Chapter 26: Data Mining

(Some slides courtesy of Rich Caruana, Cornell University)

Definition

Data mining is the exploration and analysis of large quantities of data in order to discover valid, novel, potentially useful, and ultimately understandable patterns in data.

Example pattern (Census Bureau Data):
If (relationship = husband), then (gender = male). 99.6\%

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Definition (Cont.)

\qquad

Data mining is the exploration and analysis of large quantities of data in order to discover valid, novel, potentially useful, and ultimately
\qquad understandable patterns in data.

Valid: The patterns hold in general.
Novel: We did not know the pattern beforehand. \qquad
Useful: We can devise actions from the patterns.
Understandable: We can interpret and comprehend the patterns.

Why Use Data Mining Today?

Human analysis skills are inadequate:

- Volume and dimensionality of the data
- High data growth rate

Availability of:

- Data
- Storage
- Computational power
- Off-the-shelf software
- Expertise
\qquad

Ramakrishnan and Gehrke. Database Management Systems, 3 3rd Edition.

An Abundance of Data

- Supermarket scanners, POS data
- Preferred customer cards
- Credit card transactions
- Direct mail response
- Call center records
- ATM machines
- Demographic data
- Sensor networks
- Cameras
- Web server logs
- Customer web site trails

Evolution of Database Technology

\qquad

- 1960s: IMS, network model
- 1970s: The relational data model, first relational DBMS implementations
- 1980s: Maturing RDBMS, application-specific DBMS, (spatial data, scientific data, image data, etc.), OOD́BMS \qquad
- 1990s: Mature, high-performance RDBMS technology, parallel DBMS, terabyte data warehouses, objectrelational DBMS, middleware and web technology
- 2000s: High availability, zero-administration, seamless integration into business processes
- 2010: Sensor database systems, databases on embedded systems, P2P database systems, large-scale pub/sub systems, ??? \qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Computational Power

- Moore's Law:

In 1965, Intel Corporation cofounder Gordon Moore predicted that the density of transistors in an integrated circuit would double every year. (Later changed to reflect 18 months progress.)

- Experts on ants estimate that there are 10^{16} to 10^{17} ants on earth. In the year 1997, we produced one transistor per ant.

Ramakrishnan and Gehrke. Database Management Systems, 3 3rd Edition.

\qquad

Much Commercial Support

- Many data mining tools
- http://www.kdnuggets.com/software
- Database systems with data mining support
- Visualization tools
- Data mining process support
- Consultants
\qquad

Why Use Data Mining Today?

Competitive pressure!

"The secret of success is to know something that nobody else knows."

Aristotle Onassis

- Competition on service, not only on price (Banks, phone companies, hotel chains, rental car companies)
\qquad
- Personalization, CRM
- The real-time enterprise \qquad
- "Systemic listening"
- Security, homeland defense

The Knowledge Discovery Process

Steps:

1. Identify business problem
2. Data mining
3. Action
4. Evaluation and measurement
5. Deployment and integration into \qquad businesses processes

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Data Mining Step in Detail

2.1 Data preprocessing

- Data selection: Identify target datasets and relevant fields
- Data cleaning
- Remove noise and outliers
- Data transformation
- Create common units
- Generate new fields
2.2 Data mining model construction
2.3 Model evaluation

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Preprocessing and Mining

\qquad

Example Application: Sports

IBM Advanced Scout analyzes NBA game statistics

- Shots blocked
- Assists
- Fouls

- Google: "IBM Advanced Scout"

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Advanced Scout

- Example pattern: An analysis of the data from a game played between the New York Knicks and the Charlotte Hornets revealed that "When Glenn Rice played the shooting guard position, he shot 5/6 (83\%) on jump shots."
- Pattern is interesting:

The average shooting percentage for the Charlotte Hornets during that game was 54\%.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Example Application: Sky Survey

\qquad

- Input data: 3 TB of image data with 2 billion sky \qquad objects, took more than six years to complete
- Goal: Generate a catalog with all objects and their type
\qquad
- Method: Use decision trees as data mining model \qquad
- Results:
- 94% accuracy in predicting sky object classes
- Increased number of faint objects classified by 300%
- Helped team of astronomers to discover 16 new high red-shift quasars in one order of magnitude less observation time

```
Ramakrishnan and Gehrke. Database Management Systems, 3'd}\mathrm{ Edition.
```


Gold Nuggets?

- Investment firm mailing list: Discovered that old people do not respond to IRA mailings
- Bank clustered their customers. One cluster: Older customers, no mortgage, less likely to have a credit card
- "Bank of 1911"
- Customer churn example

What is a Data Mining Model?

A data mining model is a description of a specific aspect of a dataset. It produces output values for an assigned set of input values.

Examples:

- Linear regression model
- Classification model
- Clustering

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Data Mining Models (Contd.)

\qquad

A data mining model can be described at two levels:

- Functional level:
- Describes model in terms of its intended usage. Examples: Classification, clustering
- Representational level:
- Specific representation of a model. Example: Log-linear model, classification tree, nearest neighbor method.
- Black-box models versus transparent models \qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Data Mining: Types of Data

- Relational data and transactional data
- Spatial and temporal data, spatio-temporal observations
- Time-series data
- Text
- Images, video
- Mixtures of data
- Sequence data
- Features from processing other data sources

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Types of Variables

- Numerical: Domain is ordered and can be represented on the real line (e.g., age, income)
- Nominal or categorical: Domain is a finite set without any natural ordering (e.g., occupation, marital status, race)
- Ordinal: Domain is ordered, but absolute differences between values is unknown (e.g., preference scale, severity of an injury)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Data Mining Techniques

- Supervised learning
- Classification and regression
- Unsupervised learning
- Clustering
- Dependency modeling
- Associations, summarization, causality
- Outlier and deviation detection
- Trend analysis and change detection \qquad

[^0]
Supervised Learning

- $\mathrm{F}(\mathrm{x})$: true function (usually not known)
- D: training sample drawn from $F(x)$
$57, \mathrm{M}, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$
$78, M, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
$69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$
18,M, $165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
$54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$
$84, F, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
$89, F, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$
$49, M, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$
$40, \mathrm{M}, 205,0,115,90,37,18,0$
$74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$

| $74, M, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ | 1 |
| :--- | :--- | :--- |
| $77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$ | 0 |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ramakrishnan and Gehrke. Database Management Systems, 3 rd Edition.

Supervised Learning

- $\mathrm{F}(\mathrm{x}$): true function (usually not known) \qquad
- D: training sample ($x, F(x)$)

57, M, 195, $0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$ \qquad 78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 $54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$

- $G(x)$: model learned from D
$71, M, 160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$?
- Goal: $\mathrm{E}\left[(\mathrm{F}(\mathrm{x})-\mathrm{G}(\mathrm{x}))^{2}\right]$ is small (near zero) for future samples

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Supervised Learning

\qquad
Well-defined goal:
Learn $\mathrm{G}(\mathrm{x})$ that is a good approximation

$$
\text { to } F(x) \text { from training sample } D
$$

Well-defined error metrics:
Accuracy, RMSE, ROC, ...
\qquad
\qquad
\qquad
\qquad
\qquad

Supervised Learning

\qquad
Training dataset:

$57, M, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$	0
$78, M, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0$	1
$69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$	0
$18, M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	1
$54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$	1
$84, F, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$	0
$89, F, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$	1
$49, M, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$	0
$40, M, 205,0,115,90,37,18,0$	0
$74, M, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	1
$77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$	0

Test dataset:

$71, M, 160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$

Un-Supervised Learning

Training dataset:

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0 $78, M, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0$ $69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$ $18, M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ $54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$ $84, \mathrm{~F}, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$ $84, \Gamma, 21,1,135,105,39,24,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0$, $195,0,9,3,28,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0$ $9, M, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$ $40, \mathrm{M}, 205,0,115,90,37,18,0$
$74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ $74, M, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
$77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$
Test dataset:
$71, M, 160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$
?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Un-Supervised Learning

Training dataset:

$57, M, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$ 58,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 $69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$ $18, \mathrm{M}, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ 54,F, $135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$ $84, F, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$ $89, F, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$ 49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0 $40, \mathrm{M}, 205,0,115,90,37,18,0$ $74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ $77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$

Test dataset:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$71, \mathrm{M}, 160,1,130,105,320,000000,1,0,0,0,0,0,0,0,0,0$

[^1]
Un-Supervised Learning

Data Set:

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
7,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
$69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$
$18, M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
$54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$
$84, F, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
89,F, $135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$
$49, M, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$
$40, \mathrm{M}, 205,0,115,90,37,18,0$
$74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
$77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$

Lecture Overview

- Data Mining I: Decision Trees
- Data Mining II: Clustering
- Data Mining III: Association Analysis

Classification Example

- Example training database
- Two predictor attributes: Age and Car-type (Sport, Minivan and Truck)
- Age is ordered, Car-type is categorical attribute
- Class label indicates whether person bought product
- Dependent attribute is categorical

Age	Car	Class
20	M	Yes
30	M	Yes
25	T	No
30	S	Yes
40	S	Yes
20	T	No
30	M	Yes
25	M	Yes
40	M	Yes
20	S	No

[^2]
Regression Example

- Example training database
- Two predictor attributes: Age and Car-type (Sport, Minivan and Truck)
- Spent indicates how much person spent during a recent visit to the web site
- Dependent attribute is numerical

Age	Car	Spent
20	M	$\$ 200$
30	M	$\$ 150$
25	T	$\$ 300$
30	S	$\$ 220$
40	S	$\$ 400$
20	T	$\$ 80$
30	M	$\$ 100$
25	M	$\$ 125$
40	M	$\$ 500$
20	S	$\$ 420$

Ramakrishnan and Gehrke. Database Management Systems, 3 rd Edition.

Types of Variables (Review)

- Numerical: Domain is ordered and can be represented on the real line (e.g., age, income)
- Nominal or categorical: Domain is a finite set without any natural ordering (e.g., occupation, marital status, race)
- Ordinal: Domain is ordered, but absolute differences between values is unknown (e.g., preference scale, severity of an injury)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Definitions

- Random variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}$ (predictor variables) and Y (dependent variable)
- X_{i} has domain $\operatorname{dom}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{Y}$ has domain $\operatorname{dom}(\mathrm{Y})$
- P is a probability distribution on $\operatorname{dom}\left(\mathrm{X}_{1}\right) \mathrm{x} \ldots \mathrm{x} \operatorname{dom}\left(\mathrm{X}_{\mathrm{k}}\right) \mathrm{x} \operatorname{dom}(\mathrm{Y})$
Training database D is a random sample from P
- A predictor d is a function
$\mathrm{d}: \operatorname{dom}\left(\mathrm{X}_{1}\right) \ldots \operatorname{dom}\left(\mathrm{X}_{\mathrm{k}}\right) \rightarrow \operatorname{dom}(\mathrm{Y})$

Classification Problem

- If Y is categorical, the problem is a classification problem, and we use C instead of Y . $|\operatorname{dom}(\mathrm{C})|=\mathrm{J}$.
- C is called the class label, d is called a classifier.
- Take r be record randomly drawn from P. Define the misclassification rate of d : RT $(\mathrm{d}, \mathrm{P})=\mathrm{P}\left(\mathrm{d}\left(\mathrm{r} . \mathrm{X}_{1}, \ldots\right.\right.$, r. $\left.\mathrm{X}_{\mathrm{k}}\right)!=$ r.C)
- Problem definition: Given dataset D that is a random sample from probability distribution P, find classifier d such that $R T(d, P)$ is minimized.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Regression Problem

- If Y is numerical, the problem is a regression problem.
- Y is called the dependent variable, d is called a regression function.
- Take r be record randomly drawn from P. Define mean squared error rate of d : $R T(d, P)=E\left(r . Y-d\left(r . X_{1}, \ldots, r . X_{k}\right)\right)^{2}$
- Problem definition: Given dataset D that is a random sample from probability distribution P, find regression function d such that $R T(d, P)$ is minimized.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Goals and Requirements

- Goals:
- To produce an accurate classifier/regression function
- To understand the structure of the problem
- Requirements on the model:
- High accuracy
- Understandable by humans, interpretable
- Fast construction for very large training databases

Different Types of Classifiers

- Linear discriminant analysis (LDA)
- Quadratic discriminant analysis (QDA)
- Density estimation methods
- Nearest neighbor methods
- Logistic regression
- Neural networks
- Fuzzy set theory
- Decision Trees

Decision Trees

- A decision tree T encodes d (a classifier or \qquad regression function) in form of a tree.
- A node t in T without children is called a leaf node. Otherwise t is called an internal node.
\qquad
\qquad
\qquad
\qquad

Internal Nodes

- Each internal node has an associated splitting predicate. Most common are binary predicates.
Example predicates:
- Age <= 20
- Profession in \{student, teacher\}
- $5000 *$ Age $+3 *$ Salary $-10000>0$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Internal Nodes: Splitting Predicates

- Binary Univariate splits:
- Numerical or ordered X : $X<=c, c$ in $\operatorname{dom}(X)$
- Categorical X : X in A, A subset $\operatorname{dom}(\mathrm{X})$
- Binary Multivariate splits:
- Linear combination split on numerical variables: $\sum a_{i} X_{i}<=c$
- k-ary ($k>2$) splits analogous

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Leaf Nodes

Consider leaf node t

- Classification problem: Node t is labeled with one class label c in dom(C) \qquad
- Regression problem: Two choices
- Piecewise constant model: t is labeled with a constant y in $\operatorname{dom}(\mathrm{Y})$.
- Piecewise linear model:
t is labeled with a linear model

$$
Y=y_{t}+\Sigma a_{i} X_{i}
$$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Evaluation of Misclassification Error

Problem:

- In order to quantify the quality of a classifier d, we need to know its misclassification rate RT(d,P).
- But unless we know $P, R T(d, P)$ is unknown.
- Thus we need to estimate RT(d,P) as good as possible.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Resubstitution Estimate

The Resubstitution estimate R(d,D) estimates RT(d, P) of a classifier d using D:

- Let D be the training database with N records.
- $R(d, D)=1 / N \Sigma I(d(r . X)!=r . C))$
- Intuition: $R(d, D)$ is the proportion of training records that is misclassified by d
- Problem with resubstitution estimate: Overly optimistic; classifiers that overfit the training dataset will have very low resubstitution error. \qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Test Sample Estimate

- Divide D into D_{1} and D_{2}
- Use D_{1} to construct the classifier d
- Then use resubstitution estimate $R\left(d, D_{2}\right)$ to calculate the estimated misclassification error of d
- Unbiased and efficient, but removes D_{2} from training dataset D

V-fold Cross Validation

Procedure:

- Construct classifier d from D
- Partition D into V datasets $\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{V}}$
- Construct classifier d_{i} using $D \backslash D_{i}$
- Calculate the estimated misclassification error $R\left(d_{i}, D_{i}\right)$ of d_{i} using test sample D_{i}
Final misclassification estimate:
- Weighted combination of individual misclassification errors:
$R(d, D)=1 / V \Sigma R\left(d_{i}, D_{i}\right)$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Cross-Validation

- Misclassification estimate obtained through cross-validation is usually nearly unbiased
- Costly computation (we need to compute d , and $\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{v}}$); computation of d_{i} is nearly as expensive as computation of d
- Preferred method to estimate quality of learning algorithms in the machine learning literature

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Decision Tree Construction

- Top-down tree construction schema:
- Examine training database and find best splitting predicate for the root node
- Partition training database
- Recurse on each child node

Top-Down Tree Construction

\qquad
BuildTree(Node t, Training database D,
Split Selection Method \boldsymbol{S})
(1) Apply \boldsymbol{S} to D to find splitting criterion
(2) if (t is not a leaf node)
(3) Create children nodes of t
(4) Partition D into children partitions
(5) Recurse on each partition
(6) endif

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Decision Tree Construction

- Three algorithmic components:
- Split selection (CART, C4.5, QUEST, CHAID, CRUISE, ...)
- Pruning (direct stopping rule, test dataset pruning, cost-complexity pruning, statistical tests, bootstrapping)
- Data access (CLOUDS, SLIQ, SPRINT, RainForest, BOAT, UnPivot operator)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Split Selection Method

- Numerical or ordered attributes: Find a split point that separates the (two) classes

(Yes: ${ }^{-}$No: •)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Split Selection Method (Contd.)	
- Categorical attributes: How to group?	
	Minivan: : ${ }^{\text {P }}$
(Sport, Truck) -- (Minivan) $\because \because \%$ \%	
(Sport) --- (Truck, Minivan) \because :	$\because \because: \bullet$
(Sport, Minivan) --- (Truck) $\because \because: \because \bullet$	

Pruning Method

- For a tree T, the misclassification rate $R(T, P)$ and the mean-squared error rate $R(T, P)$ depend on P, but not on D.
- The goal is to do well on records randomly drawn from P , not to do well on the records in D
- If the tree is too large, it overfits D and does not model P. The pruning method selects the tree of the right size.

Data Access Method

- Recent development: Very large training databases, both in-memory and on secondary storage
- Goal: Fast, efficient, and scalable decision tree construction, using the complete training database.

Split Selection Methods: CART

- Classification And Regression Trees (Breiman, Friedman, Ohlson, Stone, 1984; considered "the" reference on decision tree construction)
- Commercial version sold by Salford Systems (www.salford-systems.com)
- Many other, slightly modified implementations exist (e.g., IBM Intelligent Miner implements the CART split selection method)

CART Split Selection Method

Motivation: We need a way to choose quantitatively between different splitting predicates

- Idea: Quantify the impurity of a node
- Method: Select splitting predicate that generates children nodes with minimum impurity from a space of possible splitting predicates

Impurity Function

- Let $\mathrm{p}(\mathrm{j} \mid \mathrm{t})$ be the proportion of class j training records at node t
- Node impurity measure at node t :

$$
\mathrm{i}(\mathrm{t})=\operatorname{phi}(\mathrm{p}(1 \mid \mathrm{t}), \ldots, \mathrm{p}(\mathrm{~J} \mid \mathrm{t}))
$$

- phi is symmetric
- Maximum value at arguments $\left(\mathrm{J}^{-1}, \ldots, \mathrm{~J}^{-1}\right)$ (maximum impurity)
- phi $(1,0, \ldots, 0)=\ldots=\operatorname{phi}(0, \ldots, 0,1)=0$ (node has records of only one class; "pure" node)

Example

- Root node t : $p(1 \mid t)=0.5 ; p(2 \mid t)=0.5$ Left child node t : $P(1 \mid t)=0.83 ; p(2 \mid t)=-.17$
- Impurity of root node: phi($0.5,0.5$)
- Impurity of left child node: phi(0.83,0.17)

- Impurity of right child node: phi(0.0,1.0)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Goodness of a Split

Consider node t with impurity phi(t)
The reduction in impurity through splitting predicate s (t splits into children nodes t_{L} with impurity phi $\left(\mathrm{t}_{\mathrm{L}}\right)$ and t_{R} with impurity
$\mathrm{phi}\left(\mathrm{t}_{\mathrm{R}}\right)$) is:

$$
\Delta_{p h h}(\mathrm{~s}, \mathrm{t})=\operatorname{phi}(\mathrm{t})-\mathrm{p}_{\mathrm{L}} \operatorname{phi}\left(\mathrm{t}_{\mathrm{L}}\right)-\mathrm{p}_{\mathrm{R}} \operatorname{phi}\left(\mathrm{t}_{\mathrm{R}}\right)
$$

Example (Contd.)

- Impurity of root node: phi($0.5,0.5$)
- Impurity of whole tree: 0.6^{*} phi $(0.83,0.17)$ +0.4 * phi $(0,1)$
- Impurity reduction: phi(0.5,0.5)

- 0.6* phi $(0.83,0.17)$
- 0.4 * phi $(0,1)$

Error Reduction as Impurity Function

- Possible impurity function:
Resubstitution error R(T,D).
- Example: $R($ no tree, $D)=0.5$
$R\left(T_{1}, D\right)=0.6^{*} 0.17$
$R\left(T_{2}, D\right)=$
$0.4 * 0.25+0.6 * 0.33$

\qquad
\qquad
\qquad
\qquad
\qquad
(25\%,75\%)
Ramakrishnan and Gehrke. Database Management Systems, $3^{r d}$ Edition
(66\%,33\%)

Problems with Resubstitution Error

- Obvious problem:

There are situations where no split can decrease impurity

- Example:
$R($ no tree, $D)=0.2$
$R\left(T_{1}, D\right)$
$=0.6 * 0.17+0.4 * 0.25$
 $=0.2$

Problems with Resubstitution Error

Root node: n records, q of class 1
Left child node: n 1 records, q^{\prime} of class 1
Right child node: n 2 records, ($\mathrm{q}-\mathrm{q}^{\prime}$) of class 1, \qquad $\mathrm{n} 1+\mathrm{n} 2=\mathrm{n}$

$\mathrm{n} 1:\left(\mathrm{q}^{\prime} / \mathrm{n} 1,\left(\mathrm{n} 1-\mathrm{q}^{\prime}\right) / \mathrm{n} 1\right) \quad \mathrm{n} 2:\left(\left(\mathrm{q}-\mathrm{q}^{\prime}\right) / \mathrm{n} 2,\left(\mathrm{n} 2-\left(\mathrm{q}-\mathrm{q}^{\prime}\right) / \mathrm{n} 2\right)\right.$
Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Problems with Resubstitution Error

Tree structure:
Root node: n records ($q / n,(n-q)$)
Left child: $n 1$ records ($\mathrm{q}^{\prime} / \mathrm{n} 1,\left(\mathrm{n} 1-\mathrm{q}^{\prime}\right) / \mathrm{n} 1$)
Right child: $n 2$ records $\left(\left(q-q^{\prime}\right) / n 2,\left(n 2-q^{\prime}\right) / n 2\right)$
Impurity before split:
Error: q/n
Impurity after split:
Left child: $\mathrm{n} 1 / \mathrm{n} * \mathrm{q}^{\prime} / \mathrm{n} 1=\mathrm{q}^{\prime} / \mathrm{n}$
Right child: $\mathrm{n} 2 / \mathrm{n} *\left(\mathrm{q}-\mathrm{q}^{\prime}\right) / \mathrm{n} 2=\left(\mathrm{q}-\mathrm{q}^{\prime}\right) / \mathrm{n}$
Total error: $q^{\prime} / n+\left(q-q^{\prime}\right) / n=q / n$ \qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Problems with Resubstitution Error

Heart of the problem:
Assume two classes:
$\operatorname{phi}(p(1 \mid t), p(2 \mid t))=\operatorname{phi}(p(1 \mid t), 1-p(1 \mid t))$ $=p h i(p(1 \mid t))$
Resubstitution errror has the following property:
phi $(\mathrm{p} 1+\mathrm{p} 2)=$ phi $(\mathrm{p} 1)+\mathrm{phi}(\mathrm{p} 2)$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Example: Only Root Node

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Remedy: Concavity

Use impurity functions that are concave:

$$
\text { phi" < } 0
$$

Example impurity functions

- Entropy:
phi(t$)=-\Sigma \mathrm{p}(\mathrm{j} \mid \mathrm{t}) \log (\mathrm{p}(\mathrm{j} \mid \mathrm{t}))$
- Gini index:
$\mathrm{phi}(\mathrm{t})=\Sigma \mathrm{p}(\mathrm{j} \mid \mathrm{t})^{2}$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Nonnegative Decrease in Impurity

Theorem: Let phi $\left(p_{1}, \ldots, p_{\mathrm{J}}\right)$ be a strictly concave function on $\mathrm{j}=1, \ldots, \mathrm{~J}, \Sigma_{j} \mathrm{p}_{\mathrm{j}}=1$.
Then for any split s:

$$
\Delta_{\mathrm{phi}}(\mathrm{~s}, \mathrm{t})>=0
$$

With equality if and only if:

$$
p\left(j \mid t_{L}\right)=p\left(j \mid t_{R}\right)=p(j \mid t), j=1, \ldots, J
$$

Note: Entropy and gini-index are concave.

CART Univariate Split Selection

- Use gini-index as impurity function
- For each numerical or ordered attribute X, consider all binary splits s of the form

$$
X<=x
$$

where x in $\operatorname{dom}(X)$

- For each categorical attribute X, consider all binary splits s of the form
X in A, \quad where A subset $\operatorname{dom}(X)$
- At a node t, select split s^{*} such that $\Delta_{\text {phi }}\left(\mathrm{s}^{*}, \mathrm{t}\right)$ is maximal over all s considered

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

CART: Shortcut for Categorical Splits

\qquad

Computational shortcut if $|\mathrm{Y}|=2$.

- Theorem: Let X be a categorical attribute with $\operatorname{dom}(X)=\left\{b_{1}, \ldots, b_{k}\right\},|Y|=2$, phi be a concave function, and let

$$
p\left(X=b_{1}\right)<=\ldots<=p\left(X=b_{k}\right) .
$$

Then the best split is of the form:
X in $\left\{b_{1}, b_{2}, \ldots, b_{1}\right\}$ for some $I<k$

- Benefit: We need only to check $k-1$ subsets of dom (X) instead of $2^{(k-1)}$-1 subsets

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

CART Multivariate Split Selection

- For numerical predictor variables, examine splitting predicates s of the form: $\sum_{i} a_{i} X_{i}<=c$ with the constraint:
$\Sigma_{\mathrm{i}} \mathrm{a}_{\mathrm{i}}{ }^{2}=1$
- Select splitting predicate s* with maximum decrease in impurity.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Problems with CART Split Selection

- Biased towards variables with more splits (M-category variable has $2^{\mathrm{M}-1}-1$) possible splits, an M-valued ordered variable has (M-1) possible splits
- Computationally expensive for categorical variables with large domains

Pruning Methods

- Test dataset pruning
- Direct stopping rule
- Cost-complexity pruning
- MDL pruning
- Pruning by randomization testing

Top-Down and Bottom-Up Pruning

\qquad
Two classes of methods:

- Top-down pruning: Stop growth of the tree at the right size. Need a statistic that indicates when to stop growing a subtree.
- Bottom-up pruning: Grow an overly large tree and then chop off subtrees that "overfit" the training data.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Stopping Policies

A stopping policy indicates when further growth of \qquad the tree at a node t is counterproductive.

- All records are of the same class
- The attribute values of all records are identical
- All records have missing values
- At most one class has a number of records larger than a user-specified number
- All records go to the same child node if t is split (only possible with some split selection methods)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Test Dataset Pruning

- Use an independent test sample D^{\prime} to estimate the misclassification cost using the resubstitution estimate $R\left(T, D^{\prime}\right)$ at each node
- Select the subtree T^{\prime} of T with the smallest expected cost

Test Dataset Pruning Example

Test set:

X1	X2	Class
1	1	Yes
1	2	Yes
1	2	Yes
1	2	Yes
1	1	Yes
1	2	No
2	1	No
2	1	No
2	2	No
2	2	No

Only root: 10% misclassification
Full tree: 30\% misclassification
Ramakrishnan and Gehrke. Database Management Systems, 3 3rd Edition.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cost Complexity Pruning

(Breiman, Friedman, Olshen, Stone, 1984)

Some more tree notation

\qquad
\qquad
\qquad

- t: node in tree T
- leaf(T): set of leaf nodes of T
- |leaf(T)|: number of leaf nodes of T
- T_{t} : subtree of T rooted at t
- \{t\}: subtree of T_{t} containing only node t

Notation: Example

\qquad
leaf(T) $=\{\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3\}$
\mid leaf(T$) \mid=3$
Tree rooted at node t : T_{t}
Tree consisting of only node t : $\{\mathrm{t}\}$

leaf $\left(T_{t}\right)=\{t 1, t 2\}$
leaf($\{t\})=\{t\}$
\qquad
\qquad
\qquad
\qquad
\qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Cost-Complexity Pruning

- Test dataset pruning is the ideal case, if we have a large test dataset. But:
- We might not have a large test dataset
- We want to use all available records for tree construction
- If we do not have a test dataset, we do not obtain "honest" classification error estimates
- Remember cross-validation: Re-use training dataset in a clever way to estimate the classification error.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Cost-Complexity Pruning

1. /* cross-validation step */

Construct tree T using D
2. Partition D into V subsets D_{1}, \ldots, D_{V}
3. for $(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{V} ; \mathrm{i}++$)

Construct tree T_{i} from ($D \backslash D_{i}$)
Use D_{i} to calculate the estimate $R\left(T_{i}, D \backslash D_{i}\right)$ endfor
4. /* estimation step */

Calculate $R(T, D)$ from $R\left(T_{i}, D \backslash D_{i}\right)$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Cost-Complexity Pruning

- Problem: How can we relate the misclassification error of the CV-trees to the misclassification error of the large tree?
- Idea: Use a parameter that has the same meaning over different trees, and relate trees with similar parameter settings.
- Such a parameter is the cost-complexity of the tree.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Cost-Complexity Pruning

- Cost complexity of a tree T:
$R_{\text {alpha }}(T)=R(T)+$ alpha |leaf $(T) \mid$
- For each A, there is a tree that minimizes the cost complexity:
- alpha = 0: full tree
- alpha = infinity: only root node

Cost-Complexity Pruning

\qquad

- When should we prune the subtree rooted at t ?
- $R_{\text {apha }}(\{t\})=R(t)+$ alpha
- $R_{\text {alpha }}\left(T_{t}\right)=R\left(T_{t}\right)+$ alpha |leaf $\left(T_{t}\right) \mid$
- Define

$$
g(t)=\left(R(t)-R\left(T_{t}\right)\right) /\left(\left|\operatorname{leaf}\left(T_{t}\right)\right|-1\right)
$$

- Each node has a critical value $g(t)$:
- Alpha $<\mathrm{g}(\mathrm{t})$: leave subtree T_{t} rooted at t
- Alpha $>=g(t)$: prune subtree rooted at t to $\{t\}$
- For each alpha we obtain a unique minimum cost-complexity tree.

[^3]
Example Revisited

Cost Complexity Pruning

1. Let $\mathrm{T}^{1}>\mathrm{T}^{2}>\ldots>\{\mathrm{t}\}$ be the nested costcomplexity sequence of subtrees of T rooted at t . Let alpha ${ }_{1}<\ldots<$ alpha $_{k}$ be the sequence of associated critical values of alpha. Define alpha $_{\mathrm{k}^{\prime}}=$ squareroot $\left(\right.$ alpha $_{\mathrm{k}} *$ alpha $_{\mathrm{k}+1}$)
2. Let T_{i} be the tree grown from $D \backslash D_{i}$
3. Let $\mathrm{T}^{\mathrm{i}}\left(\mathrm{alph}_{\mathrm{k}^{\prime}}\right)$ be the minimal cost-complexity tree for alpha k^{\prime}

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Cost Complexity Pruning

\qquad
4. Let $R^{\prime}\left(T_{i}\right)\left(\right.$ alpha $\left._{k^{\prime}}\right)$) be the misclassification cost of $T_{i}\left(\right.$ alpha $\left._{k^{\prime}}\right)$ based on D_{i}
5. Define the V-fold cross-validation misclassification estimate as follows: $R^{*}\left(T^{k}\right)=1 / V \Sigma_{i} R^{\prime}\left(T_{i}\left(\right.\right.$ alpha $\left.\left._{k^{\prime}}\right)\right)$
6 . Select the subtree with the smallest estimated CV error
\qquad
\qquad
\qquad
\qquad
\qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

k-SE Rule

- Let T^{*} be the subtree of T that minimizes the misclassification error $R\left(T_{k}\right)$ over all k
- But $R\left(T_{k}\right)$ is only an estimate:
- Estimate the estimated standard error $\mathrm{SE}\left(\mathrm{R}\left(\mathrm{T}^{*}\right)\right)$ of $\mathrm{R}\left(\mathrm{T}^{*}\right)$
- Let $T^{* *}$ be the smallest tree such that $\mathrm{R}\left(\mathrm{T}^{* *}\right)<=\mathrm{R}\left(\mathrm{T}^{*}\right)+\mathrm{k}^{*} \mathrm{SE}\left(\mathrm{R}\left(\mathrm{T}^{*}\right)\right)$; use $\mathrm{T}^{* *}$ instead of T*
- Intuition: A smaller tree is easier to understand.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Cost Complexity Pruning

Advantages:

- No independent test dataset necessary
- Gives estimate of misclassification error, and chooses tree that minimizes this error
Disadvantages:
- Originally devised for small datasets; is it still necessary for large datasets?
- Computationally very expensive for large datasets (need to grow V trees from nearly all the data)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Missing Values

-What is the problem?

- During computation of the splitting predicate, we can selectively ignore records with missing values (note that this has some problems)
- But if a record r misses the value of the variable in the splitting attribute, r can not participate further in tree construction Algorithms for missing values address this problem. \qquad

Mean and Mode Imputation

Assume record r has missing value r.X, and splitting variable is X .

- Simplest algorithm:
- If X is numerical (categorical), impute the overall mean (mode)
- Improved algorithm:
- If X is numerical (categorical), impute the mean(X|t.C) (the mode(X|t.C))

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Decision Trees: Summary

- Many application of decision trees
- There are many algorithms available for:
- Split selection
- Pruning
- Handling Missing Values
- Data Access
- Decision tree construction still active research area (after 20+ years!)
- Challenges: Performance, scalability, evolving datasets, new applications

Ramakrishnan and Gehrke. Database Management Systems, 3 rd Edition.

Lecture Overview

\qquad

- Data Mining I: Decision Trees \qquad
- Data Mining II: Clustering
- Data Mining III: Association Analysis

Supervised Learning

- $\mathrm{F}(\mathrm{x})$: true function (usually not known)
- D: training sample drawn from $F(x)$
$57, \mathrm{M}, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$
$78, M, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
$69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$
18,M, $165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
$54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$
$84, F, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
$89, F, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$
$49, M, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$
$40, \mathrm{M}, 205,0,115,90,37,18,0$
$74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$

| $74, M, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ | 1 |
| :--- | :--- | :--- |
| $77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$ | 0 |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Supervised Learning

- $\mathrm{F}(\mathrm{x}$): true function (usually not known) \qquad
- D: training sample ($x, F(x)$)

57, M, 195, $0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$ \qquad 78,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 69,F,180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0 18,M,165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 $54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$

- $G(x)$: model learned from D
$71, M, 160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$?
- Goal: $\mathrm{E}\left[(\mathrm{F}(\mathrm{x})-\mathrm{G}(\mathrm{x}))^{2}\right]$ is small (near zero) for future samples

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Supervised Learning

\qquad
Well-defined goal:
Learn $\mathrm{G}(\mathrm{x})$ that is a good approximation

$$
\text { to } F(x) \text { from training sample } D
$$

Well-defined error metrics:
Accuracy, RMSE, ROC, ...
\qquad
\qquad
\qquad
\qquad
\qquad

Supervised Learning

\qquad
Training dataset:

$57, M, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$	0
$78, M, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0$	1
$69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$	0
$18, M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	1
$54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$	1
$84, F, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$	0
$89, F, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$	1
$49, M, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$	0
$40, M, 205,0,115,90,37,18,0$	0
$74, M, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$	1
$77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$	0

Test dataset:

$71, M, 160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$

Un-Supervised Learning

Training dataset:

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0 $78, M, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0$ $69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$ $18, M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ $54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$ $84, \mathrm{~F}, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$ $84, \Gamma, 21,1,135,105,39,24,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0$, $195,0,9,3,28,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0$ $9, M, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$ $40, \mathrm{M}, 205,0,115,90,37,18,0$
$74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ $74, M, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
$77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$
Test dataset:
$71, M, 160,1,130,105,38,20,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$
?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Un-Supervised Learning

Training dataset:

$57, M, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$ 58,M,160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0 $69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$ $18, \mathrm{M}, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ 54,F, $135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$ $84, F, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$ $89, F, 135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$ 49,M,195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0 $40, \mathrm{M}, 205,0,115,90,37,18,0$ $74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$ $77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$

Test dataset:

$71, M, 160,1,130,105,30,20,10,0,1,0,0,0,0,0,0,0,0,0,0$

[^4]
Un-Supervised Learning

Data Set:

57,M,195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0
57,M,16, $125,135,19,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$
$78, \mathrm{M}, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
$69, F, 180,0,115,85,40,22,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0$
$18, M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
$54, F, 135,0,115,95,39,35,1,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0$
$84, F, 210,1,135,105,39,24,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
89,F, $135,0,120,95,36,28,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0$
$49, M, 195,0,115,85,39,32,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$
$40, \mathrm{M}, 205,0,115,90,37,18,0$
$74, \mathrm{M}, 250,1,130,100,38,26,1,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
$77, F, 140,0,125,100,40,30,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Supervised vs. Unsupervised Learning

Supervised

- $y=F(x)$: true function
- D: labeled training set
- D: $\left\{\mathrm{x}_{\mathrm{i}}, \mathrm{F}\left(\mathrm{x}_{\mathrm{i}}\right)\right\}$
- Learn:
$\mathrm{G}(\mathrm{x})$: model trained to predict labels D
- Goal: $\mathrm{E}\left[(\mathrm{F}(\mathrm{x})-\mathrm{G}(\mathrm{x}))^{2}\right] \approx 0$
- Well defined criteria: Accuracy, RMSE, ...

Unsupervised

- Generator: true model
- D: unlabeled data sample
- $D:\left\{x_{i}\right\}$
- Learn
??????????
- Goal:
??????????
- Well defined criteria:
??????????

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

What to Learn/Discover?

- Statistical Summaries
- Generators
- Density Estimation
- Patterns/Rules
- Associations (see previous segment)
- Clusters/Groups (this segment)
- Exceptions/Outliers
- Changes in Patterns Over Time or Location

Clustering: Unsupervised Learning

- Given:
- Data Set D (training set)
- Similarity/distance metric/information
- Find:
- Partitioning of data
- Groups of similar/close items

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Similarity?

- Groups of similar customers
- Similar demographics
- Similar buying behavior
- Similar health
- Similar products
- Similar cost
- Similar function
- Similar store
- ...
- Similarity usually is domain/problem specific

Ramakrishnan and Gehrke. Database Management Systems, $3^{3^{d}}$ Edition.

Distance Between Records

- d-dim vector space representation and distance metric
$r_{1}: \quad 57, M, 195,0,125,95,39,25,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0$
$r_{2}: \quad 78, M, 160,1,130,100,37,40,1,0,0,0,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0$
$r_{N}: \quad 18, M, 165,0,110,80,41,30,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
Distance $\left(r_{1}, r_{2}\right)=$???
Pairwise distances between points (no d-dim space)
- Similarity/dissimilarity matrix (upper or lower diagonal)

$$
\begin{array}{lll}
\text { Distance: } & 0=\text { near, } & \infty=\text { far } \\
\text { - Similarity: } & 0=\text { far, } & \infty=\text { near }
\end{array}
$$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

n.

- A metric space is a set S with a global distance function d. For every two points x, y in S, the distance $d(x, y)$ is a nonnegative real number.
- A metric space must also satisfy
- $\mathrm{d}(\mathrm{x}, \mathrm{y})=0$ iff $x=y$
- $\mathrm{d}(\mathrm{x}, \mathrm{y})=\mathrm{d}(\mathrm{y}, \mathrm{x})$ (symmetry)
- $d(x, y)+d(y, z)>=d(x, z)$ (triangle inequality)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Minkowski Distance (L_{p} Norm)

- Consider two records $\mathrm{x}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right), \mathrm{y}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{d}}\right)$:

$$
d(x, y)=\sqrt[p]{\left|x_{1}-y_{1}\right|^{p}+\left|x_{2}-y_{2}\right|^{p}+\ldots+\left|x_{d}-y_{d}\right|^{p}}
$$

Special cases:

- $\mathrm{p}=1$: Manhattan distance

$$
d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|+\ldots+\left|x_{p}-y_{p}\right|
$$

- $\mathrm{p}=2$: Euclidean distance

$$
d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\ldots+\left(x_{d}-y_{d}\right)^{2}}
$$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Only Binary Variables

2x2 Table:

	0	1	Sum
0	a	b	$a+b$
1	c	d	$c+d$
Sum	$a+c$	$b+d$	$a+b+c+d$

- Simple matching coefficient: (symmetric)

$$
d(x, y)=\frac{b+c}{a+b+c+d}
$$

- Jaccard coefficient: (asymmetric)

$$
d(x, y)=\frac{b+c}{b+c+d}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Nominal and Ordinal Variables

- Nominal: Count number of matching variables
- m: \# of matches, d: total \# of variables

$$
d(x, y)=\frac{d-m}{d}
$$

- Ordinal: Bucketize and transform to numerical:
\qquad
\qquad
\qquad
\qquad
- Consider record x with value x_{i} for $\mathrm{i}^{\text {th }}$ attribute of record x ; new value x_{i} : \qquad

$$
x_{i}^{\prime}=\frac{x_{i}-1}{\operatorname{dom}\left(X_{i}\right)-1}
$$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Mixtures of Variables

- Weigh each variable differently \qquad
- Can take "importance" of variable into account (although usually hard to quantify \qquad in practice)

Clustering: Informal Problem Definition

\qquad

Input: \qquad

- A data set of N records each given as a $d-$ dimensional data feature vector.
Output:
- Determine a natural, useful "partitioning" of the data set into a number of (k) clusters and noise such that we have:
- High similarity of records within each cluster (intracluster similarity)
- Low similarity of records between clusters (intercluster similarity) \qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Types of Clustering

- Hard Clustering:
- Each object is in one and only one cluster
- Soft Clustering:
- Each object has a probability of being in each cluster

Clustering Algorithms

- Partitioning-based clustering
- K-means clustering
- K-medoids clustering
- EM (expectation maximization) clustering
- Hierarchical clustering
- Divisive clustering (top down)
- Agglomerative clustering (bottom up)
- Density-Based Methods
- Regions of dense points separated by sparser regions of relatively low density

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

K-Means Clustering Algorithm

\qquad

Initialize k cluster centers
Do
Assignment step: Assign each data point to its closest cluster center
Re-estimation step: Re-compute cluster centers
While (there are still changes in the cluster centers)

Visualization at:

- http://www.delft-cluster.nl/textminer/theory/kmeans/kmeans.html

Why is K -Means working:

- How does it find the cluster centers?
- Does it find an optimal clustering
- What are good starting points for the algorithm?
- What is the right number of cluster centers?
- How do we know it will terminate?

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

K-Means: Distortion

- Communication between sender and receiver
- Sender encodes dataset: $\mathrm{x}_{\mathrm{i}} \rightarrow\{1, \ldots, \mathrm{k}\}$
- Receiver decodes dataset: $\mathrm{j} \rightarrow$ center $_{\mathrm{j}}$
- Distortion: $\quad D=\sum_{1}^{N}\left(x_{i}-\text { center }_{\text {encode }(x)}\right)^{2}$
- A good clustering has minimal distortion.

Properties of the Minimal Distortion

\qquad

- Recall: Distortion $D=\sum_{1}^{N}\left(x_{i}-\text { center }_{\text {encode }(x)}\right)^{2}$
- Property 1: Each data point x_{i} is encoded by its \qquad nearest cluster center center ${ }_{j}$. (Why?)
- Property 2: When the algorithm stops, the partial derivative of the Distortion with respect to each center attribute is zero.
\qquad
\qquad
\qquad

[^5]
Property 2 Followed Through

- Calculating the partial derivative:
$D=\sum_{1}^{N}\left(x_{i}-\text { center }_{\text {enrode }}(x)\right)^{2}=\sum_{j=1}^{k} \sum_{i \in C \text { Cuser }(\text { cenerer })}\left(x_{i}-\text { center }_{j}\right)^{2}$
$\frac{\partial D}{\partial \text { center }_{j}}=\frac{\partial}{\partial \text { center }_{j}} \sum_{i \in C_{\text {Cuser }}(\underline{c})}\left(x_{i}-\text { center }_{j}\right)^{2}=-2 \sum_{i \in C_{\text {Luser }}(G)}\left(x_{i}-\right.$ center $\left._{j}\right)=0$
- Thus at the minimum:
center $j=^{\mid\left\{i \in \operatorname{Cluster}\left(\text { center }_{j}\right)\right\} \mid} \sum_{\text {Ramakrishnan and Gehrke. Database Management Systems, }} \sum_{\text {, center Edition. }} x_{i}$

K-Means Minimal Distortion Property

- Property 1: Each data point x_{i} is encoded by its nearest cluster center center ${ }_{j}$
- Property 2: Each center is the centroid of its cluster.
- How do we improve a configuration:
- Change encoding (encode a point by its nearest cluster center)
- Change the cluster center (make each center the centroid of its cluster)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

K-Means Minimal Distortion Property (Contd.)

\qquad

- Termination? Count the number of distinct \qquad configurations ...
- Optimality? We might get stuck in a local optimum.
- Try different starting configurations.
- Choose the starting centers smart.
- Choosing the number of centers?
- Hard problem. Usually choose number of clusters that minimizes some criterion.

[^6]
K-Means: Summary

- Advantages:
- Good for exploratory data analysis
- Works well for low-dimensional data \qquad
- Reasonably scalable
- Disadvantages
- Hard to choose k
- Often clusters are non-spherical

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

K-Medoids

- Similar to K-Means, but for categorical \qquad data or data in a non-vector space.
- Since we cannot compute the cluster
\qquad center (think text data), we take the "most representative" data point in the cluster.
- This data point is called the medoid (the object that "lies in the center").

Agglomerative Clustering

\qquad

Algorithm:

- Put each item in its own cluster (all singletons)
- Find all pairwise distances between clusters
- Merge the two closest clusters
- Repeat until everything is in one cluster

Observations:

- Results in a hierarchical clustering
- Yields a clustering for each possible number of clusters
- Greedy clustering: Result is not "optimal" for any cluster size

[^7]

Density-Based Clustering

- A cluster is defined as a connected dense component.
- Density is defined in terms of number of neighbors of a point.
- We can find clusters of arbitrary shape \qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

DBSCAN

Density-reachable

- A point p is density-reachable from a point q wrt. E and MinPts if there is a chain of points $p_{1}, \ldots, p_{n}, p_{1}=q, p_{n}=p$ such that p_{i+1} is directly density-reachable from p_{i}
Density-connected
- A point p is density-connected to a point q wrt. E and MinPts if there is a point o such that both, p and q are density-reachable from o wrt. E and MinPts.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

DBSCAN

Cluster

- A cluster C satisfies:

1) $\forall p, q$: if $p \in C$ and q is density-reachable from p wrt. E and MinPts, then $q \in C$. (Maximality)
2) $\forall p, q \in C: p$ is density-connected to q wrt. E and MinPts. (Connectivity)
Noise
Those points not belonging to any cluster

DBSCAN

\qquad

Can show
(1) Every density-reachable set is a cluster: The set
$\mathrm{O}=\{\mathrm{O} \mid \mathrm{O}$ is density-reachable from p wrt. Eps and MinPts $\}$ is a cluster wrt. Eps and MinPts.
(2) Every cluster is a density-reachable set:

Let C be a cluster wrt. Eps and MinPts and let p be any point in C with $\left|N_{\text {Epp }}(p)\right| \geq \operatorname{MinPts}$. Then C equals to the set
$\mathrm{O}=\{\mathrm{O} \mid \mathrm{O} \mathrm{O}$ is density-reachable from p wrt. Eps and MinPts $\}$.
This motivates the following algorithm:

- For each point, DBSCAN determines the Eps-environment and checks whether it contains more than MinPts data points
- If so, it labels it with a cluster number
- If a neighbor q of a point p has already a cluster number, associate this number with p
Ramakrishnan and Gehrke. Database Management Systems, $3^{r^{d}}$ Edition.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DBSCAN: Summary

- Advantages:
- Finds clusters of arbitrary shapes
- Disadvantages:
- Targets low dimensional spatial data
- Hard to visualize for >2-dimensional data
- Needs clever index to be scalable
- How do we set the magic parameters?
\qquad

Lecture Overview

\qquad

- Data Mining I: Decision Trees \qquad
- Data Mining II: Clustering
- Data Mining III: Association Analysis

Market Basket Analysis

- Consider shopping cart filled with several items
- Market basket analysis tries to answer the following questions:
- Who makes purchases?
- What do customers buy together?
- In what order do customers purchase items?

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Market Basket Analysis

Given:

- A database of customer transactions
- Each transaction is a set of items
- Example:

Transaction with TID 111 contains items \{Pen, Ink, Milk, Juice\}

TID	CID	Date	Item	Qty
111	201	$5 / 1 / 99$	Pen	2
111	201	$5 / 1 / 99$	Ink	1
111	201	$5 / 1 / 99$	Milk	3
111	201	$5 / 1 / 99$	Juice	6
112	105	$6 / 3 / 99$	Pen	1
112	105	$6 / 3 / 99$	Ink	1
112	105	$6 / 3 / 99$	Milk	1
113	106	$6 / / 5 / 99$	Pen	1
113	106	$6 / 5 / 99$	Milk	1
114	201	$7 / 1 / 99$	Pen	2
114	201	$7 / 1 / 99$	Ink	2
114	201	$7 / 1 / 99$	Juice	4

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Market Basket Analysis (Contd.)

\qquad

- Coocurrences
- 80% of all customers purchase items X, Y and Z together.
- Association rules
- 60% of all customers who purchase X and Y also buy Z.
- Sequential patterns
- 60% of customers who first buy X also purchase Y within three weeks.

[^8]
Confidence and Support

We prune the set of all possible association rules using two interestingness measures:

- Confidence of a rule: \qquad
- $\mathrm{X} \rightarrow \mathrm{Y}$ has confidence c if $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})=\mathrm{c}$
- Support of a rule:
- $X \rightarrow Y$ has support s if $P(X Y)=s$

We can also define

- Support of an itemset (a coocurrence) XY:
- $X Y$ has support s if $P(X Y)=s$

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Example					
Examples: - \{Pen\} => \{Milk\} Support: 75\% Confidence: 75\% - \{Ink\} => \{Pen\} Support: 100\% Confidence: 100\%				$\stackrel{\text { lem }}{\text { Pen }}$	Oty
		201	51199	Ink	1
		${ }_{201}^{201}$	511999	$\xrightarrow{\text { Milk }}$	
		105	${ }^{61399}$	Pen	
		105	${ }^{613999}$	${ }_{\text {Ink }}^{\text {Ink }}$	
		${ }_{105}^{105}$	${ }_{6}^{613999}$	Mik	
		106	${ }_{651999}^{65199}$	$\stackrel{\text { Pen }}{\text { Milk }}$	
		201	71199	Pen	
			71199	Ink	
	114	201	71199	Juice	4

Example					
- Find all itemsets with support $>=75 \%$?	TID	CID	Date	Item	Qty
	111	201	5/1/99	Pen	2
	111	201	5/1/99	Ink	1
	111	201	5/1/99	Milk	3
	111	201	5/1/99	Juice	6
	112	105	6/3/99	Pen	1
	112	105	6/3/99	Ink	1
	112	105	6/3/99	Milk	1
	113	106	6/5/99	Pen	1
	113	106	6/5/99	Milk	1
	114	201	7/1/99	Pen	2
	114	201	7/1/99	Ink	2
	114	201	7/1/99	Juice	4

Example

- Can you find all association rules with support $>=50 \%$?

TID	CID	Date	Item	Qty
111	201	$5 / 1 / 99$	Pen	2
111	201	$5 / 1 / 99$	Ink	1
111	201	$5 / 1 / 99$	Milk	3
111	201	$5 / 1 / 99$	Juice	6
112	105	$6 / 3 / 99$	Pen	1
112	105	$6 / 3 / 99$	Ink	1
112	105	$6 / 3 / 99$	Milk	1
113	106	$6 / 5 / / 9$	Pen	1
113	106	$6 / 599$	Milk	1
114	201	$7 / 1 / 99$	Pen	2
114	201	$7 / 1 / 99$	Ink	2
114	201	$7 / 1 / 99$	Juice	4

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Market Basket Analysis: Applications

\qquad

- Sample Applications \qquad
- Direct marketing
- Fraud detection for medical insurance \qquad
- Floor/shelf planning
- Web site layout
- Cross-selling
\qquad

Applications of Frequent Itemsets

\qquad

- Market Basket Analysis \qquad
- Association Rules
- Classification (especially: text, rare
\qquad classes)
- Seeds for construction of Bayesian Networks
- Web log analysis
- Collaborative filtering
\qquad
\qquad
\qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Association Rule Algorithms

More abstract problem redux

- Breadth-first search
- Depth-first search

Problem Redux

Abstract:

- A set of items $\{1,2, \ldots, k\}$
- A dabase of transactions (itemsets) $D=\{T 1, T 2, \ldots, T n\}$, Tj subset $\{1,2, \ldots, k\}$

GOAL:
Find all itemsets that appear in at least x transactions
("appear in" == "are subsets of")
I subset T: T supports I
For an itemset I, the number of transactions it appears in is called the support of I.
x is called the minimum support.
Ramakrishnan and Gehrke. Database Management Systems, ${ }^{\text {rd }}$ Edition

Concrete:

- $\mathrm{I}=\{$ milk, bread, cheese, ...\}
- $D=\{$ \{milk,bread,cheese $\}$, \{bread,cheese,juice\}, ...\}

GOAL:
Find all itemsets that appear in at least 1000 transactions
\{milk,bread,cheese\} supports \{milk,bread\}

Problem Redux (Contd.)

Definitions:

- An itemset is frequent if it is a subset of at least x transactions. (FI.)
- An itemset is maximally
frequent if it is frequent and it does not have a frequent superset. (MFI.)

GOAL: Given x, find all frequent (maximally frequent) itemsets (to be stored in the FI (MFI)).

Obvious relationship: MFI subset FI

Example:
$D=\{\{1,2,3\},\{1,2,3\},\{1,2,3\}$, $\{1,2,4\}\}$
Minimum support $\mathrm{x}=3$
$\{1,2\}$ is frequent
$\{1,2,3\}$ is maximal frequent
Support $(\{1,2\})=4$
All maximal frequent itemsets: $\{1,2,3\}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Itemset Lattice

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

Frequent Itemsets

Breath First Search: 1-Itemsets

Breadth First Search: Remarks

\qquad

- We prune infrequent itemsets and avoid to count them
- To find an itemset with k items, we need to count all 2^{k} subsets
Depth First Search (1)
Depth First Search (2)
Depth First Search (3)
Depth First Search (4)
Depth First Search (5)

Depth First Search: Remarks

\qquad

- We prune frequent itemsets and avoid counting them (works only for maximal frequent itemsets)
- To find an itemset with k items, we need to count k prefixes

BFS Versus DFS	
Breadth First Search	Depth First Search
- Prunes infrequent itemsets	- Prunes frequent itemsets
- Uses antimonotonicity: Every superset of an infrequent itemset is infrequent	- Uses monotonicity: Every subset of a frequent itemset is frequent
Ramaxishnan and Gehrre. Database Managen	Systems, $3^{\text {de }}$ Edition.

Extensions

- Imposing constraints
- Only find rules involving the dairy department
- Only find rules involving expensive products
- Only find "expensive" rules
- Only find rules with "whiskey" on the right hand side
- Only find rules with "milk" on the left hand side
- Hierarchies on the items
- Calendars (every Sunday, every $1^{\text {st }}$ of the month)

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

Itemset Constraints

Definition:

- A constraint is an arbitrary property of itemsets.

Examples:

- The itemset has support greater than 1000 .
- No element of the itemset costs more than $\$ 40$.
- The items in the set average more than $\$ 20$.

Goal:

- Find all itemsets satisfying a given constraint \mathbf{P}.
"Solution":
- If \mathbf{P} is a support constraint, use the Apriori Algorithm.

[^9]

Two Trivial Observations

- Apriori can be applied to any constraint \mathbf{P} that is antimonotone.
- Start from the empty set.
- Prune supersets of sets that do not satisfy \mathbf{P}.
- Itemset lattice is a boolean algebra, so Apriori also applies to a monotone \mathbf{Q}.
- Start from set of all items instead of empty set.
- Prune subsets of sets that do not satisfy \mathbf{Q}.

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

The Problem Redux

Current Techniques:

- Approximate the difficult constraints.
- Monotone approximations are common.

New Goal:

- Given constraints \mathbf{P} and \mathbf{Q}, with \mathbf{P} antimonotone (support) and \mathbf{Q} monotone (statistical constraint).
\qquad
\qquad
\qquad
\qquad
- Find all itemsets that satisfy both \mathbf{P} and \mathbf{Q}.

Recent solutions:

- Newer algorithms can handle both \mathbf{P} and \mathbf{Q} \qquad

Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition. \qquad

Conceptual Illustration of Problem \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Applications

\qquad

- Spatial association rules \qquad
- Web mining
- Market basket analysis
\qquad
- User/customer profiling \qquad
\qquad
\qquad

Extensions: Sequential Patterns

Customer ID (CID)	Sequence
1	$(\{a, b, d\},\{c, d\},\{b, c, d\})$
2	$(\{b\},\{a, b, c\})$
3	$(\{a, b\},\{b, c, d\})$

[^10]
[^0]: Ramakrishnan and Gehrke. Database Management Systems, ${ }^{\text {rd }}$ Edition.

[^1]: Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

[^2]: Ramakrishnan and Gehrke. Database Management Systems. $3^{\text {rd }}$ Editio

[^3]: Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

[^4]: Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition

[^5]: Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

[^6]: Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

[^7]: Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

[^8]: Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

[^9]: Ramakrishnan and Gehrke. Database Management Systems, ${ }^{\text {rd }}$ Edition.

[^10]: Ramakrishnan and Gehrke. Database Management Systems, $3^{\text {rd }}$ Edition.

