Adapting Color Difference for Design

Danielle Albers Szafir, Maureen Stone, and Michael Gleicher
University of Wisconsin-Madison
Tableau Research

	I														
1	\|														
\|															
	1														
	\|														
	\|														
	\|														
\|		1			\|										
	\|														

In many applications, color is critical to understanding data in context or at scale

Color Difference for Design

Practical

Easy to construct and use

Probabilistic

Control how noticeable differences are

Data-Driven

Models the real world

Parametric

Tuned to a desired audience

Contributions

Data-Driven Method for
Adapting Color Difference

Color Difference Metric for Web Viewing

Model Problem: Web Viewing

amazon mechanicalturk

Text Legibility Zuffi et al, 2009

Graphical Perception Heer \& Bostock, 2010

Color Names

Munroe, 2010
Contrast
Simone et al, 2010

CIELAB

Commonly used in design products D3, Adobe

Approximately perceptually linear

Euclidean difference

Make informed decisions
about color for design that hold across a variety of viewing conditions

$\int x \square x \square x$

Make informed decisions about color for design that hold across a variety of viewing conditions

Consider Environmental Factors in Aggregate

Model by Sampling

Laboratory metrics err by 37%

Our model predicts to within 0.2%

Verify modeling assumptions

Parameterize CIELAB

Verify the approach

Verify modeling assumptions

Properties of CIELAB

A1: Axes are orthogonal

A3: Axes are uniform

$$
\Delta E^{*}=\sqrt{\Delta L^{2}+\Delta a^{2}+\Delta b^{2}}
$$

A2: Difference is Euclidean

Color Matching

Results

Errors varied between axes (p>.0001), but no evidence of variance within axes ($\left.p_{L}=.21, p_{a}=.17, p_{b}=.67\right)$.

Limitations

Not Probabilistic
Speed

We need a microtask!

Short-duration, simple piecework tasks

Precise

Probabilistically quantify color difference
Quick
Collect large amounts of data in a short time

Verify modeling assumptions

Parameterize CIELAB

Forced-Choice Microtask

Do the two colors appear the same or different?

Forced-Choice Microtask

2° Reference Color

2° Differed Color varied on L*, a^{*}, or b*

Submit
Do the two colors appear the same or different?

Parameterizing Color Difference

Scale each axis such that p\% of viewers will identify a difference at $d=1$

One square was mapped to a constant color

The second square's color was jittered from the constant along one color axis

Deriving Model Parameters

Colors are $d \Delta E^{*}$ different

Colors were identified as different in 3 of 5 trials

The disciminability rate at d is 60\%

A3: Axes are uniform

ΔL^{*}

$\Delta \mathrm{a}^{*}$

Δb^{*}

A1: Axes are orthogonal

Adapted Difference Model

$$
\Delta E_{p}=\sqrt{\left(\frac{\Delta L}{N D_{L}(p)}\right)^{2}+\left(\frac{\Delta a}{N D_{a}(p)}\right)^{2}+\left(\frac{\Delta b}{N D_{b}(p)}\right)^{2}}
$$

$$
\Delta E^{*}=\sqrt{\Delta L^{2}+\Delta a^{2}+\Delta b^{2}}
$$

A2: Difference is Euclidean

Experiment Details

13 Color Differences x 3 axes (Within)

75 participants
(2,925 trials, $\mu_{\text {trial lime }}=5.8 \mathrm{~s}$)

CIELAB calibrated to sRGB

Validating Responses

Two-way ANCOVA to verify assumptions hold

Validation Stimuli
(20 equal color, 2 extreme difference)
Question order and display distance as covariates

Statistical Results

No significant variation within a^{*} or b^{*} 0.3% linear variation in $L^{*}, \mathrm{D}<.05$

Differences varied between all axes $p<.001$

Adapted Difference Model

$$
\begin{gathered}
\Delta E_{50}=\sqrt{\left(\frac{\Delta L}{4.0}\right)^{2}+\left(\frac{\Delta a}{5.5}\right)^{2}+\left(\frac{\Delta b}{6.0}\right)^{2}} \\
N D_{L}(50 \%)=4.0 \\
N D_{a}(50 \%)=5.5 \\
N D_{b}(50 \%)=6.0
\end{gathered}
$$

Verify modeling assumptions

Parameterize CIELAB

Verify the approach

Verifying our Adapted Model

Denser Color Sampling

891 Cross-Axis Differences 161 participants (6,279 trials)

Results

$\Delta \boldsymbol{E}_{50}$

Predicted: 50.0\% Actual: 49.8\%

Results

ΔE_{80}
 Predicted: 80.0\% Actual: 80.6\%

Limitations

Sampling Robustness

Access to a Sample

On-Going Work

Integrate into Design Tools

Stimulus Size
Talk Tomorrow: 2:40pm

Future Work

Background Color

Model Different Applications

Contributions

Data-Driven Method for
Adapting Color Difference

Color Difference Metric for Web Viewing

Thank You!

Danielle Albers Szafir dalbers@cs.wisc.edu

Maureen Stone mstone@tableausoftware.com

Michael Gleicher gleicher@cs.wisc.edu

Thanks to Vidya Setlur, Justin Talbot, Dan Szafir, and the UW Graphics Group for their help with this project.

NSF awards IIS-1162037 and CMMI-0941013

Traditional Color Matching

Given:

Maxwell Color Matching Experiment

Traditional Color Matching

Given:

Δ

Modern Maxwell Color Matching Experiment

Simplified Color Matching

L* Sliders

2° Reference Color

b* Sliders

TO BE UPDATED!
Reference square was mapped to constant color based on the tested axis

Experiment Details

24 Reference Colors x 3 Axes (Within)
 (Between)

48 participants with no known CVD (1,032 trials)
$Y=$ 2.2, D65 Whitepoint
Measure: Euclidean distance between the reference and response colors

Properties of CIELAB

A1: Axes are orthogonal

A2: Difference is Euclidean

A3: Axes are uniform
A4: One unit is one JND

Δa^{*}

$$
N D_{L}(p)=\frac{p}{0.123}
$$

$$
N D_{a}(p)=\frac{p}{0.09194}
$$

$$
R^{2}=0.9194
$$

$$
\begin{gathered}
N D_{b}(p)=\frac{p}{0.09364} \\
\boldsymbol{R}^{\mathbf{2}}=\mathbf{0 . 9 3 6 4}
\end{gathered}
$$

Aggregate Results

$\frac{\Delta \boldsymbol{E}_{\mathbf{5}}-\Delta \boldsymbol{E}_{\mathbf{9 5}}}{\text { Mean Error: 7\% }} \quad \frac{\Delta \boldsymbol{E}_{\boldsymbol{p} \geq \mathbf{5 0}}}{\text { Mean Error: } 3.5 \%}$

Expected Margin of Error $=7.5 \%$

Caveat:

Only model differences while discriminability is changing

Verifying our Adapted Model

Differences across multiple axes
Wider range of colors
Greater variety of color differences
Larger sample population

Color Difference for Design

Practical

Easy to construct and use

Probabilistic

Control how noticeable differences are

Data-Driven

Models the real world

Parametric

Tuned to a desired audience

Digital displays are everywhere
-

Existing Metrics

CIELAB $\Delta \mathrm{E}^{*}$
$\Delta \mathrm{E}_{94}$
CIEDE2000

CIECAMO2

Consider Environmental Factors Individually

CRT v. LCD—Sakar et al, 2010
Individual Observers-Oicherman et al, 2008
Ambient Illumination—Devlin et al, 2006

Cockpits \& Graphic Design-X,Y

p\% of viewers will identify a difference at d=1

Models Converge Quickly

Verifying our Adapted Model

Models hold if p\% of participants correctly identify a difference at $\Delta E_{p}=1$

Properties of CIELAB

$$
\Delta E^{*}=\sqrt{\Delta L^{2}+\Delta a^{2}+\Delta b^{2}}
$$

A1: Axes are orthogonal

A2: Difference is Euclidean

A3: Axes are uniform
A4: One unit is one JND

Properties of CIELAB

A1: Axes are orthogonal

A2: Difference is Euclidean

A3: Axes are uniform
A4: One unit is one JND

Properties of CIELAB

A1: Axes are orthogonal

A3: Axes are uniform

$$
\Delta E^{*}=\sqrt{\Delta L^{2}+\Delta a^{2}+\Delta b^{2}}
$$

A2: Difference is Euclidean

