt hence is mapped to t′ = f (gi) = t, a contradiction.

�

39

Prop. 11.1 allows us to consider only fine setups, without loss of generality.

11.2 Construction of Subgoals

We define V p(h) by describing a procedure to construct its subgoals given ∀x1, . . . , xn ∃y1, . . . , ym φ(~x, ~y). As shown, V p

has a single variable h as its head. We argue about f n a (partial) homomorphism from V to im(f) − {t}. We shall use the

notation z 7→ f (zb) as a shorthand to mean, in any homomorphism f n from V to im(f) − {t} such that f n(h) = f (h), it is the

case that f n(z) = f (x) (it is forced).

X-Goals. In our problem definition, let T = {tz, t1, . . . , tn} defined below.

• tz = R(z, ez, ez,−) (Special)

• t1 = R(x1, d1, e1,−), . . . , tn = R(xn, dn, en,−) (X-Variables)

• tb
z = R(z

b, eb
z , e

b
z , h), tb

1 = R(xb
1, d

b
1 , e

b
1, h), . . . , tb

n = R(xb
n, d

b
n , e

b
n, h). (Backups)

Definition 11.3 (A Good setup). We call a setup (f ,T, t) good if t = f (tz) and bad otherwise.

Special Variables. For the special subgoals we create the following subgoals:

Rz(z, h), Rz(zb, h), Rzb (zb, h)

The effect of this is to restrict the range in the following way in any possible homomoprhism f n from V into im(f) − {t}:

f n(z) ∈ { f (z), f (zb)}, f n(zb) = f (zb). We call variables with subscripted b backup variables and enfoce that vb 7→ f (vb).

X-Variables. For each variable xi we create a separate set of subgoals, with new symbols Ri and Rib described below:

Ri(xi, z, h), Ri(xi, zb, h), Ri(xb
i , z

b, h), Ri(xb
i , z

b, h) and Rib (xb
i , z, h), Rib (xb

i , z
b, h)

We can specify these goals more succinclty as Ri(xi | xb
i , z |z

b, h) and Rib (xb
i , z | z

b).

Y-Goals. For each i ∈ 1 . . . ,m Yi(z, yi, h), Yi(z | zb, yt
i, h), Yi(z |zb, y f

1 , h). The intuition is that these subgoals will ensure that

yi takes exactly one value yt
i (true) or y f

i on any good instance.

We shall show:

Proposition 11.2. Given a setup (f ,T, t) a homomorphism f corresponds (surjectively) to an assignment for the universally

quantified variables, ~x. A good setup for V is sat if and only if there exists an assignment to the ~y such that φ(~x, ~y) with is

satisfied.

If a setup is bad, then we show it is either sat or there is some good setup that is unsat. The argument requires examining

the subgoals produced in the reduction.

40

11.2.1 Properties of fine setups

Proposition 11.3. The following hold in any fine setup (f ,T, t).

1. f (xi) = f (z) =⇒ f (ti) = f (tz)

2. ∀i, j i , j =⇒ f (yt
i) , f (y f

j)

3. All backup subgoals (e.g. vb) are mapped to distinct constants by f .

4. ∀i ∈ {1, . . . , n} t , f (tx) =⇒ f (di) , f (ei).

11.2.2 Properties of good setups

Given a good setup (f ,T, t), we say that a variable xi is false if f (ti) = t and true otherwise. Consider any assignment to the ~x,

let F be the set of variables that are false. We capture this assignment by setting {tz} ∪
⋃

f∈ f t f = f −1(t) and all other variables

to distinct constants. Since there are no constants in tz, t1, . . . , tz, such a unification always succeeds.

Proposition 11.4. If (f ,T, t) is good then

• z 7→ f (zb) and f n(y j) ∈ { f (yt
j), f (y f

j)} for any j

• And if Xi is false then xi 7→ f (xb
i), ei 7→ f (eb

i), di 7→ f (db
i) and f (xi) = f (z), f (ei) = f (di) = f (ez).

• And if Xi is true then f n(xi, ei, di) = {(xi, ei, di), (xb
i , e

b
i , d

b
i)}

Proof. If tz ∈ f −1(t) then f n(z) = f (zb) since the range restriction implies it must map to f (z), which is no longer possible in

I − {t}, or f (zb). This implies that y must map to one of these because of the Y-Goals. The second item follows because in a

good setup f (tz) = f (tu). The third item is because ti ∈ f −1(t) implies we must map ti to tb
i , the rest follows. In particular, it

must be that f (ti) = f (z) = t. The fourth item is because although we must map ti to either f (ti) or f (tb
i). �

11.2.3 Bad Setups

Proposition 11.5. In a bad setup, there is a partial homomorphism such that f n(z) = f (z). Further, we can extend it so

i = 1, . . . ,m f n(yi) = f (yi) and f n(yt
i) = f n(y f

i) = f (yi).

Proof. We take f n(ti) = f (ti) if f (ti) , t and f n(ti) = f n(tb
i) otherwise. �

11.3 Triggers

We introduce triggers, which are subgoals that form a gadget that encodes when a formula involving a universal quantified

variable is satisfied. We state their properties formally below:

41

Definition 11.4. A trigger for a formula X is a pair of variables (a, ab) with the following properties:

1. if the setup is good and X is true any homomorphism can be extended to the trigger subgoals such that f n(a) = f (ab)

and all extended homomorphisms must satisfy this property

2. If the setup is good and X is false then any homomorphism can be extended so that f n(a) = f (a) (may take other

values)

3. If the setup is bad then there exists a partial homomorphism that takes the value f n(z) = f (z) and f n(a) = f (ab) when

X is true and f n(a) = f (a) when false. (There may be others).

Notice that when X is false, we cannot force f n(a) = f (a). In spite of this, we are able to use triggers to encode formula

as we will show in the next section. We will prove the following property:

Proposition 11.6. For any conjunctive formula of using only 3 or fewer ~x variables (counting repetition), there is an efficiently

constructable (PTIME), trigger with a constant number of subgoals.

The number three is chosen because we are dealing with 3CNF formula. This proposition is proved below by showing

that we can construct ¬x, x for base variables and combine them using ∧ and ∨. We prove this proposition by construction.

11.3.1 Trigger for ¬x

We could hope that x by itself is a trigger, but the problem is when f is bad then we cannot fulfill the last condition, xi may

not be able to be mapped to f (xi). Thus, we need to do a little bit more work. To simplify notation instead, we denote xi as x.

Let N be a fresh symbol. Let a and ab be fresh variables associated with this trigger. Let s be fresh variable not used in other

parts of the construction. The last three columns show where each subgoal is mapped to aid in verifying the proofs, which

contain homomorphisms given by tables.

Subgoal Description Good (X false) Good (X true) Bad

(1) N(a, x, z, s, s, h) (2) (3) (1)

(2) N(ab, xb, zb | z, x, z, h) (4) (4) (4)

(3) N(a, x, zb, s, s, h) (4) (3) (3)

closures

(4) N(ab, xb, z | zb, x | xb, z | zb, h)
Line (4) specifies a set of 8 subgoals (some redundant); one for each choice of alternation. We call them closures because

they are the subgoals under the closure of the homomorphisms below.

Proposition 11.7. If X is false and good then there a 7→ f (ab) (is forced).

42

Proof. We examine where tuple (1) can map: it cannot map to (1) (since z 7→ f (zb). (1) it can map to (2). It cannot go to (3)

because x is forced to f (xb) (not x). It does not matter if it maps to a (4) closure because this forces, a to ab. To prove the

proposition, we now need to exhibit a homomorphism such that f n(a) = f (ab). Recall that f (x) = f (z). All backup subgoals

are mapped by identity, and the rest are described by this table:

x f (x)
x xb

a ab

z zb

s f (x) = f (z)
�

Proposition 11.8. If X is true, then there is a homomorphism such that f n(a) = f (a).

Proof. All backup subgoals (e.g. xb) are fixed, we specify the others.

x f (x)
x x
a a
z zb

s s

�

Proposition 11.9. If the setup is bad, then there is a homomorphism such that f n(a) = f (a).

Proof. This extends the allowable homomorphisms.

x X true (x false) X false (x true)
x xb x
a ab a
z z z
s s s

�

We have now shown that the trigger specified above satisfies the trigger properties.

11.3.2 Trigger for x

Let N be a fresh symbol and a, ab be fresh variables, associated to this trigger and s, t be fresh variables not used again.

Description Good (False) Good (True) Bad

(1) N(a, z, s, s, h) (2) (4) (1)

(2) N(a, zb, x, z, h) (*) (*) (*)

(3) N(ab, zb, x, z, h) (*) (*) (*)

(4) N(ab, zb, s, s, h) (3) (4) (4)

. . . Closures. . .

(*) N(a | ab, z | zb, x | xb, z | zb, h)

Proposition 11.10. If X is false, then there is a homomorphism such that f n(a) = f (a).

43

Proof. In this case, f (x) = f (z) and f (ex) = f (dx).

x f n(x)
x f (xb)
a f (a)
z f (zb)
s f (x) = f (z)
t f (ex) = f (dx)

dd f (db
d)

ed f (eb
d)

�

Proposition 11.11. If X is true, then there there is a homomoprhism such that f n(a) = f (a) and any homomorphism satisfies

this condition.

Proof. We examine where tuple (1) can map, and show it must be that a 7→ f (ab). It cannot map to (2) or (3) because

f (x) , f (z) in this case. It can map to (4). It cannot map to any closure because they all contain eb
d, d

b
d and so we cannot map

t, t.

x f n(x)
x x
a ab

z zb

s s
dd f (db

d)
ed f (eb

d)

�

Proposition 11.12. If setup is bad, then there is a homomorphism f (a) = f n(a).

Proof.

x X false X true f n(x)
x xb x
a a ab

z z z
s s s
t t t

�

We observe that in each case on all shared variables are mapped identically. Further, which is allowable in each case.

11.3.3 Trigger for a ∧ b

Let N be a fresh symbol and (a, ab) and (b, bb) be a pair of trigger variables, then a trigger variable for the conjunction, (c, cb),

is:

N(c, a, b, h), N(cb, ab, bb, h), N(c, a, bb, h), N(c, ab, b, h)

The correctness of this trigger follows directly from the trigger properties of (a, ab) and (b, bb).

44

11.3.4 Extension property

Loosely speaking triggers behave like the assignment xi = false iff ti ∈ f −1(t). Summarizing, what we have shown about

about the bad case:

Proposition 11.13. Given any bad setup (f ,T, t), there exist a good setup (g,T, t) such that g−1(t) = {tz} ∪ f −1(t) such that if

g is sat with homomorphism gn, then there is a partial homomorphism f n that agrees with gn on all trigger variables but is

undefined on the remaining variables: y1, yt
1, y

f
1 . . . , ym, yt

m, y
f
m.

Proof. We can create g by simply enforcing that g(tz) = t. We have seen that there is a partial homomorphism for a bad setup,

f n, that agrees on all trigger variables with gn. To see this, observe that if ti ∈ g−1, then under a bad setup any trigger (a, ab)

for ¬xi will have a 7→ ab and any trigger (b, bb) for xi can be set to b. It is also easy to see that both homomorphism could set

this other trigger to bb as well. �

11.4 Writing the Full CNF

We can now use our trigger variables to wire up any conjunct involving on x assignments we need. To get the full CNF

clauses, we can write any CNF clause as b(x) =⇒ y1 ∨ ȳ2 where b is some Boolean conjunction of ~x. We create a fresh

trigger variable using the construction of the previous variables pair, call it (b, bb). We add then add the following, where N is

a fresh symbol for each clause. We illustrate for example, the generalization is straightforward.

Ck(z, b, y1, y2, h), Call this a Key tuple

If the trigger is false If the trigger is true

Ck(z | zb, b, yt
1, y

t
2, h), Ck(z | zb, bb, yt

1, y
t
2, h), conclusion true

Ck(z | zb, b, yt
1, y

f
2 , h), Ck(z | zb, bb, yt

1, y
f
2 , h), conclusion true

Ck(z | zb, b, y f
1 , y

f
2 , h), Ck(z | zb, bb, y f

1 , y
f
2 , h), conclusion true

Ck(z | zb, b, y f
1 , y

t
2, h) conclusion false, this case b cannot be forced to bb

Non-Key Tuples. All non-key tuples are closed with the exception of the last tuple when b 7→ bb. We have shown that

in a good setup, yi must be mapped consistently by any homomorphism and so this implies that b must be false else the

implication fails.

Key tuple. Notice that if the conclusion is true, then any assignment to the trigger will do. If the conclusion is false,

then it must be that the trigger is false as well. Thus, in any good assignment, we can set the assignments to the ys can be

consistently if and only if there exist a way to satisfy ∃~y ~x fφ(~x f , ~y). Since none of these tuples can unify with t, any valid

partial homomorphism can be extended by sending y to yt or y f is valid. There are no restrictions on where to map f (yt
i) so

they can be mapped by identity. Summarizing,

Proposition 11.14. Given a setup (f ,T, t), let ~x f be the assignment to the ~x corresponding to f , there is a homomorphism of

45

V into im(f) − {t} if and only if ∃~y φ(~x f , ~y) is satisfiable.

Thus, if for all setups (f ,T, t) im(f) − {t} |= V p(f (~h) then ∀~x ∃~y φ(~x, ~y) is true.

11.5 Completing the Reduction

We have now seen all the subgoals, so we can now prove that if there is a bad unsat setup, then there is a good unsat setup,

which completes the reduction. The intuition is that, when a setup is bad, it mimics a good setup. If the bad setup is unsat,

then the corresponding good setup should be unsat as well. The technical reason this works is because we were careful that

whenever we used zb in the remaining subgoals, we created a subgoal that used z in the same position.

Proposition 11.15. If the partial homomorphism f n from Prop. 11.13 cannot be extended, then there is an unsat good setup.

Proof. Given a bad setup (f ,T, t) and its partial homomorphism f n, consider a good setup (g,T, t) which is formed by

equating variables so that t = g(td). This has the effect of equating constants in trigger subgoals (e.g. z and x) and equating

constants in R. However, by our previous proposition we already have a suitable homomorphims into these subgoals. We

assume for contradiction that all good sats are setup, there is some homomorphism gn from V to im(g) − {t} = J. We use gn

as a guide to extend f n to the remaining subgoals.

Let GR = {Y1, . . . ,Ym,C1, . . . ,Cl}, the set of remaining subgoals, andH be all the subgoals of V except G (set minus). By

inspection, we can see GR and H form a partition of subgoals and that no symbol appears in both sets. Further, if Tr is the

set of trigger variables, then var(GR) ∩ var(H) = {zb, z, y1, yt
1, y

f
1 , . . . , ym, yt

m, y
f
m} ∪ Tr. We observe that f n(H) ⊆ I − {t}, we

now want to extend it to GR.

We describe h which is a (partial) homomorphism from im(gn) ⊆ J when restricted to symbols pred(G). Any value in the

image, g(v), we let h(g(v)) = f (v) unless v = g(zb) = f (zb) in which case h(v) = f (z). This mapping is well defined because,

by fineness, g is injective when restricted to a variable not in var(T). Since var(G) ∩ var(T) = {z}, only z could potentially

be mapped non-injectively but this is a singleton set so g is injective on var(G). By inspection, every subgoal in this set

containing zb, there is an subgoal with zb replaced by z, thus the image of h is contained in I − {t}. Thus, h is a desired partial

homomorphism.

We now show that we can extend f n to var(GR)−{z}with h◦gn, we call the result f ∗: For any v ∈ var(V), let f ∗(v) = f n(v)

if f n(v) is defined and (h◦gn)(v) otherwise. This mapping is well defined because the only variables on which both are defined

are trigger variables or z. By Prop. 11.13, f n and h(gn) agree on all trigger variables. And for z, f n(z) = f (z) = (h ◦ gn)(z).

Thus, f ∗ is a homomorphism from V into I − {t}, contradicting that the bad setup is unsat and proving the claim. �

Given φ, we have now constructed V(h) and T with the property that for any homomorphism f of V(h) and t satisfying

f −1(t) ⊆ T then im(f) − {t} |= V(f (h)) (i.e. a good unsat setup) if and only if φ is satisfied.

46

11.6 Completing the Hardness

We now show that the query we have produced has the property that there is doubly critical tuple if and only if there

is an unsat good setup. This shows that deciding if doubly critical tuples exist is at least as hard as deciding ∀∃3CNF and

completes the proof.

Proposition 11.16. There is a doubly critical tuple for V p if and only if there exists an unsat good setup.

Proof. Suppose there is a doubly critical tuple, t. This implies there exist homomorphisms f , g for V such that im(f) − {t} 6|=

V(f (h)) and im(g) − {t} 6|= V(g(h)) and f (h) , g(h). Now suppose that t′ ∈ f −1(t) ∩ g−1(t) and t′ is not the image of a R

subgoal. Consider any gi and g j such that f (gi) = g(g j) = t. However, every non-R subgoal has h in the last position hence

f (h) = g(h), a contradiction. All R subgoals that are not a subset of T also have h in their last position. Hence, it must be that

T ⊆ f −1(t) or T ⊆ g−1(t). Without loss, we assume that f satisfies T ⊆ f −1(t). Then (f ,T, t) is a setup; it must be fine because

only changed the mappings of tu; it must be good because we have shown that any bad setup satisfies im(f) − {t} |= V(f (h)),

which this setup does not. This shows the forward direction.

We show something stronger in the reverse direction: If I = im(f) for some homomorphism f of V p(~h) such that for some

t critical for V(f (~h)) and f −1(t) ∩ ~h = ∅, then we will show that t is doubly critical for V . Notice that f −1(t) ⊆ T implies this

condition is met. This will complete the reverse direction because it will show that the tuple t in good unsat setup is doubly

critical. We define an instance J that is the image of a homomorphism g by setting g(x) = f (x) if x < ~h and equal to a fresh

constant otherwise. Let im(g) = J. We define a l homomorphism from J to I. We define l(g(x)) = f (x), l, this mapping is

well-defined because we mapped each h to distinct constants. This is also clearly a homomorphism, the claim is that this is

a homomorphism J − {t} to I − {t}. It is clear that l(t) = t, but suppose that l(t′) = t for some t′ , t. Then this is the image

of some subgoal, and by assumption this subgoal does not contain h, which means that l is identity on it. Thus t′ = t, a

contradiction. �

47

12 Appendix D: Using Views

We consider two variants of using views to answer queries: The definition-less variant, which uses the partial representa-

tion to capture some but perhaps not all, of the correlations in the view and The with-definition variant, in which the queries

are materialized but we retain definitions. In both cases, we have not kept track of lineage and so must deduce if there is a

partial representation that captures enough correlations to be uniquely defined. In the definition-less variant, we must check

that the supplied representation suffices. In the with-definition variant, we must determine if such a partial representation

exists.

12.1 Preliminaries

We prove the reverse direction of Lem. 5.1.

Lemma 12.1. If there is not a critical intertwined pair of tuples for a conjunctive query Q then Pr[Q] is uniquely determined.

Proof. Consider the smallest BID representation that is a counterexample I, where size is the number of uncertain tuples in

I.

For any s, t let 1s (resp. 1t) be indicator random variables for s, t. Define ∆x for each X ∈ {{st}, {s}, {t}} ∆x = (I + X |=

Q) − (I − X |= Q).

Pr[Q] = E[(1s ∧ 1t)(∆st − (∆s + ∆t) + 1s∆s + 1t∆t + (I − {s, t} |= Q)]

We observe that all of the ∆ terms have fewer uncertain tuples and thus, they are uniquely determined. Also the E[1s],E[1t

terms are fixed because these are marginal probabilities of individual tuples. If s, t are not intertwined then E[1s ∧ 1t]

is uniquely defined, so it must be that this term is not uniquely defined and so, s, t are an intertwined pair. Thus, our

contradiction assumption also tells us that s, t are not pair critical (else we would have a pair critical intertwined tuple pair).

We will show that its coefficient must be 0. Thus, the entire expression is uniquely determined, a contradiction.

Since E[1s ∧ 1t] and its coefficient are both non identically zero 0, this implies there is a possible world I containing s, t

such that ∆st , ∆s + ∆t. On I, ∆x is Boolean valued, since Q is conjunctive (monotone) thus ∆s = 1 ∨ ∆t = 1 =⇒ ∆st = 1.

Thus because of the inequality either, ∆t = 1 = ∆s or ∆s = ∆t = 0. In other words, I is an instance such that Q(I−{s, t}) , Q(I)

and Q(I − {s}) = Q(I − {t}), i.e. the intertwined pair s, t is critical for Q. This is a contradiction, since we assumed no such

pairs existed. �

12.2 Hardness of Partial Representation: Thm. 5.2

Definition 12.1. Given a query Q using a predicate R and tuple t,. Call t obviously critical for Q if there exists a valuation v

such that every R subgoal unifies with t.

48

Proposition 12.1. Checking if Q, t is critical but not obviously critical is Πp
2 -Complete.

Proof. The unification test can be done in PTIME. Consider any that extends the unification, then in its image the extent of R

is exactly t, hence removing t causes Q to become unsatisfied. The reduction simply checks this fact, and then can pass the

problem verbatim to the oracle. �

Proposition 12.2. Checking if Q is uniquely defined on a partial representation with only a single view symbol is ΠP
2 Hard.

Proof. Let Q() be an arbitrary query on a tuple independent database and t a tuple. We reduce from the problem of finding if

t is not obviously critical for Q. Let the predicate of t be R(K), create a new symbol, R′(K; Z; ∅), that is partially represented

with D = {Z}. Let z be a fresh variable, replace each occurrence of R with R′ filling in the additional Z attribute with the z

variable. Let Q′ be the query Q with a single additional subgoal ? R′(t; ‘a’;) for some fresh constant ‘a’. By construction, the

only possible intertwined tuples in the image of Q′ are (t, ‘a’) and the image of (t, z) (there are none if z maps to ‘a’). Clearly,

(t, ‘a’) is critical so our claim is that for some distinct value (t, ‘b’) is critical iff t is critical.

Let I be the instance that witnesses Q and t are critical, we construct I′ that witnesses the intertwined pair critical. We

will denote valuations for Q without ticks (e.g. v) and valuations for Q′ with ticks (v′). We may assume without loss that

im(v) = I for some valuation v. Let v′(z) = ‘b’ and extended in the obvious way so that I′ = im(v′). Now, suppose that

I − {(t, ‘b’)} |= Q() with some valuation w′. If w(z) = ‘a’, this implies that every subgoal R can map to t because there is only

one tuple in the image with Z = ‘a’. We have ruled out this possibility because then t would be obviously critical (Def. 12.1).

Thus, it must be that w′(z) = ‘b’. Since we removed (t, ‘b’), the corresponding w satisfies im(w) ∩ {R(t)} = ∅, its image does

not contain t, which is a contradiction to t being critical at I. In particular, then v(Q) ⊆ I − {t} so I − {t} |= Q().

Now suppose there is an intertwined critical pair, let I′ be the witness. Without loss, I′ satisfies im(v′) = I’ and so it must

be that (t, v′(z)) is critical. Let I be the corresponding instance for Q. It is clear that I |= Q() but suppose that I − {t} |= Q()

with valuation w. This implies we could send w′(z) = ‘a’ is a valuation for Q′ such that I′−{(t, b)} |= Q(), a contradiction. �

12.3 Many Partially Represented Views

It is straightforward to extend the partial representation, between each pair of views we allow specify a pair of attributes

K,K′ of the same arity such that if s[K] , t[K], then s, t are independent. We illustrate its utility in a simple case.

V10(x) D Rp(x, y), Sp(y) and V(x)10 D R
p(x, y), Tp(y) (10)

Each view is individually representable, however they are not together because of tuples in distinct views are not indepen-

dent. Our pair is (X, X), thus tuples that disagree on x are independent. Though the same x tuples in the views that agree on

x may be correlated in complex ways.

49

12.3.1 Hardness with definitions

Definition 12.2. Given views with their definitions V1 and V2 we say that two tuples s, t are intertwined if there are critical

tuples for V1 and V2 that share a possible worlds key.

Theorem 12.1. Deciding if a query using two view symbols is uniquely defined, in the definition full variant is ΠP
2 Complete.

Sketch. To see that Q is ΠP
2 -Hard, consider the query Q() D V1(),V2(). This query’s value is uniquely defined if and only

if V1() and V2() are not independent, which is ΠP
2 -Hard by [24]. To see why it is in ΠP

2 , we use the view of ΠP
2 as a coNP

machine with access to an NP oracle. For each I, an image of a homomorphism of Q, and each s, t, u ∈ I we need to test the

following implication:

I−{s, t} |=D Q =⇒

(I − {u} |=D s ∨ t)︸ ︷︷ ︸
(s,t) not intertwined

∨ (I − {s} |=D Q() ⇐⇒ I − {t} 6|=D Q())︸ ︷︷ ︸
(s,t) not pair critical

To test this implication, we need to make at most four queries to our NP Oracle: I−{s, t} |=D Q(), I−{s} |=D Q(), I−{t} |=D Q()

and I − {u} |=D s ∨ t. This shows the algorithm is in ΠP
2 . �

12.4 Practical Algorithm for Using Views: Thm. 5.3

Theorem 12.2 (Restatement of Thm. 5.3). If no intertwined collisions exist for a conjunctive query Q, then its value is

uniquely defined. If the partially representable view symbol V p is not repeated, this test is complete.

Proof. Consider a query Q(H), we show that if there exists a critical intertwined pair (s, t) for some ~h Q(~h), then there must

be an intertwined collision. Hence, if there is no intertwined collision, the value of Q is uniquely defined. Let I be the

instance provided by Def. 5.4. Suppose, I − {s} |= Q(). Since I − {s, t} 6|= Q(h), the image of any valuation v that witnesses

I − {s} |= Q() must contain t. By symmetry, the image of any valuation that witnesses I − {t} |= Q() must contain w. It is easy

to see that (v,w) is compatible and hence (v,w) is an intertwined collision. If I − {s} 6|= Q() (and hence I − {t} 6|= Q()), then

there is a single valuation v which uses both s, t. Thus, (v, v) is the desired intertwined collision.

To see completeness, observe that if a query Q has compatible valuations and only a single partially represented view V p,

since s , t the compatible valuations that witness the collision (v,w) are distinct. In particular, consider I = im(v)∪ im(w); I

is a possible world because v and w are compatible. Also, im(w) ⊆ I − {s} hence I − {s} |= Q() and by symmetry I − {t} |= Q().

Since Q is conjunctive this implies I |= Q(). Since there are no repeated views,the extent of V p in I − {s, t} contains no tuples,

thus I − {s, t} 6|= Q(). �

Theorem 12.3 (Complexity in Thm. 5.3). Finding an intertwined collision can be implemented in PTIME.

50

Given Q(~h) D g1, . . . , gn and a set of key variables, consider the query QQ() D g1, . . . , gn, η(g1), . . . , η(gn) where η is a

function that is identity on ~h and const(V p) and maps all other variables to distinct fresh variables. For each pair of key values

i, j if pred(gi) = pred(g j) we need to check if equating ~ki = ~k j implies that for any disjoint aware valuation for QQ, it is the

case that ~di = ~d j if not then fail. This procedure is just the chase, examining after chasing if in fact ~di = ~d j hold. Thus, we

get soundness completeness and efficiency for free.

51

13 Appendix E: Schemata

In this section, we give the probabilistic schema for the experimental results in the syntax of our implementation. The
only changes are for the sake of formatting.

Syntax. Schemata used in materialized view parsers. (* *) encloses a comment. Probabilistic relations are denoted with
an asterisk (e.g. orders*). ; separates possible world key attributes.

13.1 Northwind 1 (NW1)

(***********************)

(* Northwind Relations *)

(***********************)

CustomerDemographics*(CustomerTypeID;CustomerDesc)
(* FUNCTIONAL DEPENDENCY CustomerDemographics(CustomerTypeID) ->

CustomerTypeID,CustomerDesc; *)

Region(RegionID,RegionDescription)

FUNCTIONAL DEPENDENCY Region(RegionID) -> RegionID,RegionDescription;

Employees(EmployeeID,LastName,FirstName,Title,TitleOfCourtesy,BirthDate,HireDate,

Address,City,Region,PostalCode,Country,HomePhone,Extension,Photo,Notes,

ReportsTo,PhotoPath)

FUNCTIONAL DEPENDENCY Employees(EmployeeID) ->

EmployeeID,LastName,FirstName,Title,TitleOfCourtesy,

BirthDate,HireDate,Address,City,Region,PostalCode,Country,

HomePhone,Extension,Photo, Notes,ReportsTo,PhotoPath;

Categories(CategoryID,CategoryName,Description,Picture)

FUNCTIONAL DEPENDENCY Categories(CategoryID) ->

CategoryID,CategoryName,Description,Picture;

Customers(CustomerID,CompanyName,ContactName,ContactTitle,Address,City,Region,

PostalCode,Country,Phone,Fax)

FUNCTIONAL DEPENDENCY Customers(CustomerID) -> CustomerID,CompanyName,ContactName,

ContactTitle,Address,City,Region,PostalCode,Country,Phone,Fax;

Shippers(ShipperID,CompanyName,Phone)

FUNCTIONAL DEPENDENCY Shippers(ShipperID) -> ShipperID,CompanyName,Phone;

Suppliers(SupplierID,CompanyName,ContactName,ContactTitle,Address,City,

Region,PostalCode,Country,Phone,Fax,HomePage)

FUNCTIONAL DEPENDENCY Suppliers(SupplierID) -> SupplierID,CompanyName,ContactName,

ContactTitle,Address,City,Region,PostalCode,Country,Phone,Fax,HomePage;

Order_Details(OrderID,ProductID,UnitPrice,Quantity,Discount)

FUNCTIONAL DEPENDENCY Order_Details(OrderID,ProductID) ->

OrderID,ProductID,UnitPrice,Quantity,Discount;

CustomerCustomerDemo(CustomerID,CustomerTypeID)

FUNCTIONAL DEPENDENCY CustomerCustomerDemo(CustomerID,CustomerTypeID) ->

CustomerID,CustomerTypeID;

52

Territories(TerritoryID,TerritoryDescription,RegionID)

FUNCTIONAL DEPENDENCY Territories(TerritoryID) ->

TerritoryID,TerritoryDescription,RegionID;

EmployeeTerritories(EmployeeID,TerritoryID)

FUNCTIONAL DEPENDENCY EmployeeTerritories(EmployeeID,TerritoryID) ->

EmployeeID,TerritoryID;

Orders*(OrderID,CustomerID,EmployeeID,OrderDate,RequiredDate,ShipName,ShipAddress,

ShipCity,ShipRegion,ShipPostalCode,ShipCountry;ShippedDate,ShipVia,Freight)
FUNCTIONAL DEPENDENCY Orders(OrderID) -> OrderID,CustomerID,EmployeeID,OrderDate,

RequiredDate,ShipName,ShipAddress,ShipCity,ShipRegion,ShipPostalCode,ShipCountry;

Products(ProductID,ProductName,SupplierID,CategoryID,QuantityPerUnit,UnitPrice,UnitsInStock,

UnitsOnOrder,ReorderLevel,Discontinued)

FUNCTIONAL DEPENDENCY Products(ProductID) ->

ProductID,ProductName,SupplierID,CategoryID,QuantityPerUnit,

UnitPrice,UnitsInStock,UnitsOnOrder,ReorderLevel,Discontinued;

(*******************)

(* Composite Views *)

(*******************)

Order_Subtotals(OrderId, Subtotal)

Order_Detail_Extended*(ProductID;OrderID;ProductName, UnitPrice, Quantity, Discount,ExtendedPrice)
Product_Sales_for_1997*(CategoryName, ProductName; ProductSales)

13.2 Northwind 2 (NW2)

The schema is the same with Northwinds I except for the definition of the Products table.

Products*(ProductID,ProductName,SupplierID,CategoryID,QuantityPerUnit,UnitPrice;UnitsInStock,UnitsOnOrder,ReorderLevel,Discontinued)
FUNCTIONAL DEPENDENCY Products(ProductID) ->

ProductID,ProductName,SupplierID,CategoryID,QuantityPerUnit;

13.3 Northwind 3 (NW3)

The schema is the same with Northwinds I (NW1) except for the definitions of the Products and Customers table.

Customers*(CustomerID,CompanyName,ContactName,ContactTitle,Address,City,Region,

PostalCode,Country,Phone,Fax);

13.4 Adventure Works (AW1)

(***************************************)

(* These are all tables used by MViews *)

(***************************************)

HumanResources_Department(DepartmentID,Name,GroupName,ModifiedDate)

FUNCTIONAL DEPENDENCY HumanResources_Department(DepartmentID) -> DepartmentID,Name,

GroupName,ModifiedDate;

53

HumanResources_Employee*(EmployeeID;NationalIDNumber,ContactID,LoginID,ManagerID,Title,BirthDate,
MaritalStatus,Gender,HireDate,SalariedFlag,VacationHours,SickLeaveHours,

CurrentFlag,rowguid,ModifiedDate)

FUNCTIONAL DEPENDENCY HumanResources_Employee(EmployeeID) -> EmployeeID,NationalIDNumber,ContactID,

LoginID,ManagerID,Title,BirthDate,MaritalStatus,Gender,HireDate,SalariedFlag,VacationHours,

SickLeaveHours,CurrentFlag,rowguid,ModifiedDate;

HumanResources_EmployeeAddress*(EmployeeID;AddressID,rowguid,ModifiedDate)
FUNCTIONAL DEPENDENCY HumanResources_EmployeeAddress(EmployeeID,AddressID) -> EmployeeID,AddressID,

rowguid,ModifiedDate;

HumanResources_EmployeeDepartmentHistory(EmployeeID,DepartmentID,ShiftID,StartDate,EndDate,ModifiedDate)

FUNCTIONAL DEPENDENCY HumanResources_EmployeeDepartmentHistory(EmployeeID,StartDate,DepartmentID,ShiftID) ->

EmployeeID,DepartmentID,ShiftID,StartDate,EndDate,ModifiedDate;

HumanResources_Shift(ShiftID,Name,StartTime,EndTime,ModifiedDate)

FUNCTIONAL DEPENDENCY HumanResources_Shift(ShiftID) -> ShiftID,Name,StartTime,

EndTime,ModifiedDate;

Person_Address*(AddressID;AddressLine1,AddressLine2,City,StateProvinceID,
PostalCode,rowguid,ModifiedDate)

FUNCTIONAL DEPENDENCY Person_Address(AddressID) -> AddressID,AddressLine1,AddressLine2,City,

StateProvinceID,PostalCode,rowguid,ModifiedDate;

Person_AddressType(AddressTypeID,Name,rowguid,ModifiedDate)

FUNCTIONAL DEPENDENCY Person_AddressType(AddressTypeID) -> AddressTypeID,Name,rowguid,ModifiedDate;

Person_Contact(ContactID,NameStyle,Title,FirstName,MiddleName,LastName,Suffix,EmailAddress,

EmailPromotion,Phone,PasswordHash,PasswordSalt,AdditionalContactInfo,rowguid,ModifiedDate)

FUNCTIONAL DEPENDENCY Person_Contact(ContactID) -> ContactID,NameStyle,Title,FirstName,

MiddleName,LastName,Suffix,EmailAddress,EmailPromotion,Phone,PasswordHash,PasswordSalt,

AdditionalContactInfo,rowguid,ModifiedDate;

Person_ContactType(ContactTypeID,Name,ModifiedDate)

FUNCTIONAL DEPENDENCY Person_ContactType(ContactTypeID) -> ContactTypeID,Name,ModifiedDate;

Person_CountryRegion(CountryRegionCode,Name,ModifiedDate)

FUNCTIONAL DEPENDENCY Person_CountryRegion(CountryRegionCode) -> CountryRegionCode,Name,ModifiedDate;

Person_StateProvince(StateProvinceID,StateProvinceCode,CountryRegionCode,IsOnlyStateProvinceFlag,Name,

TerritoryID,rowguid,ModifiedDate)

FUNCTIONAL DEPENDENCY Person_StateProvince(StateProvinceID) -> StateProvinceID,StateProvinceCode,

CountryRegionCode,IsOnlyStateProvinceFlag,Name,TerritoryID,rowguid,ModifiedDate;

Production_ProductDescription*(ProductDescriptionID;Description,rowguid,ModifiedDate)
FUNCTIONAL DEPENDENCY Production_ProductDescription(ProductDescriptionID) -> ProductDescriptionID,

Description,rowguid,ModifiedDate;

Production_ProductModel(ProductModelID,Name,CatalogDescription,Instructions,rowguid,ModifiedDate)

FUNCTIONAL DEPENDENCY Production_ProductModel(ProductModelID) -> ProductModelID,Name,CatalogDescription,

Instructions,rowguid,ModifiedDate;

54

Production_ProductModelProductDescriptionCulture(ProductModelID,ProductDescriptionID,CultureID,ModifiedDate)

FUNCTIONAL DEPENDENCY Production_ProductModelProductDescriptionCulture(ProductModelID,ProductDescriptionID,

CultureID) -> ProductModelID,ProductDescriptionID,CultureID,ModifiedDate;

Sales_Customer(CustomerID,TerritoryID,CustomerType,rowguid,ModifiedDate)

FUNCTIONAL DEPENDENCY Sales_Customer(CustomerID) -> CustomerID,TerritoryID,CustomerType,

rowguid,ModifiedDate;

Sales_CustomerAddress*(CustomerID,AddressID,AddressTypeID;rowguid,ModifiedDate)
FUNCTIONAL DEPENDENCY Sales_CustomerAddress(CustomerID,AddressID) -> CustomerID,AddressID,

AddressTypeID,rowguid,ModifiedDate;

Sales_SalesTerritoryHistory(SalesPersonID,TerritoryID,StartDate,EndDate,rowguid,ModifiedDate)

FUNCTIONAL DEPENDENCY Sales_SalesTerritoryHistory(SalesPersonID,StartDate,TerritoryID) -> SalesPersonID,

TerritoryID,StartDate,EndDate,rowguid,ModifiedDate;

Sales_StoreContact*(CustomerID,ContactID,ContactTypeID,rowguid;ModifiedDate)
FUNCTIONAL DEPENDENCY Sales_StoreContact(CustomerID,ContactID) -> CustomerID,ContactID,ContactTypeID,

rowguid,ModifiedDate;

The rest of the schema is not used by the views and is omitted.

13.5 Adventure Works 2 (AW2)

The schema is the same as AW1, except that HumanResources Employee, Production ProductDescription and
Sales StoreContact are deterministic.

13.6 TPC-H

PART*(P_PARTKEY,P_NAME,P_MFGR,P_BRAND,P_TYPE,P_SIZE,P_CONTAINER,P_COMMENT;P_RETAILPRICE)
FUNCTIONAL DEPENDENCY PART(P_PARTKEY) ->

P_NAME,P_MFGR,P_BRAND,P_TYPE,P_SIZE,P_CONTAINER,P_COMMENT;

SUPPLIER*(S_SUPPKEY,S_NAME,S_ADDRESS,S_NATIONKEY,S_PHONE,S_COMMENT;S_ACCTBAL)
FUNCTIONAL DEPENDENCY SUPPLIER(S_SUPPKEY) -> S_NAME,S_ADDRESS,S_NATIONKEY,S_PHONE,S_COMMENT;

PARTSUPP(PS_PARTKEY,PS_SUPPKEY,PS_AVAILQTY,PS_SUPPLYCOST,PS_COMMENT)

FUNCTIONAL DEPENDENCY PARTSUPP(PS_PARTKEY,PS_SUPPKEY) -> PS_AVAILQTY,PS_SUPPLYCOST,PS_COMMENT;

CUSTOMER*(C_CUSTKEY,C_NAME,C_ADDRESS,C_NATIONKEY,C_PHONE,C_ACCTBAL,

C_MKTSEGMENT,C_COMMENT)

FUNCTIONAL DEPENDENCY CUSTOMER(C_CUSTKEY) -> C_NAME,C_ADDRESS,C_NATIONKEY,C_PHONE,C_ACCTBAL,

C_MKTSEGMENT,C_COMMENT;

NATION(N_NATIONKEY,N_NAME,N_REGIONKEY,N_COMMENT)

FUNCTIONAL DEPENDENCY NATION(N_NATIONKEY) -> N_NAME,N_REGIONKEY,N_COMMENT;

REGION(R_REGIONKEY,R_NAME,R_COMMENT)

FUNCTIONAL DEPENDENCY REGION(R_REGIONKEY) -> R_NAME,R_COMMENT;

LINEITEM*(L_ORDERKEY,L_LINENUMBER,L_QUANTITY,L_EXTENDEDPRICE,L_DISCOUNT,

L_TAX,L_RETURNFLAG,L_LINESTATUS,L_SHIPDATE,L_COMMITDATE,L_RECEIPTDATE,

55

L_SHIPINSTRUCT,L_SHIPMODE,L_COMMENT;L_PARTKEY,L_SUPPKEY)

(* FUNCTIONAL DEPENDENCY LINEITEM(L_ORDERKEY) -> L_PARTKEY,L_SUPPKEY,L_LINENUMBER,L_QUANTITY,

L_EXTENDEDPRICE,L_DISCOUNT,L_TAX,L_RETURNFLAG,L_LINESTATUS,

L_SHIPDATE,L_COMMITDATE,L_RECEIPTDATE,L_SHIPINSTRUCT,L_SHIPMODE,L_COMMENT; *)

FUNCTIONAL DEPENDENCY LINEITEM(L_ORDERKEY) -> L_LINENUMBER,L_QUANTITY,L_EXTENDEDPRICE,

L_DISCOUNT,L_TAX,L_RETURNFLAG,L_LINESTATUS,L_SHIPDATE,L_COMMITDATE,L_RECEIPTDATE,

L_SHIPINSTRUCT,L_SHIPMODE,L_COMMENT;

ORDERS*(O_ORDERKEY,O_CUSTKEY,O_TOTALPRICE,O_ORDERDATE,O_ORDERPRIORITY,O_CLERK,O_SHIPPRIORITY,

O_COMMENT;O_ORDERSTATUS)
FUNCTIONAL DEPENDENCY ORDERS(O_ORDERKEY) -> O_CUSTKEY,O_TOTALPRICE,O_ORDERDATE,

O_ORDERPRIORITY,O_CLERK,O_SHIPPRIORITY,O_COMMENT;

56

	Introduction
	Problem Definition
	Representation Formalism
	Running Example
	Representable Views
	Partially Representable Views
	Using Views to Answer Queries

	Preliminaries
	Generalizing Functional Dependencies
	A Chase Procedure

	Problem 1: Representability
	Statement of Main Results
	Block Independence
	Disjoint in Blocks
	Finding Possible Worlds Keys
	A Solution for Problem 1

	Practical Algorithm for Representability
	Extensions and Discussion

	Problem 2: Querying using Views
	Partially Representable Views
	Statement of Main Results
	Critical Intertwined Captures Uniqueness

	Practical Test for Uniqueness
	Extensions and Discussion

	Related Work
	Experiments
	Experimental Setup
	Question 1: Do Representable and Partially Representable views exist?
	Question 2: Do our techniques make query processing more efficient?
	Question 3: How costly are our algorithms?

	Conclusion
	Appendix A: Proofs for Preliminaries
	Proof of Prop. 3.2

	Appendix B: Representability
	Proof of Lemma. 4.1
	EDNF Formula
	Influential Variables
	Block Independence

	Extension: Sets of Representable Views
	Representability Completeness: Thm. 4.1
	Membership in 2P
	Hardness

	Finding Possible Worlds Keys: R-Equivalence Version
	A 2P Algorithm for GCD
	Practical Algorithm (Proof of Thm. 4.5)
	Remark 4.1: Weaker probabilistic remain hard

	Appendix C: Hardness Proof
	Setups
	Construction of Subgoals
	Properties of fine setups
	Properties of good setups
	Bad Setups

	Triggers
	Trigger for x
	Trigger for x
	Trigger for a b
	Extension property

	Writing the Full CNF
	Completing the Reduction
	Completing the Hardness

	Appendix D: Using Views
	Preliminaries
	Hardness of Partial Representation: Thm. 5.2
	Many Partially Represented Views
	Hardness with definitions

	Practical Algorithm for Using Views: Thm. 5.3

	Appendix E: Schemata
	Northwind 1 (NW1)
	Northwind 2 (NW2)
	Northwind 3 (NW3)
	Adventure Works (AW1)
	Adventure Works 2 (AW2)
	TPC-H

