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Abstract
This work describes a first step towards the creation of an en-

gineering model for the perception of color difference as a func-
tion of size. Our approach is to non-uniformly rescale CIELAB
using data from crowdsourced experiments, such as those run on
Amazon Mechanical Turk. In such experiments, the inevitable
variations in viewing conditions reflect the environment many ap-
plications must run in. Our goal is to create a useful model for
design applications where it is important to make colors distinct,
but for which a small set of highly distinct colors is inadequate.

Introduction

Figure 1. Colors that are comfortably distinct on bars are more difficult to

distinguish on the small scatterplot marks.

Most color technologies are defined for targets of 2 or 10
degrees [1]. However, designers of color for digital applications
have targets of many sizes to consider. While it is well understood
that the appearance of color varies significantly with size [5], there
are as of yet no practical models to help a practitioner control for
this effect. This paper looks specifically at the problem of dis-
criminability, providing a way to estimate how much separation
(measured in CIE ∆E units) colors must have to be robustly dis-
tinct at different sizes. Our goal is to create a useful model for
design applications where it is important to make colors distinct,
but for which a small set of highly distinct colors is inadequate.

The ability to distinguish different colorings is especially im-
portant in data visualization, where the color indicates a property
of the data [10]. For example, in Figure 1, the bar colors, which
indicate categories of products, are easy to distinguish. However,
for smaller marks such as those in the scatterplots, their compo-
nent colors become less visibly distinct. In systems like Tableau
(http://www.tableausoftware.com/), colors are care-

fully crafted to be robust across sizes. Our goal is to provide better
metrics and models for this type of design.

In this work, our goal is to provide a quantitative model of
how color discriminability changes as a function of size, with a
specific emphasis on discriminability of small perceptual differ-
ences, such as just-noticeable differences (JNDs). We base our
explorations on a series of crowdsourced experiments, similar to
those presented by Szafir et al. [11], which explore these phe-
nomena for real users in real viewing conditions. In such exper-
iments, the inevitable variation in viewing conditions reflect the
environment many applications must run in. Our goal is to de-
fine discriminability in a way that is robust, on average, to these
conditions.

This choice represents a direct trade-off: In contrast to other
work in this area [3] we are not attempting to model the mech-
anisms that control how the perceptual system is influenced by
color as a function of size. Instead, by measuring this color/size
phenomena under more realistic circumstances, we want to derive
findings that can be immediately leveraged in practical design.

In the paper, we describe a way to model discriminability as
a function of size for target sizes ranging from 6◦ to 1

3
◦

of visual
angle. Our noticeable difference function, ND(p,s) is a weighted
Euclidean distance in CIELAB space, parameterized by two fac-
tors: A threshold p, defined as the percentage of observers who
see two colors separated by that value as different, and a size s,
specified in degrees of visual angle. A theoretical CIELAB JND,
where p= 50% and s= 2◦, should correspond to a difference of 1,
with equal contributions from L∗, a∗ and b∗. For practical design
under uncontrolled conditions, we find the required difference, or
in our notation, ND(50,2), is closer to 6, with different weight-
ings on L∗, a∗ and b∗. As the target size shrinks, the ND value
increases and the difference in discriminability along each of the
three axis changes unevenly. For 0.33 degrees, the required differ-
ence is closer to 11, with an even stronger variation in weightings
along the three axes.

Contribution: We empirically evaluate discriminability for 11
different target sizes, ranging from 6◦ to 1

3
◦

of visual angle. Fol-
lowing the model presented by [11], we create a noticeable dif-
ference function ND(p) for each size s. We then generalize these
results in two ways. First, for a fixed p, estimate ND(p) for an
arbitrary size s. This function takes the form ND(p) = C+K/s,
where C and K are constants obtained from fitting the data for
each of our 11 sizes. Second, we generalize this result for ar-
bitrary values of p, creating a general function ND(p,s). The
resulting model is also a linear function of inverse size. While
further evaluation and refinement is needed, these models provide
a simple way to predict discriminability as a function of size.



Related Work
Recent papers by Carter & Silverstein [3, 4] address the

problem of discriminability for small colored targets, focusing
on those in the range of 120′ to 7.5′ of visual angle. This work
leverages reaction time data for a set of identification tasks to un-
derstand how the bound of immediate discriminability shifts as a
function of size. The resulting formulation communicates a no-
tion of immediate perceptual discriminability, providing parame-
ters for scaling color differences in cone space and for account-
ing for optical scattering between each small mark and the back-
ground as a function of per-cone channel contrast. While we are
interested in a larger range of sizes (6◦ to 1

3
◦

are discussed in this
paper) and more subtle differences, we do incorporate aspects of
their model in the design of our experiments.

The sCIELAB work of Zhang & Wandell [12] addresses the
problem of evaluating pixel-sized color differences. While an ex-
cellent example of a practical model, its focus is pixels in images
and does not scale to the range of sizes we are interested in.

That ∆E computed as an Euclidean distance in CIELAB
space does not accurately capture color difference is well estab-
lished. Mahy et al.’s evaluation of uniform color differences [8]
offers an average value of 2.3 for the JND in CIELAB, in contrast
to its theoretical 1.0. Color difference formulations such as CIE94
and CIEDE2000 include parameters to adjust the JND across the
color space as a function of hue and chroma [7, 9]. Our work
currently assumes uniformity across the space, but this is clearly
not true. It will be part of our future work to incorporate some
of the insights from these more recent difference formulations,
especially the contribution of chroma to our calculations.

Fundamental to our approach is the work by Szafir et al. [11],
who have demonstrated that evaluating CIELAB based on crowd-
sourced experiments produces useful results for modeling appear-
ance effects. In their work, they evaluate color differences along
the three color axes independently, then rescale CIELAB to create
a more robust metric for color difference. We directly follow their
procedure for collecting and evaluating color difference judge-
ments of samples jittered along the the L∗, a∗, b∗ axes to create a
scaled model of CIELAB for each size tested.

Experiment
To rescale CIELAB as a function of size, we require data that

measures whether two similar colors appear the same or different.
By varying the sizes, colors, and differences, we can calculate
scaling factors for the L∗, a∗ and b∗ axes.

Design
We designed our experiments to use Amazon’s Mechanical

Turk (https://www.mturk.com) infrastructure to crowd-
source our experiments. This approach has been validated as
being comparable to controlled experiments if sufficient partic-
ipants are used and care is taken to filter out clearly invalid re-
sponses [6, 13, 2]. In addition, creating a model that incorporates
the variation in viewing conditions inherent in crowdsourcing is
fundamental to our goals.

Participants were shown a series of pairs of colored squares
and asked to identify whether the pairs were of the same color or
different colors by pressing one of two keys (“f” key if the colors
appear the same, and the “j” key if the colors appear different).
For each pair, one square was a standard sample, and the second

was a “jittered” version of that color, different by a small step
along one of the three CIELAB axes. The position of the jittered
square was randomized for each stimulus. A set of 52 sample
colors were selected by sampling uniformly along the L∗, a∗, and
b∗ axes. The resulting set is shown in Figure 2. There are 6 L∗

steps ranging from 30 to 85. For each L∗ value, a∗ and b∗ were
sampled with a spacing of 25; all values that would go out of
gamut when jittered were removed. This gave us a basic range
of 50 to -50, plus one sample for b∗ = -75. While it does not
encompass the entire gamut, this set of colors is representative of
those used in practical design.

Figure 2. The 52 sample as distributed in CIELAB space.

To generate the jittered colors, we defined a jitter step for
each size and sampled ±5 steps per axis. This creates 33 color
differences per size, including 3 where the color difference was
zero. We include zero difference cases both for completeness and
to aid in validation. Each participant saw all 33 jitter cases a total
of 3 times, but with different colors mapped to each jitter step.
We distributed the colors across participants such that we had an
equal number of samples for each color × jitter location.

For sizes less than 2 degrees, the jittered distances were
modulated based on the Carter & Silverstein recommendations,
normalized by their recommended factors such that the 2-degree
square step size equaled 1∆E. This helped ensure that we made
large enough jitter steps for the small sizes. Step sizes were lin-
early interpolated for sizes not sampled in the Carter & Silver-
stein numbers. Optical scattering parameters were not included in
this model as we could not uniformly determine whether the dif-
ference would result in uniformly positive or negative contrasts
agnostic of the standard color. For sizes 2 degrees and larger, a
uniform step of 1.25∆E was used.

We ran our study using a total of 4 experiments, each eval-
uating three size sets: 0.33, 0.67, and 1 degree; 0.5, 1.25, and
2 degree; 2, 4, and 6 degrees, and 0.4, 0.8, and 1.625 degrees.
We replicated the 2 degree value because our initial jitter step for
2 degrees of 1∆E was found to be too small. In our modeling,
we use the results from the larger step. In all cases, the stimuli
were presented a fixed distance apart (4 degrees) measured edge
to edge. We assumed a standard viewing distance of 24 inches and
the HTML default of 96 dpi for pixel resolution (http://www.
w3.org/TR/css3-values/#absolute-lengths). In
most browsers, this will be remapped automatically to compen-
sate for the actual display resolution.

For each experiment, participants first were prompted for
their demographic information. Then they were then given a brief
tutorial explaining the task at hand. Each participant saw 104 tri-
als, 99 experimental observations and 5 validity trials, in which
the sample was presented with a very different color (≥ 20∆E
difference). There was a 500ms white screen between trials to al-



leviate adaptation effects. As is typical in experiments run on Me-
chanical Turk, we had to replace roughly 15% of the participants
based on our validity criteria, which included correctly identify-
ing the very different cases, the zero difference cases, plus a visual
check of the pattern of response. We repeated this process until
we had a complete set of observations for our data.

Statistical Analysis
Overall, we analyzed responses from 624 participants (245

female, 339 male, 40 declined to state) between 16 and 66 years
of age (µ = 33.71, σ = 11.60) with self-reported normal or
corrected-to-normal vision. Each participant saw each of the 52
stimulus colors twice, with each combination of color difference
(jitter amount× jitter direction× jittered axis) presented once for
each of three sizes. Color × size × color difference was counter-
balanced between participants. This sampling density will predict
discriminability rates for each tested color difference to at worst
±7.5% with 90% confidence.

To verify the validity of our results, we ran an 9-level AN-
COVA on the discriminability responses for each sample across
all four experiments in the study, treating gender as a covariate,
participant id as a random factor to help account for interpartici-
pant variation, and size as a between-subjects factor. We found
significant effects of age (F(1,607) = 8.1342, p = .0045) and
question order (F(1,50826) = 16.7810, p < .0001); however, we
saw no systematic variation for either factor. We also saw sig-
nificant effects of the fixed color’s L∗ (F(1,50791) = 1448.323,
p< .0001) and b∗ (F(1,50764)= 29.9342, p< .0001) values, but
not on the fixed color’s a∗ value (F(1,50764) = 0.1621, p.6873);
however, only L∗ appeared to have a systematic influence on re-
sponse patterns – discriminability was slightly better for light col-
ors than for dark. Our primary factors – size (F(10,6741) =
58.2625,p < .0001) and color difference along L∗ (F(1,50756) =
8301.816, p < .0001), a∗ (F(1,50756) = 7819.245, p < .0001),
and b∗ (F(1,50756) = 4974.221, p < .0001) — all had a highly
significant effect on response.

Predicting Discriminability Thresholds
Based on our data, we can create a parameterized noticeable

difference (ND) as a linear function of distance in CIELAB space
for each size in our study. Our experiments presented two color
patches, a known jitter step apart along either the L∗, a∗ or b∗

axis, and recorded whether observers said they looked the same
or different. We then plotted the jitter step size and the percentage
of the responses that indicated it looked “the same.” That is, given
a distance in CIELAB units between two colors, for each size s,
we can predict what percentage of observers p, reported a visible
difference. As in the work of [11], we found that a linear model
forced through 0 fit this data well. This gives:

p =V (s)∗∆D+ e (1)

where s is the size, V and D are vector values (L∗, a∗ , b∗) and
e is experimental and observational error. That is, D is a step
in CIELAB space, and V is a vector of three slopes, which are
different for L∗, a∗, and b∗. This is shown in Figure 3. Table 1
summarizes the slopes data.

Given this simple model from Equation 1, ND(p) = p/V ,
with ND equivalent to the vector ∆D. For example, to compute
the distance vector where 60% of the observers saw a difference,

Figure 3. The slope lines for 4 of the sizes we tested (others removed for

legibility). The 50% line is marked, the ND(50) for each of L∗, a∗ and b∗ axis is

the intercept with this line. The ND(50) for the 4-degree stimulus is indicated.

All models fit with p < 0.0001 except for ∆b for size 0.33 (p = 0.000189).

simply divide 0.6 by V , which will return a vector (∆L,∆a,∆b)
indicating the steps in LAB space that separate two colors with a
60% reliability. Classically, a JND is defined as color difference
where 50% of the observers saw a difference, or in our notation,
ND(50). Using this formulation and the data in the slopes table,
we get the values for ND(50) for each size shown in Table 2. We
can use this data to estimate ND(p,s) in two different ways.

Predicting ND(p,s) for a Fixed Value of p
Given a fixed p, we want to predict ND(p) as a function

of size. We start by plotting ND(p) for a specific threshold for
against size, which shows that the function is non-linear and that
the three axes are quite different. For example, Figure 4 shows
the plot for ND(50).

Our first result is that a linear fit to 1/size fits this data well,
as shown in Figure 5, giving:

ND(50,s) = C(50) + K(50)/s (2)

Linear regression creates the coefficients for C(50) and K(50)
shown in Table 3.

The form of this function makes sense perceptually. As size
increases, the K/s term goes to zero, leaving a constant ND(50)
of (5.1,5.3,5.3). As size decreases below 1, ND(50) increases
more rapidly, which matches our observed results.

Changing the value of p we can create the same function but
with different coefficients. This provides a two-step model for



Size (s)
Axis 0.333 0.4 0.5 0.667 0.8 1 1.25 1.625 2 4 6
L∗ 0.068 0.069 0.078 0.081 0.090 0.083 0.089 0.085 0.100 0.096 0.090
a∗ 0.051 0.054 0.062 0.067 0.064 0.073 0.073 0.072 0.085 0.091 0.097
b∗ 0.034 0.042 0.050 0.051 0.055 0.061 0.064 0.066 0.073 0.086 0.086

Table 1. V (s) for each size and axis

Size (s)
Axis 0.333 0.4 0.5 0.667 0.8 1 1.25 1.625 2 4 6
L∗ 7.321 7.267 6.435 6.180 5.531 6.017 5.643 5.903 5.010 5.187 5.574
a∗ 9.901 9.268 8.052 7.429 7.837 6.897 6.821 6.906 5.917 5.488 5.149
b∗ 14.837 12.019 10.101 9.747 9.091 8.197 7.764 7.587 6.831 5.841 5.834

Table 2. ND for p = 50% for each size and axis

Figure 4. ND(50) plotted against size for each of our tested sizes for each

axis. L∗ is gray plus, a∗ is red circle, b∗ is blue square.

Axis C(50) K(50)
L∗ 5.079 0.751
a∗ 5.339 1.541
b∗ 5.349 2.871

Table 3. C and K coefficients for ND(50)

discriminability as a function of size. First, compute ND(p) for
the desired p, then use linear regression to define the coefficients
for the following equation:

ND(p,s) =C(p)+K(p)/s (3)

Generalizing the Model
In the previous section, we created a model of ND(p,s) for a

fixed p. Here we generalize this model so we can predict ND(p,s)
for an arbitrary p without having to calculate and fit the ND(p)
data. To do this, we need to predict the slopes shown in Figure
3 and Table 1 from the size. Based on the results in the previous
sections, we would expect to see a solution in the following form:

V (s) = p/ND(p) = p/(C(p)+K(p)/s) (4)

where C(p) and K(p) are the coefficients in Equation 3.

Figure 5. The plot of ND(50) for each of the 11 sizes vs. 1/size for each

of L∗, a∗ and b∗. (R2
L = .849696,pL < 0.0001; R2

a = .942234,pL < 0.0001; R2
b =

.970395,pb < 0.0001)

Plotting slope, V , as a function of size gives the non-linear
distribution shown in Figure 6.

Using linear regression to fit 1/V as a function of 1/s gives
the results shown in Figure 7, or:

1/V (s) = A+B/s (5)

This gives a general specification for ND(p,s):

ND(p,s) = p(A+B/s) (6)

where s is size in degrees, p is in the range 0 to 1, and the values
for A and B are shown in Table 4.

Axis A B
L∗ 10.16 1.50
a∗ 10.68 3.08
b∗ 10.70 5.74

Table 4. A and B coefficients for Equation 5



Figure 6. The distribution of the slope, V vs. size for our data. Gray cross

is L∗, red circle is a∗, blue square is b∗.

Figure 7. Linear fit to 1/V vs 1/size for each of L∗, a∗ and b∗. (R2
L =

.849696,pL < 0.0001; R2
a = .942234,pL < 0.0001; R2

b = .970395,pb < 0.0001).

Discussion
To visualize this model, we have used Tableau Software’s

visual analysis system (http://www.tableausoftware.
com). The slopes for each size, V (s) were computed from the
experimental data, then used to create an interactive model in
Tableau. We defined a function, ND(p,s), along with a variable
parameter for p. By changing p, we can see the different regres-
sion lines modeling 3 for different fixed values of p. Figure 8
shows the different ND(p,s) regression lines for p = 50 for each
axes. The shaded bands show the variation in ∆L∗, ∆a∗ and ∆b∗

over the range of sizes, with the band size increasing for L∗ vs. a∗

vs. b∗.
Increasing p moves the regression lines up and decreasing it

moves them down. For example, setting p = 35 (Fig. 9), we see
that smaller delta L∗, a∗ and b∗ values are needed to guarantee
35% discriminability. There remains a good linear fit to these
new points, but the predicted ND values are lower. In this figure,

Figure 8. The figure shows the color difference step needed for 50% dis-

criminability (ND(50)) for each axis as a linear model of 1/size. Colored

bands are labeled with the range of color difference values for each axis.

the bands continue to encode the 50% range, for reference.

Figure 9. Same as Figure 8, but with p = 35. The reference bands still show

the ranges for p = 50, for comparision

These results can also be visualized by plotting sample color
patches and observing the difference. The challenge with this is
that not only discriminability but overall appearance changes as
colors get small—small stimuli appear less colorful. In Figure 10,
both the large and small patches are stepped according to the pa-
rameters of our algorithm. Ideally, the color differences will seem
the same independent of size. For comparison, the small patches
are also shown with the same color steps as the large patches, and
should appear less different.

While we used the same basic procedure described in [11]
for our experiments, we did not get the same ND(50) values
for our 2-degree patches as they did for theirs. They estimated
ND(50) = (4,5.3,5.8) and our results are (5,5.9,6.8) for simi-
lar populations (Amazon Turk workers). We have started to ex-
plore this difference. We first hypothesized that combining three



Figure 10. Assuming a viewing distance of 18 inches, the large patches

are 2 degree squares and the small ones 0.5 degrees. Vertically adjacent

patches are one ND(50) step different as computed from our formulas. For

comparision, the 0.5 degree squares are also drawn with the 2-degree val-

ues.

sizes in one experiment may have made the comparisons more
difficult to perform. By repeating our study with only one size,
however, we did not find a significant difference from our pre-
vious result. Exploring further, we discovered that the previous
work more carefully trained participants to look for smaller color
differences. Therefore, it may simply be that our data includes
more people who identify only the largest differences. Since this
is consistent across all our experiments, this doesn’t invalidate
our models. However, the ND(p,s) values reported here may be
larger than necessary.

Conclusion and Future Work
The work presented in this paper offers a simple model for

computing color difference as a function of size. While the results
are preliminary, this sort of data-driven modeling shows strong
promise for creating practical results. Our data indicates that a
minimum step in CIELAB of between 5 and 6 is what is needed
to make two colors visibly different for large shapes (2-degree or
larger), which matches well with the intuitions developed through
design practice by the authors. That there is an asymmetry be-
tween L∗ and the two axes defining colorfulness (a∗ and b∗) also
matches our experience; small shapes need to be much more col-
orful to be usefully distinct.

Future work will include studies to refine the model param-
eters, and to explore the effect of background color. In parallel,
we intend to put these results into practice, using them as design
and evaluation guidelines for color sets used in visualization. This
will help us best understand what parts of the model need further
refinement.
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