Taking CIE Out of the Lab

An Adaptive Color Difference Model

Danielle Albers and Michael Gleicher
University of Wisconsin-Madison Department of Computer Sciences SIGGRAPH Submission 2013

$$
\begin{aligned}
& \text { Compuriny of wisconsm, Marasion } \\
& \text { Computhics }
\end{aligned}
$$

Motivation

	4	-	+	\%	**
1 $=$	+ 2	Anat	4	\% 4 er	\pm ¢
-20	$4=$	4	*-	**	* ${ }^{2}$
	\pm *	ther	*-4	0	-
4**	$\cdots+8$	$4 \times$	$4 \times$	- *	*-4
\bigcirc	04	N-8	-20	A-m	-
- \#*	4*	Cols	+ar	Qrey	* 4
-	+	cer	\%	-2	4*
0×8	48	Tas	8	$4-2$	+ ${ }_{\text {c }}$
$0 \times$	4-3	C8	$4-3$	4	-4
					1

Motivation

Motivation

Motivation

Apparent color depends on viewing conditions.

Make informed decisions

 about color that hold across a variety of viewing conditions.
Our Target Model Is:

Parametric - Tuned to a range of viewers

Data-Driven - Adaptable to specific conditions

Practical - Straight-forward to use and generate

Probabilistic - Accounts for uncertainty in the data

Model Problem - Web Viewing

Theoretical CIELab Color Space

Perceptually-based color difference space

Approximately perceptual uniform
$1 \mathrm{JND}=1$ unit Euclidean distance

Practical CIELab Color Space

Bound by monitor gamut and whitepoint

Over-extended along yellow-blue

1 JND = ~2.3 units

 Euclidean distance
CIELab Difference Model

$$
\Delta C=\sqrt{\left(L_{1}-L_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}
$$

$$
\begin{aligned}
& C_{1}=\left(L_{1}, a_{1}, b_{1}\right) \\
& C_{2}=\left(L_{2}, a_{2}, b_{2}\right)
\end{aligned}
$$

Adapted CIELab Difference Model

$$
\begin{gathered}
\Delta C=\sqrt{\left(\frac{L_{1}-L_{2}}{s_{L}}\right)^{2}+\left(\frac{a_{1}-a_{2}}{s_{a}}\right)^{2}+\left(\frac{b_{1}-b_{2}}{s_{b}}\right)^{2}} \\
C_{1}=\left(L_{1}, a_{1}, b_{1}\right) \\
C_{2}=\left(L_{2}, a_{2}, b_{2}\right)
\end{gathered}
$$

$\Delta C=1$ is detectable for $\mathrm{p} \%$ of viewers

$$
s_{x} \in \boldsymbol{R}^{1}
$$

Do CIELab's theorhetical

 assertions about color hold across the target viewing conditions?
Color Space Assumptions

A1: Axes are perceptually orthogonal.

A3: Axes are perceptually uniform.

A2: Euclidean distance is an effective metric for perceptual distance.

$$
\Delta C=\sqrt{\left(L_{1}-L_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}
$$

A4: Axes are scaled such that one unit corresponds to one JND.

Color Space Assumptions

A1: Axes are perceptually orthogonal.

A2: Euclidean distance is an effective metric for perceptual distance.

$$
\Delta C=\sqrt{\left(L_{1}-L_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}
$$

A3: Axes are perceptually uniform.
A4: Axes are scaled such that one unit corresponds to one JND.

Color Space Assumptions

A1: Axes are perceptually orthogonal.

A3: Axes are perceptually uniform.

A2: Euclidean distance is an effective metric for perceptual distance.

$$
\Delta C=\sqrt{\left(L_{1}-L_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}
$$

A4: Axes are scaled such that one unit corresponds to one JND.

Color Space Assumptions

A1: Axes are perceptually orthogonal.

A3: Axes are perceptually uniform.

A2: Euclidean distance is an effective metric for perceptual distance.

$$
\Delta C=\sqrt{\left(L_{1}-L_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}
$$

A4: Axes are scaled such that one unit corresponds to one JND.

Validating Color Space

Given:

Modern Maxwell Color Matching Experiment

Validating Color Space

Determine color error using a single-axis Maxwell task on Mechanical Turk.

Validating Color Space - Web Viewing

A4:
A3:
Within Axis Color Matching Error

L Axis:
$\mu=3.025$
within: $p=0.2008, F=1.6437$
insert gradient from both ends of the axis
a Axis:
$\mu=3.44$
within: $p=0.5711, F=0.3215$
b Axis:
$\mu=4.327$
within: $p=0.5154, F=0.4240$

Color Space Assumptions

A1: Axes are perceptually orthogonal.

A3: Axes are perceptually uniform.

A2: Euclidean distance is an effective metric for perceptual distance.

$$
\Delta C=\sqrt{\left(L_{1}-L_{2}\right)^{2}+\left(a_{1}-a_{2}\right)^{2}+\left(b_{1}-b_{2}\right)^{2}}
$$

A4: Axes are scaled such that one unit corresponds to one JND.

Parameters account for how different must two colors be to
appear different across a variety of viewing conditions.

Adapted CIELab Difference Model

A4: Axes are scaled such that one unit corresponds to one JND.

$$
\Delta C=\sqrt{\left(\frac{L_{1}-L_{2}}{s_{L}}\right)^{2}+\left(\frac{a_{1}-a_{2}}{s_{a}}\right)^{2}+\left(\frac{b_{1}-b_{2}}{s_{b}}\right)^{2}}
$$

$\Delta C=1$ is detectable for $\mathrm{p} \%$ of viewers

$$
s_{x} \in \boldsymbol{R}^{1}
$$

Adapting the Model

How do we scale each axis?

Adapting the Model

Do these two colors match?

Adapting the Model

$$
D=
$$

1) Determine the proportion of samples where colors were accurately identified as different.
2) Fit a function to these proportions to identify the discriminability distribution.*
3) Identify the point at which this function equals some threshold p.

Adapting the Model - Web Viewing

25 Participants

50 Participants

75 Participants

$\Delta \mathrm{L}$
50% of samples are discriminable:

$$
\begin{gathered}
s_{L}=4.0 \\
s_{a}=5.5 \\
s_{b}=6.0
\end{gathered}
$$

80% of samples are discriminable:

$$
\begin{aligned}
s_{L} & =6.5 \\
s_{a} & =8.5 \\
s_{b} & =9.0
\end{aligned}
$$

Does our adapted color difference model work for web viewing conditions?

Validating the Model - Web Viewing

$$
\begin{gathered}
\Delta C=\sqrt{\left(\frac{L_{1}-L_{2}}{4.0}\right)^{2}+\left(\frac{a_{1}-a_{2}}{5.5}\right)^{2}+\left(\frac{b_{1}-b_{2}}{6.0}\right)^{2}} \\
\Delta C=\sqrt{\left(\frac{L_{1}-L_{2}}{6.5}\right)^{2}+\left(\frac{a_{1}-a_{2}}{8.5}\right)^{2}+\left(\frac{b_{1}-b_{2}}{9.0}\right)^{2}}
\end{gathered}
$$

Validating the Model - Web Viewing

Validating the Model - Web Viewing

Do these two colors match?

Validating the Model - Web Viewing

A4: Axes are scaled such that one unit corresponds to one JND.

p\% of viewers will identify a difference at d=1

Validating the Model - Web Viewing

Percentage Similarity for a Web-Adapted Color Difference Model at Multiple Parameter Scales

Contributions

Taking CIE out of the Lab

Model is parametric, data driven, probabilistic, and practical

Validation color space for web-viewed color

Limitations

Data-driven implies data-based
Limited validation to date

Danielle Albers (dalbers@cs.wisc.edu)
 Thank you! graphics.cs.wisc.edu
 Where should we send this?

