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Computing Relevance, Similarity: 
The Vector Space Model

Chapter 27, Part B
Based on Larson and Hearst’s slides at 

UC-Berkeley

http://www.sims.berkeley.edu/courses/is202/f00/
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Document Vectors

Documents are represented as “bags of 
words”
Represented as vectors when used 
computationally
• A vector is like an array of floating point
• Has direction and magnitude
• Each vector holds a place for every term in the 

collection
• Therefore, most vectors are sparse
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Document Vectors:
One location for each word. 

nova galaxy heat h’wood film role diet fur
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“Nova” occurs 10 times in text A
“Galaxy” occurs 5 times in text A

“Heat” occurs 3 times in text A
(Blank means 0 occurrences.)
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Document Vectors 
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Document ids
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We Can Plot the Vectors

Star

Diet

Doc about astronomy
Doc about movie stars

Doc about mammal behavior

Assumption: Documents that are “close” in space are similar. 
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Vector Space Model

Documents are represented as vectors in term 
space
• Terms are usually stems
• Documents represented by binary vectors of terms

Queries represented the same as documents
A vector distance measure between the query 
and documents is used to rank retrieved 
documents
• Query and Document similarity is based on length 

and direction of their vectors
• Vector operations to capture boolean query 

conditions
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Vector Space Documents
and Queries

docs t1 t2 t3 RSV=Q.Di
D1 1 0 1 4
D2 1 0 0 1
D3 0 1 1 5
D4 1 0 0 1
D5 1 1 1 6
D6 1 1 0 3
D7 0 1 0 2
D8 0 1 0 2
D9 0 0 1 3
D10 0 1 1 5
D11 1 0 1 3
Q 1 2 3

q1 q2 q3

D1
D2

D3

D4
D5

D6

D7
D8

D9

D10

D11

t2

t3

t1

Boolean term combinations
Q is a query – also represented 
as a vector
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Assigning Weights to Terms

Binary Weights
Raw term frequency
tf x idf
• Recall the Zipf distribution
• Want to weight terms highly if they are

• frequent in relevant documents … BUT
• infrequent in the collection as a whole
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Binary Weights

Only the presence (1) or absence (0) of a term 
is included in the vector

docs t1 t2 t3
D1 1 0 1
D2 1 0 0
D3 0 1 1
D4 1 0 0
D5 1 1 1
D6 1 1 0
D7 0 1 0
D8 0 1 0
D9 0 0 1
D10 0 1 1
D11 1 0 1
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Raw Term Weights

The frequency of occurrence for the term in 
each document is included in the vector

docs t1 t2 t3
D1 2 0 3
D2 1 0 0
D3 0 4 7
D4 3 0 0
D5 1 6 3
D6 3 5 0
D7 0 8 0
D8 0 10 0
D9 0 0 1
D10 0 3 5
D11 4 0 1
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TF x IDF Weights

tf x idf measure:
• Term Frequency (tf)
• Inverse Document Frequency (idf) -- a way to deal 

with the problems of the Zipf distribution
Goal: Assign a tf * idf weight to each term in 
each document
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TF x IDF Calculation
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Inverse Document Frequency

IDF provides high values for rare words and 
low values for common words
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TF x IDF Normalization

Normalize the term weights (so longer 
documents are not unfairly given more 
weight)
• The longer the document, the more likely it is for a 

given term to appear in it, and the more often a 
given term is likely to appear in it. So, we want to 
reduce the importance attached to a term 
appearing in a document based on the length of 
the document.
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Pair-wise Document Similarity

nova galaxy heat h’wood film role diet fur
1 3 1
5 2

2 1 5
4 1

A
B
C
D

How to compute document similarity?
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Pair-wise Document Similarity

nova galaxy heat h’wood film role diet fur
1 3 1
5 2

2 1 5
4 1
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Pair-wise Document Similarity
(cosine normalization)
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Vector Space “Relevance” Measure
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Computing Relevance Scores
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Vector Space with Term Weights 
and Cosine Matching
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Text Clustering

Finds overall similarities among groups of 
documents
Finds overall similarities among groups of 
tokens
Picks out some themes, ignores others
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Text Clustering

Term 1

Term 
2

Clustering is
“The art of finding groups in data.”  
-- Kaufmann and Rousseeu
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Problems with Vector Space

There is no real theoretical basis for the 
assumption of a term space
• It is more for visualization than having any real 

basis
• Most similarity measures work about the same

Terms are not really orthogonal dimensions
• Terms are not independent of all other terms; 

remember our discussion of correlated terms in 
text
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Probabilistic Models

Rigorous formal model attempts to predict 
the probability that a given document will be 
relevant to a given query
Ranks retrieved documents according to this 
probability of relevance (Probability Ranking 
Principle)
Relies on accurate estimates of probabilities
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Probability Ranking Principle

If a reference retrieval system’s response to each 
request is a ranking of the documents in the 
collections in the order of decreasing probability of 
usefulness to the user who submitted the request, 
where the probabilities are estimated as accurately as 
possible on the basis of whatever data has been made 
available to the system for this purpose, then the 
overall effectiveness of the system to its users will be 
the best that is obtainable on the basis of that data.

Stephen E. Robertson, J. Documentation 1977
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Iterative Query Refinement
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Query Modification

Problem: How can we reformulate the query 
to help a user who is trying several searches 
to get at the same information?
• Thesaurus expansion:

• Suggest terms similar to query terms
• Relevance feedback:

• Suggest terms (and documents) similar to 
retrieved documents that have been judged to 
be relevant
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Relevance Feedback

Main Idea:
• Modify existing query based on relevance 

judgements
• Extract terms from relevant documents and add 

them to the query
• AND/OR re-weight the terms already in the 

query
There are many variations:
• Usually positive weights for terms from relevant

docs
• Sometimes negative weights for terms from non-

relevant docs
Users, or the system, guide this process by 

l ti  t  f   t ti ll
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Rocchio Method

Rocchio automatically
• Re-weights terms
• Adds in new terms (from relevant docs)

• have to be careful when using negative terms
• Rocchio is not a machine learning algorithm
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Rocchio Method
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Rocchio/Vector Illustration

Retrieval

Information

0.5

1.0

0 0.5 1.0

D1

D2

Q0

Q’

Q”

Q0 = retrieval of information = (0.7,0.3)
D1 = information science =        (0.2,0.8)
D2 = retrieval systems =            (0.9,0.1)

Q’ = ½*Q0+ ½ * D1 =  (0.45,0.55)
Q” = ½*Q0+ ½ * D2 =  (0.80,0.20)
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Alternative Notions of Relevance Feedback

Find people whose taste is “similar” to yours.
• Will you like what they like?

Follow a user’s actions in the background.  
• Can this be used to predict what the user will 

want to see next?
Track what lots of people are doing.  
• Does this implicitly indicate what they think is 

good and not good?
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Collaborative Filtering (Social Filtering)
If Pam liked the paper, I’ll like the paper
If you liked Star Wars, you’ll like 
Independence Day
Rating based on ratings of similar people
• Ignores text, so also works on sound, pictures etc.
• But: Initial users can bias ratings of future users

Sally Bob Chris Lynn Karen
Star Wars 7 7 3 4 7
Jurassic Park 6 4 7 4 4
Terminator II 3 4 7 6 3
Independence Day 7 7 2 2 ?



Database Management Systems, R. Ramakrishnan 34

Users rate items from like to dislike
• 7 = like;   4 = ambivalent;   1 = dislike
• A normal distribution; the extremes are what matter

Nearest Neighbors Strategy: Find similar users and 
predicted (weighted) average of user ratings
Pearson Algorithm: Weight by degree of correlation 
between user U and user J
• 1 means similar, 0 means no correlation, -1 dissimilar
• Works better to compare against the ambivalent rating 

(4), rather than the individual’s average score

 
∑∑

∑
−⋅−

−−
=

22 )()(

))((

JJUU

JJUU
rUJ  
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