
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Internet Applications

Chapter 7

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Uniform Resource Identifiers

Uniform naming schema to identify resources on the
Internet
A resource can be anything:

Index.html
mysong.mp3
picture.jpg

Example URIs:
http://www.cs.wisc.edu/~dbbook/index.html
mailto:webmaster@bookstore.com

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Structure of URIs

http://www.cs.wisc.edu/~dbbook/index.html

URI has three parts:
Naming schema (http)
Name of the host computer (www.cs.wisc.edu)
Name of the resource (~dbbook/index.html)

URLs are a subset of URIs

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Hypertext Transfer Protocol

What is a communication protocol?
Set of standards that defines the structure of messages
Examples: TCP, IP, HTTP

What happens if you click on
www.cs.wisc.edu/~dbbook/index.html?

Client (web browser) sends HTTP request to server
Server receives request and replies
Client receives reply; makes new requests

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

HTTP (Contd.)
Client to Server:

GET ~/index.html HTTP/1.1
User-agent: Mozilla/4.0
Accept: text/html, image/gif,

image/jpeg

Server replies:

HTTP/1.1 200 OK
Date: Mon, 04 Mar 2002 12:00:00 GMT
Server: Apache/1.3.0 (Linux)
Last-Modified: Mon, 01 Mar 2002

09:23:24 GMT
Content-Length: 1024
Content-Type: text/html
<HTML> <HEAD></HEAD>
<BODY>
<h1>Barns and Nobble Internet

Bookstore</h1>
Our inventory:
<h3>Science</h3>
The Character of Physical Law
...

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

HTTP Protocol Structure

HTTP Requests
Request line: GET ~/index.html HTTP/1.1

GET: Http method field (possible values are GET and POST,
more later)
~/index.html: URI field
HTTP/1.1: HTTP version field

Type of client: User-agent: Mozilla/4.0
What types of files will the client accept:

Accept: text/html, image/gif, image/jpeg

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

HTTP Protocol Structure (Contd.)
HTTP Responses

Status line: HTTP/1.1 200 OK
HTTP version: HTTP/1.1
Status code: 200
Server message: OK
Common status code/server message combinations:

• 200 OK: Request succeeded
• 400 Bad Request: Request could not be fulfilled by the server
• 404 Not Found: Requested object does not exist on the server
• 505 HTTP Version not Supported

Date when the object was created:
Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT

Number of bytes being sent: Content-Length: 1024
What type is the object being sent: Content-Type: text/html
Other information such as the server type, server time, etc.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Some Remarks About HTTP

HTTP is stateless
No “sessions”
Every message is completely self-contained
No previous interaction is “remembered” by the protocol
Tradeoff between ease of implementation and ease of
application development: Other functionality has to be built
on top

Implications for applications:
Any state information (shopping carts, user login-information)
need to be encoded in every HTTP request and response!
Popular methods on how to maintain state:

• Cookies (later this lecture)
• Dynamically generate unique URL’s at the server level (later this

lecture)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Web Data Formats

HTML
The presentation language for the Internet

Xml
A self-describing, hierarchal data model

DTD
Standardizing schemas for Xml

XSLT (not covered in the book)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

HTML: An Example
<HTML>

<HEAD></HEAD>
<BODY>
<h1>Barns and Nobble Internet

Bookstore</h1>
Our inventory:

<h3>Science</h3>
The Character of Physical

Law

Author: Richard
Feynman
Published 1980
Hardcover

<h3>Fiction</h3>
Waiting for the Mahatma

Author: R.K. Narayan
Published 1981

The English Teacher

Author: R.K. Narayan
Published 1980
Paperback

</BODY>
</HTML>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

HTML: A Short Introduction

HTML is a markup language
Commands are tags:

Start tag and end tag
Examples:

• <HTML> … </HTML>
• …

Many editors automatically generate HTML
directly from your document (e.g., Microsoft
Word has an “Save as html” facility)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

HTML: Sample Commands

<HTML>:
: unordered list
: list entry
<h1>: largest heading
<h2>: second-level heading, <h3>, <h4>
analogous
Title: Bold

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

XML: An Example
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<BOOKLIST>

<BOOK genre="Science" format="Hardcover">
<AUTHOR>

<FIRSTNAME>Richard</FIRSTNAME><LASTNAME>Feynman</LASTNAME>
</AUTHOR>
<TITLE>The Character of Physical Law</TITLE>
<PUBLISHED>1980</PUBLISHED>

</BOOK>
<BOOK genre="Fiction">

<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>Waiting for the Mahatma</TITLE>
<PUBLISHED>1981</PUBLISHED>

</BOOK>
<BOOK genre="Fiction">

<AUTHOR>
<FIRSTNAME>R.K.</FIRSTNAME><LASTNAME>Narayan</LASTNAME>

</AUTHOR>
<TITLE>The English Teacher</TITLE>
<PUBLISHED>1980</PUBLISHED>

</BOOK>
</BOOKLIST>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

XML – The Extensible Markup Language

Language
A way of communicating information

Markup
Notes or meta-data that describe your data or
language

Extensible
Limitless ability to define new languages or data
sets

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

XML – What’s The Point?

You can include your data and a description of what
the data represents

This is useful for defining your own language or protocol
Example: Chemical Markup Language

<molecule>
<weight>234.5</weight>
<Spectra>…</Spectra>
<Figures>…</Figures>

</molecule>
XML design goals:

XML should be compatible with SGML
It should be easy to write XML processors
The design should be formal and precise

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

XML – Structure

XML: Confluence of SGML and HTML
Xml looks like HTML
Xml is a hierarchy of user-defined tags called
elements with attributes and data
Data is described by elements, elements are
described by attributes
<BOOK genre="Science" format="Hardcover">…</BOOK>

closing tag

attribute

attribute value
data

open tag
element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

XML – Elements

<BOOK genre="Science" format="Hardcover">…</BOOK>

Xml is case and space sensitive
Element opening and closing tag names must be identical
Opening tags: “<” + element name + “>”
Closing tags: “</” + element name + “>”
Empty Elements have no data and no closing tag:

They begin with a “<“ and end with a “/>”
<BOOK/>

closing tag
attribute

attribute value dataopen tag
element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

XML – Attributes

<BOOK genre="Science" format="Hardcover">…</BOOK>

Attributes provide additional information for element tags.
There can be zero or more attributes in every element; each one
has the the form:

attribute_name=‘attribute_value’
- There is no space between the name and the “=‘”
- Attribute values must be surrounded by “ or ‘ characters

Multiple attributes are separated by white space (one or more
spaces or tabs).

closing tag
attribute

attribute value data
open tag

element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

XML – Data and Comments

<BOOK genre="Science" format="Hardcover">…</BOOK>

Xml data is any information between an opening and closing tag
Xml data must not contain the ‘<‘ or ‘>’ characters

Comments:
<!- comment ->

closing tag
attribute

attribute value
data

open tag
element name

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

XML – Nesting & Hierarchy

Xml tags can be nested in a tree hierarchy
Xml documents can have only one root tag
Between an opening and closing tag you can insert:

1. Data
2. More Elements
3. A combination of data and elements

<root>
<tag1>

Some Text
<tag2>More</tag2>

</tag1>
</root>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Xml – Storage

Storage is done just like an n-ary tree (DOM)

<root>

<tag1>

Some Text

<tag2>More</tag2>

</tag1>

</root>

Node
Type: Element_Node
Name: Element
Value: Root

Node
Type: Element_Node
Name: Element
Value: tag1

Node
Type: Text_Node
Name: Text
Value: More

Node
Type: Element_Node
Name: Element
Value: tag2

Node
Type: Text_Node
Name: Text
Value: Some Text

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

DTD – Document Type Definition

A DTD is a schema for Xml data
Xml protocols and languages can be
standardized with DTD files
A DTD says what elements and attributes are
required or optional

Defines the formal structure of the language

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

DTD – An Example
<?xml version='1.0'?>
<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >

<!ELEMENT Cherry EMPTY>
<!ATTLIST Cherry flavor CDATA #REQUIRED>

<!ELEMENT Apple EMPTY>
<!ATTLIST Apple color CDATA #REQUIRED>

<!ELEMENT Orange EMPTY>
<!ATTLIST Orange location ‘Florida’>

--

<Basket>
<Apple/>
<Cherry flavor=‘good’/>
<Orange/>

</Basket>

<Basket>
<Cherry flavor=‘good’/>
<Apple color=‘red’/>
<Apple color=‘green’/>

</Basket>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

DTD - !ELEMENT

<!ELEMENT Basket (Cherry+, (Apple | Orange)*) >

!ELEMENT declares an element name, and
what children elements it should have
Content types:

Other elements
#PCDATA (parsed character data)
EMPTY (no content)
ANY (no checking inside this structure)
A regular expression

Name Children

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

DTD - !ELEMENT (Contd.)

A regular expression has the following
structure:

exp1, exp2, exp3, …, expk: A list of regular
expressions
exp*: An optional expression with zero or more
occurrences
exp+: An optional expression with one or more
occurrences
exp1 | exp2 | … | expk: A disjunction of expressions

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

DTD - !ATTLIST

<!ATTLIST Cherry flavor CDATA #REQUIRED>

<!ATTLIST Orange location CDATA #REQUIRED
color ‘orange’>

!ATTLIST defines a list of attributes for an
element
Attributes can be of different types, can be
required or not required, and they can have
default values.

Element Attribute Type Flag

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

DTD – Well-Formed and Valid
<?xml version='1.0'?>
<!ELEMENT Basket (Cherry+)>

<!ELEMENT Cherry EMPTY>
<!ATTLIST Cherry flavor CDATA #REQUIRED>

--

Well-Formed and Valid
<Basket>

<Cherry flavor=‘good’/>
</Basket>

Not Well-Formed
<basket>

<Cherry flavor=good>
</Basket>

Well-Formed but Invalid
<Job>

<Location>Home</Location>
</Job>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

XML and DTDs

More and more standardized DTDs will be developed
MathML
Chemical Markup Language

Allows light-weight exchange of data with the same
semantics

Sophisticated query languages for XML are available:
Xquery
XPath

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Components of Data-Intensive
Systems
Three separate types of functionality:

Data management
Application logic
Presentation

The system architecture determines whether
these three components reside on a single
system (“tier) or are distributed across several
tiers

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Single-Tier Architectures

All functionality combined into a
single tier, usually on a
mainframe

User access through dumb
terminals

Advantages:
Easy maintenance and
administration

Disadvantages:
Today, users expect
graphical user interfaces.
Centralized computation of
all of them is too much for a
central system

GRAPHIC

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Client-Server Architectures

Work division: Thin client
Client implements only the
graphical user interface
Server implements business
logic and data management

Work division: Thick client
Client implements both the
graphical user interface and the
business logic
Server implements data
management

GRAPHIC

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Client-Server Architectures (Contd.)

Disadvantages of thick clients
No central place to update the business logic
Security issues: Server needs to trust clients

• Access control and authentication needs to be managed at
the server

• Clients need to leave server database in consistent state
• One possibility: Encapsulate all database access into stored

procedures
Does not scale to more than several 100s of clients

• Large data transfer between server and client
• More than one server creates a problem: x clients, y

servers: x*y connections

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

The Three-Tier Architecture

Database System

Application Server

Client Program (Web Browser)Presentation tier

Middle tier

Data management
tier

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 36

The Three Layers

Presentation tier
Primary interface to the user
Needs to adapt to different display devices (PC, PDA, cell
phone, voice access?)

Middle tier
Implements business logic (implements complex actions,
maintains state between different steps of a workflow)
Accesses different data management systems

Data management tier
One or more standard database management systems

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 37

Example 1: Airline reservations

Build a system for making airline reservations
What is done in the different tiers?
Database System

Airline info, available seats, customer info, etc.
Application Server

Logic to make reservations, cancel reservations,
add new airlines, etc.

Client Program
Log in different users, display forms and human-
readable output

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 38

Example 2: Course Enrollment

Build a system using which students can enroll
in courses
Database System

Student info, course info, instructor info, course
availability, pre-requisites, etc.

Application Server
Logic to add a course, drop a course, create a new
course, etc.

Client Program
Log in different users (students, staff, faculty),
display forms and human-readable output

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 39

Technologies

Database System
(DB2)

Application Server
(Tomcat, Apache)

Client Program
(Web Browser)

HTML
Javascript
XSLT

JSP
Servlets
Cookies
CGI

XML
Stored Procedures

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 40

Advantages of the Three-Tier
Architecture

Heterogeneous systems
Tiers can be independently maintained, modified, and replaced

Thin clients
Only presentation layer at clients (web browsers)

Integrated data access
Several database systems can be handled transparently at the middle
tier
Central management of connections

Scalability
Replication at middle tier permits scalability of business logic

Software development
Code for business logic is centralized
Interaction between tiers through well-defined APIs: Can reuse
standard components at each tier

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 41

Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 42

Overview of the Presentation Tier

Recall: Functionality of the presentation tier
Primary interface to the user
Needs to adapt to different display devices (PC,
PDA, cell phone, voice access?)
Simple functionality, such as field validity checking

We will cover:
HTML Forms: How to pass data to the middle tier
JavaScript: Simple functionality at the presentation
tier
Style sheets: Separating data from formatting

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 43

HTML Forms

Common way to communicate data from client to
middle tier
General format of a form:

<FORM ACTION=“page.jsp” METHOD=“GET”
NAME=“LoginForm”>

…
</FORM>

Components of an HTML FORM tag:
ACTION: Specifies URI that handles the content
METHOD: Specifies HTTP GET or POST method
NAME: Name of the form; can be used in client-side scripts to
refer to the form

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 44

Inside HTML Forms

INPUT tag
Attributes:

• TYPE: text (text input field), password (text input field where
input is, reset (resets all input fields)

• NAME: symbolic name, used to identify field value at the middle
tier

• VALUE: default value
Example: <INPUT TYPE=“text” Name=“title”>

Example form:
<form method="POST" action="TableOfContents.jsp">

<input type="text" name="userid">
<input type="password" name="password">
<input type="submit" value="Login“ name="submit">
<input type=“reset” value=“Clear”>

</form>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 45

Passing Arguments

Two methods: GET and POST
GET

Form contents go into the submitted URI
Structure:
action?name1=value1&name2=value2&name3=value3

• Action: name of the URI specified in the form
• (name,value)-pairs come from INPUT fields in the form; empty

fields have empty values (“name=“)
Example from previous password form:
TableOfContents.jsp?userid=john&password=johnpw
Note that the page named action needs to be a program, script,
or page that will process the user input

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 46

HTTP GET: Encoding Form Fields

Form fields can contain general ASCII
characters that cannot appear in an URI
A special encoding convention converts such
field values into “URI-compatible” characters:

Convert all “special” characters to %xyz, were xyz
is the ASCII code of the character. Special
characters include &, =, +, %, etc.
Convert all spaces to the “+” character
Glue (name,value)-pairs from the form INPUT
tags together with “&” to form the URI

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 47

HTML Forms: A Complete Example
<form method="POST" action="TableOfContents.jsp">

<table align = "center" border="0" width="300">
<tr>

<td>Userid</td>
<td><input type="text" name="userid" size="20"></td>

</tr>
<tr>

<td>Password</td>
<td><input type="password" name="password" size="20"></td>

</tr>
<tr>

<td align = "center"><input type="submit" value="Login“
name="submit"></td>

</tr>
</table>

</form>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 48

JavaScript
Goal: Add functionality to the presentation tier.
Sample applications:

Detect browser type and load browser-specific page
Form validation: Validate form input fields
Browser control: Open new windows, close existing windows
(example: pop-up ads)

Usually embedded directly inside the HTML with the
<SCRIPT> … </SCRIPT> tag.
<SCRIPT> tag has several attributes:

LANGUAGE: specifies language of the script (such as
javascript)
SRC: external file with script code
Example:
<SCRIPT LANGUAGE=“JavaScript” SRC=“validate.js>
</SCRIPT>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 49

JavaScript (Contd.)

If <SCRIPT> tag does not have a SRC attribute, then
the JavaScript is directly in the HTML file.
Example:
<SCRIPT LANGUAGE=“JavaScript”>
<!-- alert(“Welcome to our bookstore”)
//-->
</SCRIPT>
Two different commenting styles

<!-- comment for HTML, since the following JavaScript code
should be ignored by the HTML processor
// comment for JavaScript in order to end the HTML
comment

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 50

JavaScript (Contd.)

JavaScript is a complete scripting language
Variables
Assignments (=, +=, …)
Comparison operators (<,>,…), boolean operators
(&&, ||, !)
Statements

• if (condition) {statements;} else {statements;}
• for loops, do-while loops, and while-loops

Functions with return values
• Create functions using the function keyword
• f(arg1, …, argk) {statements;}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 51

JavaScript: A Complete Example

HTML Form:

<form method="POST“
action="TableOfContents.jsp">
<input type="text"

name="userid">
<input type="password"

name="password">
<input type="submit"

value="Login“
name="submit">

<input type=“reset”
value=“Clear”>

</form>

Associated JavaScript:

<script language="javascript">
function testLoginEmpty()
{
loginForm = document.LoginForm
if ((loginForm.userid.value == "") ||

(loginForm.password.value == ""))
{
alert('Please enter values for userid and
password.');

return false;
}
else return true;

}
</script>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 52

Stylesheets

Idea: Separate display from contents, and adapt
display to different presentation formats
Two aspects:

Document transformations to decide what parts of the
document to display in what order
Document rending to decide how each part of the document is
displayed

Why use stylesheets?
Reuse of the same document for different displays
Tailor display to user’s preferences
Reuse of the same document in different contexts

Two stylesheet languages
Cascading style sheets (CSS): For HTML documents
Extensible stylesheet language (XSL): For XML documents

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 53

CSS: Cascading Style Sheets

Defines how to display HTML documents
Many HTML documents can refer to the same CSS

Can change format of a website by changing a single style sheet
Example:
<LINK REL=“style sheet” TYPE=“text/css” HREF=“books.css”/>

Each line consists of three parts:
selector {property: value}
Selector: Tag whose format is defined
Property: Tag’s attribute whose value is set
Value: value of the attribute

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 54

CSS: Cascading Style Sheets

Example style sheet:

body {background-color: yellow}
h1 {font-size: 36pt}
h3 {color: blue}
p {margin-left: 50px; color: red}

The first line has the same effect as:
<body background-color=“yellow>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 55

XSL

Language for expressing style sheets
More at: http://www.w3.org/Style/XSL/

Three components
XSLT: XSL Transformation language

• Can transform one document to another
• More at http://www.w3.org/TR/xslt

XPath: XML Path Language
• Selects parts of an XML document
• More at http://www.w3.org/TR/xpath

XSL Formatting Objects
• Formats the output of an XSL transformation
• More at http://www.w3.org/TR/xsl/

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 56

Lecture Overview

Internet Concepts
Web data formats

HTML, XML, DTDs
Introduction to three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding;
Javascript; Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages,
passing arguments, maintaining state (cookies)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 57

Overview of the Middle Tier

Recall: Functionality of the middle tier
Encodes business logic
Connects to database system(s)
Accepts form input from the presentation tier
Generates output for the presentation tier

We will cover
CGI: Protocol for passing arguments to programs running at
the middle tier
Application servers: Runtime environment at the middle tier
Servlets: Java programs at the middle tier
JavaServerPages: Java scripts at the middle tier
Maintaining state: How to maintain state at the middle tier.
Main focus: Cookies.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 58

CGI: Common Gateway Interface

Goal: Transmit arguments from HTML forms to
application programs running at the middle tier
Details of the actual CGI protocol unimportant à
libraries implement high-level interfaces

Disadvantages:
The application program is invoked in a new process at every
invocation (remedy: FastCGI)
No resource sharing between application programs (e.g.,
database connections)
Remedy: Application servers

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 59

CGI: Example

HTML form:
<form action=“findbooks.cgi” method=POST>
Type an author name:
<input type=“text” name=“authorName”>
<input type=“submit” value=“Send it”>
<input type=“reset” value=“Clear form”>
</form>

Perl code:
use CGI;
$dataIn=new CGI;
$dataIn->header();
$authorName=$dataIn->param(‘authorName’);
print(“<HTML><TITLE>Argument passing test</TITLE>”);
print(“The author name is “ + $authorName);
print(“</HTML>”);
exit;

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 60

Application Servers

Idea: Avoid the overhead of CGI
Main pool of threads of processes
Manage connections
Enable access to heterogeneous data sources
Other functionality such as APIs for session
management

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 61

Application Server: Process Structure

Process Structure

Web Browser Web Server

Application Server

C++ Application

JavaBeans

DBMS 1

DBMS 2

Pool of Servlets

HTTP

JDBC

ODBC

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 62

Servlets

Java Servlets: Java code that runs on the middle tier
Platform independent
Complete Java API available, including JDBC

Example:
import java.io.*;
import java.servlet.*;
import java.servlet.http.*;

public class ServetTemplate extends HttpServlet {
public void doGet(HTTPServletRequest request,

HTTPServletResponse response)
throws SerletExpection, IOException {

PrintWriter out=response.getWriter();
out.println(“Hello World”);

}
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 63

Servlets (Contd.)

Life of a servlet?
Webserver forwards request to servlet container
Container creates servlet instance (calls init()
method; deallocation time: calls destroy() method)
Container calls service() method

• service() calls doGet() for HTTP GET or doPost() for HTTP
POST

• Usually, don’t override service(), but override doGet() and
doPost()

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 64

Servlets: A Complete Example
public class ReadUserName extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpSevletResponse response)

throws ServletException, IOException {
reponse.setContentType(“text/html”);
PrintWriter out=response.getWriter();
out.println(“<HTML><BODY>\n \n” +

“” + request.getParameter(“userid”) + “\n” +
“” + request.getParameter(“password”) + “\n” +
“\n<BODY></HTML>”);

}
public void doPost(HttpServletRequest request,

HttpSevletResponse response)
throws ServletException, IOException {
doGet(request,response);

}
}

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 65

Java Server Pages

Servlets
Generate HTML by writing it to the “PrintWriter”
object
Code first, webpage second

JavaServerPages
Written in HTML, Servlet-like code embedded in
the HTML
Webpage first, code second
They are usually compiled into a Servlet

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 66

JavaServerPages: Example

<html>
<head><title>Welcome to B&N</title></head>
<body>

<h1>Welcome back!</h1>
<% String name=“NewUser”;

if (request.getParameter(“username”) != null) {
name=request.getParameter(“username”);

}
%>
You are logged on as user <%=name%>
<p>

</body>
</html>

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 67

Maintaining State

HTTP is stateless.
Advantages

Easy to use: don’t need anything
Great for static-information applications
Requires no extra memory space

Disadvantages
No record of previous requests means

• No shopping baskets
• No user logins
• No custom or dynamic content
• Security is more difficult to implement

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 68

Application State

Server-side state
Information is stored in a database, or in the
application layer’s local memory

Client-side state
Information is stored on the client’s computer in the
form of a cookie

Hidden state
Information is hidden within dynamically created
web pages

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 69

Application State

So many kinds of
state…

…how will I choose?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 70

Server-Side State

Many types of Server side state:
1. Store information in a database

Data will be safe in the database
BUT: requires a database access to query or update
the information

2. Use application layer’s local memory
Can map the user’s IP address to some state
BUT: this information is volatile and takes up lots of
server main memory

5 million IPs = 20 MB

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 71

Server-Side State

Should use Server-side state maintenance for
information that needs to persist

Old customer orders
“Click trails” of a user’s movement through a site
Permanent choices a user makes

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 72

Client-side State: Cookies

Storing text on the client which will be passed
to the application with every HTTP request.

Can be disabled by the client.
Are wrongfully perceived as "dangerous", and
therefore will scare away potential site visitors if
asked to enable cookies1

Are a collection of (Name, Value) pairs

1http://www.webdevelopersjournal.com/columns/stateful.html

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 73

Client State: Cookies
Advantages

Easy to use in Java Servlets / JSP
Provide a simple way to persist non-essential data on the client even
when the browser has closed

Disadvantages
Limit of 4 kilobytes of information
Users can (and often will) disable them

Should use cookies to store interactive state
The current user’s login information
The current shopping basket
Any non-permanent choices the user has made

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 74

Creating A Cookie
Cookie myCookie =

new Cookie(“username", “jeffd");
response.addCookie(userCookie);

You can create a cookie at any time

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 75

Accessing A Cookie
Cookie[] cookies = request.getCookies();
String theUser;
for(int i=0; i<cookies.length; i++) {

Cookie cookie = cookies[i];
if(cookie.getName().equals(“username”)) theUser =
cookie.getValue();

}
// at this point theUser == “username”

Cookies need to be accessed BEFORE you set your response header:
response.setContentType("text/html");
PrintWriter out = response.getWriter();

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 76

Cookie Features

Cookies can have
A duration (expire right away or persist even after
the browser has closed)
Filters for which domains/directory paths the
cookie is sent to

See the Java Servlet API and Servlet Tutorials
for more information

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 77

Hidden State

Often users will disable cookies
You can “hide” data in two places:

Hidden fields within a form
Using the path information

Requires no “storage” of information because
the state information is passed inside of each
web page

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 78

Hidden State: Hidden Fields

Declare hidden fields within a form:
<input type=‘hidden’ name=‘user’
value=‘username’/>

Users will not see this information (unless they
view the HTML source)
If used prolifically, it’s a killer for performance
since EVERY page must be contained within a
form.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 79

Hidden State: Path Information

Path information is stored in the URL request:
http://server.com/index.htm?user=jeffd

Can separate ‘fields’ with an & character:
index.htm?user=jeffd&preference=pepsi

There are mechanisms to parse this field in
Java. Check out the javax.servlet.http.HttpUtils

parserQueryString() method.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 80

Multiple state methods

Typically all methods of state maintenance are
used:

User logs in and this information is stored in a
cookie
User issues a query which is stored in the path
information
User places an item in a shopping basket cookie
User purchases items and credit-card information
is stored/retrieved from a database
User leaves a click-stream which is kept in a log
on the web server (which can later be analyzed)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 81

Summary

We covered:
Internet Concepts (URIs, HTTP)
Web data formats

HTML, XML, DTDs
Three-tier architectures
The presentation layer

HTML forms; HTTP Get and POST, URL encoding; Javascript;
Stylesheets. XSLT

The middle tier
CGI, application servers, Servlets, JavaServerPages, passing
arguments, maintaining state (cookies)

