
Database Management Systems, R. Ramakrishnan 1

Introduction to IR Systems:
Supporting Boolean Text Search

Chapter 27, Part A

Database Management Systems, R. Ramakrishnan 2

Information Retrieval

A research field traditionally separate from
Databases
• Goes back to IBM, Rand and Lockheed in the 50’s
• G. Salton at Cornell in the 60’s
• Lots of research since then

Products traditionally separate
• Originally, document management systems for libraries,

government, law, etc.
• Gained prominence in recent years due to web search

Database Management Systems, R. Ramakrishnan 3

IR vs. DBMS
Seem like very different beasts:

Both support queries over large datasets, use
indexing.
• In practice, you currently have to choose between the two.

Expect reasonable number of
updates

Read-Mostly. Add docs
occasionally

SQLKeyword search

Generate full answerPage through top k results

Structured dataUnstructured data format

Precise SemanticsImprecise Semantics

DBMSIR

Database Management Systems, R. Ramakrishnan 4

IR’s “Bag of Words” Model

Typical IR data model:
• Each document is just a bag (multiset) of words (“terms”)

Detail 1: “Stop Words”
• Certain words are considered irrelevant and not placed in

the bag
• e.g., “the”
• e.g., HTML tags like <H1>

Detail 2: “Stemming” and other content analysis
• Using English-specific rules, convert words to their basic

form
• e.g., “surfing”, “surfed” --> “surf”

Database Management Systems, R. Ramakrishnan 5

Boolean Text Search

Find all documents that match a Boolean
containment expression:

“Windows”
AND (“Glass” OR “Door”)
AND NOT “Microsoft”

Note: Query terms are also filtered via
stemming and stop words.
When web search engines say “10,000
documents found”, that’s the Boolean search
result size (subject to a common “max #
returned’ cutoff).

Database Management Systems, R. Ramakrishnan 6

Text “Indexes”

When IR folks say “text index”…
• Usually mean more than what DB people mean

In our terms, both “tables” and indexes
• Really a logical schema (i.e., tables)
• With a physical schema (i.e., indexes)
• Usually not stored in a DBMS

• Tables implemented as files in a file system
• We’ll talk more about this decision soon

Database Management Systems, R. Ramakrishnan 7

A Simple Relational Text Index

Create and populate a table
InvertedFile(term string, docURL string)

Build a B+-tree or Hash index on InvertedFile.term
• Alternative 3 (<Key, list of URLs> as entries in index) critical

here for efficient storage!!
• Fancy list compression possible, too

• Note: URL instead of RID, the web is your “heap file”!
• Can also cache pages and use RIDs

This is often called an “inverted file” or “inverted
index”
• Maps from words -> docs

Can now do single-word text search queries!

Database Management Systems, R. Ramakrishnan 8

An Inverted File

Search for
• “databases”
• “microsoft”

term docURL
data http://www-ins t.eecs .berkeley.edu/~cs186
database http://www-ins t.eecs .berkeley.edu/~cs186
date http://www-ins t.eecs .berkeley.edu/~cs186
day http://www-ins t.eecs .berkeley.edu/~cs186
dbms http://www-ins t.eecs .berkeley.edu/~cs186
decis ion http://www-ins t.eecs .berkeley.edu/~cs186
demonstrate http://www-ins t.eecs .berkeley.edu/~cs186
description http://www-ins t.eecs .berkeley.edu/~cs186
des ign http://www-ins t.eecs .berkeley.edu/~cs186
des ire http://www-ins t.eecs .berkeley.edu/~cs186
developer http://www.microsoft.com
differ http://www-ins t.eecs .berkeley.edu/~cs186
disability http://www.microsoft.com
discuss ion http://www-ins t.eecs .berkeley.edu/~cs186
divis ion http://www-ins t.eecs .berkeley.edu/~cs186
do http://www-ins t.eecs .berkeley.edu/~cs186
document http://www-ins t.eecs .berkeley.edu/~cs186

Database Management Systems, R. Ramakrishnan 9

Handling Boolean Logic
How to do “term1” OR “term2”?
• Union of two DocURL sets!

How to do “term1” AND “term2”?
• Intersection of two DocURL sets!

• Can be done by sorting both lists alphabetically and merging the
lists

How to do “term1” AND NOT “term2”?
• Set subtraction, also done via sorting

How to do “term1” OR NOT “term2”
• Union of “term1” and “NOT term2”.

• “Not term2” = all docs not containing term2. Large set!!
• Usually not allowed!

Refinement: What order to handle terms if you have many
ANDs/NOTs?

Database Management Systems, R. Ramakrishnan 10

Boolean Search in SQL

(SELECT docURL FROM InvertedFile
WHERE word = “windows”
INTERSECT
SELECT docURL FROM InvertedFile
WHERE word = “glass” OR word =

“door”)
EXCEPT
SELECT docURL FROM InvertedFile
WHERE word=“Microsoft”
ORDER BY relevance()

“Windows” AND (“Glass” OR “Door”)
AND NOT “Microsoft”

Database Management Systems, R. Ramakrishnan 11

Boolean Search in SQL

Really only one SQL query in Boolean Search
IR:
• Single-table selects, UNION, INTERSECT, EXCEPT

relevance () is the “secret sauce” in the search
engines:
• Combos of statistics, linguistics, and graph theory

tricks!
• Unfortunately, not easy to compute this efficiently

using typical DBMS implementation.

Database Management Systems, R. Ramakrishnan 12

Computing Relevance
Relevance calculation involves how often search terms
appear in doc, and how often they appear in collection:
• More search terms found in doc doc is more relevant
• Greater importance attached to finding rare terms

Doing this efficiently in current SQL engines is not easy:
• “Relevance of a doc wrt a search term” is a function that is called

once per doc the term appears in (docs found via inv. index):
• For efficient fn computation, for each term, we can store the #

times it appears in each doc, as well as the # docs it appears in.
• Must also sort retrieved docs by their relevance value.
• Also, think about Boolean operators (if the search has multiple

terms) and how they affect the relevance computation!
• An object-relational or object-oriented DBMS with good support

for function calls is better, but you still have long execution path-
lengths compared to optimized search engines.

Database Management Systems, R. Ramakrishnan 13

Fancier: Phrases and “Near”

Suppose you want a phrase
• E.g., “Happy Days”

Different schema:
• InvertedFile (term string, count int, position int, DocURL

string)
• Alternative 3 index on term

Post-process the results
• Find “Happy” AND “Days”
• Keep results where positions are 1 off

• Doing this well is like join processing
Can do a similar thing for “term1” NEAR “term2”
• Position < k off

Database Management Systems, R. Ramakrishnan 14

Updates and Text Search

Text search engines are designed to be query-mostly:
• Deletes and modifications are rare
• Can postpone updates (nobody notices, no transactions!)

• Updates done in batch (rebuild the index)
• Can’t afford to go off-line for an update?

• Create a 2nd index on a separate machine
• Replace the 1st index with the 2nd!

• So no concurrency control problems
• Can compress to search-friendly, update-unfriendly format

Main reason why text search engines and DBMSs are
usually separate products.
• Also, text-search engines tune that one SQL query to death!

Database Management Systems, R. Ramakrishnan 15

{

DBMS vs. Search Engine Architecture

The Access Method

Buffer Management

Disk Space Management

OS

“The Query”

Search String Modifier

Simple
DBMS}

Ranking Algorithm

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Concurrency
and

Recovery
Needed

DBMS Search Engine

Database Management Systems, R. Ramakrishnan 16

IR vs. DBMS Revisited
Semantic Guarantees
• DBMS guarantees transactional semantics

• If inserting Xact commits, a later query will see the update
• Handles multiple concurrent updates correctly

• IR systems do not do this; nobody notices!
• Postpone insertions until convenient
• No model of correct concurrency

Data Modeling & Query Complexity
• DBMS supports any schema & queries

• Requires you to define schema
• Complex query language hard to learn

• IR supports only one schema & query
• No schema design required (unstructured text)
• Trivial to learn query language

Database Management Systems, R. Ramakrishnan 17

IR vs. DBMS, Contd.

Performance goals
• DBMS supports general SELECT

• Plus mix of INSERT, UPDATE, DELETE
• General purpose engine must always perform “well”

• IR systems expect only one stylized SELECT
• Plus delayed INSERT, unusual DELETE, no UPDATE.
• Special purpose, must run super-fast on “The Query”
• Users rarely look at the full answer in Boolean Search

Database Management Systems, R. Ramakrishnan 18

Lots More in IR …
How to “rank” the output? I.e., how to compute
relevance of each result item w.r.t. the query?
• Doing this well / efficiently is hard!

Other ways to help users paw through the output?
• Document “clustering”, document visualization

How to take advantage of hyperlinks?
• Really cute tricks here!

How to use compression for better I/O performance?
• E.g., making RID lists smaller
• Try to make things fit in RAM!

How to deal with synonyms, misspelling,
abbreviations?
How to write a good web crawler?

