Relational Query Optimization

Chapter 15

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Highlights of System R Optimizer

- Impact:
 - Most widely used currently; works well for < 10 joins.
- * Cost estimation: Approximate art at best.
 - Statistics, maintained in system catalogs, used to estimate cost of operations and result sizes.
 - Considers combination of CPU and I/O costs.
- Plan Space: Too large, must be pruned.
 - Only the space of *left-deep plans* is considered.
 - Left-deep plans allow output of each operator to be *pipelined* into the next operator without storing it in a temporary relation.
 - Cartesian products avoided.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Overview of Query Optimization

- * <u>Plan:</u> Tree of R.A. ops, with choice of alg for each op.
 - Each operator typically implemented using a `pull' interface: when an operator is `pulled' for the next output tuples, it `pulls' on its inputs and computes them.
- * Two main issues:
 - For a given query, what plans are considered?
 - \bullet Algorithm to search plan space for cheapest (estimated) plan.
 - How is the cost of a plan estimated?
- Ideally: Want to find best plan. Practically: Avoid worst plans!
- * We will study the System R approach.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real) Reserves (sid: integer, bid: integer, day: dates, rname: string)

- Similar to old schema; rname added for variations.
- - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Query Blocks: Units of Optimization

- An SQL query is parsed into a collection of query blocks, and these are optimized one block at a time.
- Nested blocks are usually treated as calls to a subroutine, made once per outer tuple. (This is an oversimplification, but serves for now.)

SELECT S.sname FROM Sailors S WHERE S.age IN (SELECT MAX (S2.age) FROM Sailors S2 GROUP BY S2.rating)

Outer block

(Commute)

- . For each block, the plans considered are:
 - All available access methods, for each reln in FROM clause.
 - All left-deep join trees (i.e., all ways to join the relations oneat-a-time, with the inner reln in the FROM clause, considering all reln permutations and join methods.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Relational Algebra Equivalences

- * Allow us to choose different join orders and to `push' selections and projections ahead of joins.
- * <u>Selections</u>: $\sigma_{c1 \wedge ... \wedge cn}(R) \equiv \sigma_{c1}(...\sigma_{cn}(R))$ (Cascade) $\sigma_{c1}(\sigma_{c2}(R)) \equiv \sigma_{c2}(\sigma_{c1}(R))$
- Projections: $\pi_{a1}(R) \equiv \pi_{a1}(\dots(\pi_{an}(R)))$ (Cascade) (Associative) \bullet <u>Ioins</u>: $R \sqcup \sqcup (S \sqcup \sqcup T) \equiv (R \sqcup \sqcup S) \sqcup \sqcup T$

(Commute) $(R \sqcup \sqcup S) \equiv (S \sqcup \sqcup R)$

+ Show that: $R \square (S \square T) \equiv (T \square R) \square S$

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

_			
-			
-			
-			
_			
_			
•			
-			
-			
-			
_			
_			

More Equivalences

- * A projection commutes with a selection that only uses attributes retained by the projection.
- * Selection between attributes of the two arguments of a cross-product converts cross-product to a join.
- * A selection on just attributes of R commutes with $R \coprod S$. (i.e., $\sigma(R \coprod S) \equiv \sigma(R) \coprod S$)
- * Similarly, if a projection follows a join R \square S, we can 'push' it by retaining only attributes of R (and S) that are needed for the join or are kept by the projection.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Enumeration of Alternative Plans

- * There are two main cases:
 - Single-relation plans
 - Multiple-relation plans
- * For queries over a single relation, queries consist of a combination of selects, projects, and aggregate ops:
 - Each available access path (file scan / index) is considered, and the one with the least estimated cost is chosen.
 - The different operations are essentially carried out together (e.g., if an index is used for a selection, projection is done for each retrieved tuple, and the resulting tuples are pipelined into the aggregate computation).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Cost Estimation

- * For each plan considered, must estimate cost:
 - Must estimate *cost* of each operation in plan tree.
 - Depends on input cardinalities.
 - We've already discussed how to estimate the cost of operations (sequential scan, index scan, joins, etc.)
 - Must also estimate size of result for each operation
 - Use information about the input relations.
 - \bullet For selections and joins, assume independence of predicates.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

•		
•		

Cost Estimates for Single-Relation Plans

- * Index I on primary key matches selection:
 - Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.
- * Clustered index I matching one or more selects:
 - (NPages(I)+NPages(R)) * product of RF's of matching selects.
- * Non-clustered index I matching one or more selects:
- (NPages(I)+NTuples(R)) * product of RF's of matching selects.
- Sequential scan of file:
 - NPages(R).
- **Note:** Typically, no duplicate elimination on projections! (Exception: Done on answers if user says DISTINCT.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Example


SELECT S.sid FROM Sailors S WHERE S.rating=8

- If we have an index on rating:
 - (1/NKeys(I)) * NTuples(R) = (1/10) * 40000tuples retrieved.
 - Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = (1/10) * (50+500) pages are retrieved. (This is the *cost*.)
 - Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) = (1/10) * (50+40000) pages are retrieved.
- . If we have an index on sid:
 - Would have to retrieve all tuples/pages. With a clustered index, the cost is 50+500, with unclustered index, 50+40000.
- * Doing a file scan:
 - We retrieve all file pages (500).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Queries Over Multiple Relations

- * Fundamental decision in System R: only left-deep join <u>trees</u> are considered.
 - As the number of joins increases, the number of alternative plans grows rapidly; we need to restrict the search space.
 - Left-deep trees allow us to generate all fully pipelined plans.
 - Intermediate results not written to temporary files.
 - Not all left-deep trees are fully pipelined (e.g., SM join).

Enumeration of Left-Deep Plans

- Left-deep plans differ only in the order of relations, the access method for each relation, and the join method for each join.
- * Enumerated using N passes (if N relations joined):
 - Pass 1: Find best 1-relation plan for each relation.
 - Pass 2: Find best way to join result of each 1-relation plan (as outer) to another relation. (All 2-relation plans.)
 - Pass N: Find best way to join result of a (N-1)-relation plan (as outer) to the N'th relation. (All N-relation plans.)
- * For each subset of relations, retain only:
 - Cheapest plan overall, plus
 - Cheapest plan for each interesting order of the tuples.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Enumeration of Plans (Contd.)

- ORDER BY, GROUP BY, aggregates etc. handled as a final step, using either an `interestingly ordered' plan or an addional sorting operator.
- An N-1 way plan is not combined with an additional relation unless there is a join condition between them, unless all predicates in WHERE have been used up.
 - $\bullet \ \ i.e., avoid \ Cartesian \ products \ if \ possible.$
- In spite of pruning plan space, this approach is still exponential in the # of tables.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

14

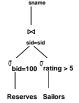
Cost Estimation for Multirelation Plans

SELECT attribute list FROM relation list

- ♦ Consider a query block: WHERE term1 AND ... AND termk
- Maximum # tuples in result is the product of the cardinalities of relations in the FROM clause.
- Reduction factor (RF) associated with each term reflects the impact of the term in reducing result size. Result cardinality = Max # tuples * product of all RF's.
- Multirelation plans are built up by joining one new relation at a time.
 - Cost of join method, plus estimation of join cardinality gives us both cost estimate and result size estimate

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

15


•		
,		
•		
•		
•		
,		
,		
,		
,		
•		
•		
•		

Example

B+ tree on rating Hash on sid Reserves: B+ tree on bid

• Pass1:

• Sailors: B+ tree matches rating>5, and is probably cheapest. However, if this selection is expected to retrieve a lot of tuples, and index is unclustered, file scan may be cheaper.

• Still, B+ tree plan kept (because tuples are in rating order).

• Reserves: B+ tree on bid matches bid=500; cheapest. v Pass 2:

- We consider each plan retained from Pass 1 as the outer, and consider how to join it with the (only) other relation.

u e.g., Reserves as outer: Hash index can be used to get Sailors tuples that satisfy sid = outer tuple's sid value.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Nested Queries

- Nested block is optimized independently, with the outer tuple considered as providing a selection condition.
- Outer block is optimized with the cost of `calling' nested block computation taken into account.
- Implicit ordering of these blocks means that some good strategies are not considered. The nonnested version of the query is typically optimized better.

AND R.bid=103

And R.bid=103

And R.bid=103

SELECT S.sname (SELECT * FROM Reserves R

Nested block to optimize: SELECT * FROM Reserves R WHERE R.bid=103 AND S.sid= outer value

Equivalent non-nested query: SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid=R.sid

Summary

- * Query optimization is an important task in a relational DBMS.
- * Must understand optimization in order to understand the performance impact of a given database design (relations, indexes) on a workload (set of queries).
- * Two parts to optimizing a query:
 - Consider a set of alternative plans.
 - Must prune search space; typically, left-deep plans only.
 - Must estimate cost of each plan that is considered.
 - Must estimate size of result and cost for each plan node.
 - Key issues: Statistics, indexes, operator implementations.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

FROM Sailors S WHERE EXISTS WHERE R.bid=103 AND R.sid=S.sid)

Summary (Contd.) Single-relation queries: All access paths considered, cheapest is chosen. Issues: Selections that match index, whether index key has all needed fields and/or provides tuples in a desired order. Multiple-relation queries: All single-relation plans are first enumerated. Selections/projections considered as early as possible. Next, for each 1-relation plan, all ways of joining another relation (as inner) are considered. Next, for each 2-relation plan that is `retained', all ways of joining another relation (as inner) are considered, etc.

• At each level, for each subset of relations, only best plan for

each interesting order of tuples is `retained'.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke