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IV. The (continuous) dual

We call
X∗ := bL(X, F) = {λ ∈ X ′ : λ is bounded}

the continuous dual of the nls X . It is at times useful to know that X∗ can be identified
in a natural way with a closed lss of b(B), the complete metric space of bounded functions
on the unit ball B of X .

(1) Lemma. For any nls X , the restriction map

(2) r : X∗ → b(B) : λ 7→ λ B

is linear, an isometry (i.e., ∀{λ} ‖r(λ)‖ = ‖λ‖), and its range is closed.

Proof: Since λ is bounded, i.e., λ(B) is a bounded subset of F, the restriction λ B

of λ to B is a bounded function. Moreover,

‖λ‖ = sup |λ(B)| = ‖λ B‖∞.

This shows that r is a linear isometry into b(B). To see that its range is closed, let g ∈ b(B)
be the limit of some sequence (λn|B). Then g is necessarily linear on B. This makes it
possible to extend g to a fnl λ on all of X by the recipe

λx := αg(x/α), all α > ‖x‖, all x ∈ X

and to verify that λ ∈ X ′, hence ∈ X∗ since ‖λ‖ = ‖g‖∞. Therefore, g = r(λ), i.e., ran r
is closed.

It follows that ran r is complete (as a closed subset of the complete ms b(B)), and,
since r is an isometry, this implies that X∗ is a Banach space (=: Bs), i.e., a complete

nls.

(3) Proposition. The continuous dual X∗ of any nls X is complete.

A second advantage that X∗ has over X is that its closed unit ball is compact in a
natural topology.

(4) Alaoglu’s theorem. The closed unit ball of X∗ is compact in the topology of point-
wise convergence.

Proof: Let Y := B−
X∗ . Then Y is a subset of ×x∈X{z ∈ F : |z| ≤ ‖x‖}, and the

latter, by (II.41) Tykhonov’s Theorem, is compact in the topology of pointwise conver-
gence. Hence, by (II.25)Lemma, it is sufficient to prove that Y is closed in this topology.

For this, let f be an element in the pointwise closure of Y . Then, for arbitrary α, β ∈ F

and arbitrary x, y ∈ X , and arbitrary ε > 0, there is some λ ∈ Y with |f(s) − λs| < ε for
s ∈ {x, y, αx + βy}. Consequently, |f(x)| < |λx| + ε ≤ ‖x‖ + ε and

|f(αx+βy)−αf(x)−βf(y)| = |(f−λ)(αx+βy)−α(f−λ)(x)−β(f−λ)(y)| < (1+|α|+|β|)ε.

Since ε > 0 is arbitrary, this shows that f ∈ Y .
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(6) Figure. A lfl is constant on hyperplanes parallel to its kernel. The
distance of such a hyperplane from the kernel is proportional
to the lfl’s value on that hyperplane.

** hyperplanes and lfl’s **

The action of a nontrivial (bounded or unbounded) lfl λ on a ls X is easy to visualize:
Each element of X lies in exactly one of the hyperplanes

H(λ, t) := {x ∈ X : λx = t},

and each such hyperplane is a translate of any other such hyperplane, since each is a
translate of ker λ, i.e.,

∀{x ∈ H(λ, t)} H(λ, t) = ker λ + x.

This reflects the fact that H(λ, 0) = kerλ has codimension 1, i.e.,

X = ker λ+̇ ran[y],

for any y 6∈ kerλ; hence the term “hyperplane”. To see this, observe that, for any x ∈ X
and any y 6∈ kerλ, x − (λx/λy)y ∈ ker λ.

** elimination **

This observation is the basic step of the well known numerical linear algebra process
called

(5) Elimination. To convert x into something in ker λ, pick y 6∈ kerλ and compute

z := x − (λx/λy)y ∈ ker λ.
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H.P.(1) Prove that x 7→ (λx/λy)y is a linear projector. What is its range, what are its interpolation
functionals?

** a useful formula **

Elimination provides the following useful formula:

(7) ∀{λ ∈ X ′} ∀{x ∈ X\ kerλ}
d(x, kerλ)

|λx|
=

{

0 (kerλ)− = X ;
1/‖λ‖ otherwise.

Indeed, if there is some y ∈ X\(kerλ)−, then, by elimination, for any x ∈ X , d(x, kerλ) =
d((λx/λy)y, kerλ) = |λx/λy|d(y, kerλ), hence (kerλ)− = B−

0 (ker λ) = ker λ and further,
for any x 6∈ ker λ,

‖λ‖ = sup
y 6∈ker λ

|λy|

‖y‖
=

|λx|

d(x, kerλ)
sup

y 6∈ker λ

d(y, kerλ)

‖y‖
=

|λx|

d(x, kerλ)
,

the last equality by (III.7)Riesz’ Lemma. The fact that d(x, kerλ) = 0 for all x ∈ X iff
ker λ is dense in X , is trivial.

** λ is continuous iff ker λ is closed **

We infer from (7) that λ is bounded in case (ker λ)− 6= X . Put differently, it says that,
for λ ∈ X ′\X∗, (kerλ)− = X , i.e., the kernel of a discontinuous lfl is dense. Since such a
lfl is necessarily nontrivial, it says that kerλ 6= (ker λ)− for a discontinuous lfl. Conversely,
if λ is continuous, then ker λ = λ−1{0} is closed as the pre-image of a closed set under a
continuous map. This proves:

(8) Proposition. Let X be a ls, and λ ∈ X ′. Then: λ is continuous iff ker λ is closed.

(9) Corollary. For λ ∈ X ′, kerλ is either closed or dense (with ker λ both closed and
dense iff λ = 0).

** error estimates **

(7) proves the useful identity

(10) Lemma. ∀{λ ∈ X∗, x ∈ X} |λx| = ‖λ‖d(x, kerλ).

This identity contains all basic Numerical Analysis error estimates, in the following
way.

In applications of (10), λ is an error functional, and kerλ is not completely known.
Rather, one knows some set F contained in kerλ, and so obtains the bound

|λx| ≤ ‖λ‖d(x, F ).

(11) Example. λ :=
∫ b

a
· − h

∑n−1
1 δa+jh − (h/2)(δa + δb) (with h := (b − a)/n) is

the error in the composite trapezoidal rule, and this rule is exact for all linear polynomials.
Further, on C([a . . b]), ‖λ‖ ≤ 2|b − a|. Hence (with d(f, Y ) ≤ ‖f‖ for any lss Y )

|λf | ≤ 2|b − a|d(f, Π1) = O(|b − a|‖f‖∞).

Actually, the composite trapezoidal rule is exact for Π0
1,h := all broken lines on [a . .b] with

breakpoints a + jh, all j, and d(f, Π0
1,h) ≤ 1

8
h2‖D2f‖∞. Hence |λf | ≤ ‖λ‖d(f, Π0

1,h) =

O(|b − a|h2‖D2f‖∞), a much better estimate.
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** existence of ba from a hyperplane **

(12) Corollary. λ ∈ X∗\0 takes on its norm at x iff 0 is a ba to x from ker λ.

Indeed, since ‖λ‖‖x‖ ≥ |λx| = ‖λ‖d(x, kerλ), we have ‖λ‖‖x‖ = |λx| iff ‖x‖ =
d(x, kerλ), and, since 0 ∈ ker λ, this last equality can only hold if 0 is a ba.

Since (III.13)Example provides an example of a bounded lfl that does not take on its
norm, while its kernel is closed by (8)Proposition, this provides the illustration, promised
earlier, of a closed lss that fails to provide ba’s (since, if y is a ba from the lss Y to x, then
0 is a ba from Y to x − y).

H.P.(2) Let x, k ∈ X nls, λ ∈ X∗\0. Prove: |λx−λk| ≤ ‖λ‖‖x−k‖ with equality iff B−
‖x−k‖

(x)∩H(λ, λk) 6=

{} = B‖x−k‖(x) ∩ H(λ, λk). Draw the picture.

One says that λ ∈ X∗\0 and x ∈ X\0 are parallel and writes

λ||x

in case λx = ‖λ‖‖x‖, in analogy to the situation in familiar Euclidean space; see below.
If V = [v1, v2, . . . , vn] is a basis for the (necessarily finite-dimensional) nls X and

Λ = [λ1, λ2, . . . , λn] is its dual basis, i.e., ΛtV = 1, then, for each j, kerλj = ran[vi :
i 6= j]. Assume that V is normalized, meaning that ‖vj‖ = 1 for all j. Since H(λj , 1) =
vj + ker λj , therefore ‖λj‖ = 1 iff min{‖x‖ : x ∈ H(λj, 1)} = 1 iff d(vj , ran[vi : i 6= j]) = 1
iff λj ||vj . Since, for a matrix V , det V is unchanged if we modify vj by any element of
ran[vi : j 6= i], you can deduce from this, with a little bit of effort, the following.

(13) Auerbach’s Theorem. Any finite-dimensional nls has a normalized basis whose
dual basis is also normalized.

H.P.(3) Prove Auerbach’s Theorem. (Hint: Show that it is sufficient to consider the case X = F
n
; choose a

normalized V ∈ F
n×n

for which | det V | is maximal.)

Representation of bounded linear functionals

Practical as well as theoretical work with bounded lfl’s on a specific nls relies heavily
on representation. Typically, with X a nls of functions on some common domain T , one
can often show that, for suitable f , the map

X → IF : x 7→

∫

T

x(t)f(t) dt

is a bounded linear functional on X . In that case, f is called the representer of this lfl.
It is at times possible to represent every λ ∈ X∗ in this way as integration (or summation)
against some function from a certain class. Such a representer is essential for the calculation
of the norm of a linear functional. Such representation permits the translation of abstract
results concerning the existence of some bounded linear functional on X into a concrete
statement about the existence of some function with certain desirable properties. Precisely,
a representation for X∗ is an onto linear isometry (i.e., a linear norm-preserving invertible
map) from some nls Y to X∗. One writes

Y ≃ X∗
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if there is such a map (with the actual map often understood from the context) and calls
the two spaces linearly isometric to each other.

Here are the standard representations for X∗ for standard function spaces X .

(14) Examples. (i) (IFm)∗. In order to be precise about the norm on IFm used,
we use the notation

ℓp(m) := (IFm, ‖ · ‖p).

Recall the 1-1 correspondence between y ∈ IFm and yt ∈ L(IFm, IF) given by the scalar
product:

yt : IFm → IF : x 7→ ytx :=
m
∑

1

y(i)x(i).

By (III.5)Proposition, ℓp(m)∗ = L(IFm, IF). To determine the map norm of yt as an
element of ℓp(m)∗, we use

(15) Hölder’s inequality. If y, x ∈ IFm, 1 ≤ p ≤ ∞, 1/p + 1/p∗ = 1, then |ytx| ≤
‖y‖p∗‖x‖p. Equality: ytx = ‖y‖p∗‖x‖p iff y = 0 or else, for some r ≥ 0,

x(i) =

{

r signum y(i) |y(i)|p
∗/p, if 1 < p < ∞

‖x‖∞ signum y(i) for y(i) 6= 0, if p = ∞, hence p∗ = 1
, all i.

Here, signum α is defined (implicitly) by

α signum α := |α|,

i.e., signum α = α/|α| for α ∈ IF\0 (with a the complex conjugate of the possibly complex
number a). For α = 0, it is customary to define, more precisely, signum α := 0.

Note that, for p = 2, equality in ytx ≤ ‖y‖2‖x‖2 occurs iff y = 0 or x = ry for some
r ≥ 0.

We conclude that ‖yt‖ = sup |ytx|/‖x‖p = ‖y‖p∗ , hence that ℓp(m)∗ ≃ ℓp∗(m), with
p∗ the conjugate of p, i.e., 1/p + 1/p∗ = 1.

(ii) ℓp. The nls

ℓp := ℓp(IN) := {x ∈ IFIN : ‖x‖p :=
(

∑

n

|x(n)|p
)1/p

< ∞}

has ℓp∗ as its continuous dual, as long as 1 ≤ p < ∞. It is again Hölder’s Inequal-
ity that makes it possible to establish this. In particular, for x ∈ ℓp and 1 ≤ p < ∞,
x = limn→∞

∑

j≤n ej x(j), hence, for any λ ∈ ℓ∗p, λx = limn→∞ λ(
∑

j≤n ej x(j)) =
∑

j λ(ej) x(j), therefore ‖(λej)
∞
j=1‖p∗ ≤ ‖λ‖; etc. See H.P.(4) for full details in a related

case.
The continuous dual of

ℓ∞ := ℓ∞(IN) := {x ∈ IFIN : ‖x‖∞ := sup |x(n)| < ∞}

contains ℓ1, but contains other things besides. (Actually, it’s a mess.)
ℓ1 is the continuous dual of some sequence space, viz. the closed subspace

c0 := {x ∈ ℓ∞ : limx(n) = 0}

of ℓ∞ consisting of all null sequences (i.e., sequences converging to 0), as you will show.
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H.P.(4)
(i) Prove that c0 is a closed lss of ℓ∞. (Hint: c0 = ker ν, with ν : ℓ∞ → IR+ : x 7→ lim sup |x(n)|.)

(ii) Let Pn be the truncation projector on IFIN, i.e.,

(Pnx)(i) :=

{

x(i), i ≤ n
0, i > n

.

Prove that, for all x ∈ c0, lim Pnx = x.

(iii) For λ ∈ c∗0 , let yλ : IN → IF : n 7→ λen, with en := (δin : i ∈ N) the nth unit-sequence, all n. Use Pn to
prove that

∀{x ∈ c0} λx =

∞
∑

1

yλ(i)x(i).

(iv) Prove that ‖λ‖ = ‖yλ‖1.
(v) Prove that c∗0 ≃ ℓ1.

H.P.(5) Prove that the closed lss

c := {x ∈ ℓ∞ : lim x(n) exists}

of ℓ∞ of all convergent sequences has on it a continuous linear functional λ that cannot be represented as a

scalar product x 7→
∑

i
yλ(i)x(i) and so conclude that c∗ is larger than ℓ1 in this sense.

(iii) Lp[a . . b]. For 1 ≤ p < ∞, all continuous linear functionals on

X := (C([a . . b]), ‖ · ‖p)

can be represented with the aid of a scalar product, i.e., for all λ ∈ X∗, there exists a
function yλ so that

λx =

∫ b

a

yλ(t)x(t) dt, all x ∈ X.

To make this precise, though, it is not sufficient to use the Riemann integral. For, while
every continuous or even piecewise continuous function y on [a. .b] gives rise to a continuous
lfl yt on X via

ytx :=

∫ b

a

y(t)x(t) dt,

not every λ ∈ X∗ is obtainable this way. It is necessary to admit all functions y ∈ Lp∗ [a. .b],
i.e., all y on [a . . b] for which |y|p

∗

is Lebesgue integrable, i.e., for which

(

‖y‖p∗

)p∗

:=

∫ b

a

|y(t)|p
∗

dt < ∞,

with the integral taken in the Lebesgue sense. The salient facts concerning Lebesgue
integration can be found, e.g., in Groetsch. The notion is built upon the Lebesgue
measure, which is a particular way to assign to certain sets a nonnegative number, their
measure, in an organized way, e.g., so that the measure of a disjoint union of sets is the
sum of their measures, and so that the measure of any interval is its length or diameter,
etc. There is no time to develop this in the present course nor do we really need to if you
are willing to take certain facts on faith. E.g., a set of measure zero is any set that, for
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any ε > 0, can be covered by the union of open intervals whose lengths sum to no more
than ε. The relationship to Riemann integration is as follows. In Riemann integration,
we deal with partitions ∆ of [a . .b] into finitely many intervals I. With each such partition
∆, we associate the set

v∆ :=
∑

I∈∆

f(I) meas(I)

where meas(I) is the measure of the interval I, i.e., its length. If ∆′ is also a partition of
[a. .b], then one says that ∆′ refines ∆ and writes ∆′ ≫ ∆ in case ∀{I ∈ ∆} ∃{I1, . . . , Ir ∈
∆′} I = I1 ∪ . . . ∪ Ir. Correspondingly, v≫∆ := ∪∆′≫∆v∆′ . With this, one defines

v =

∫ b

a

f(t) dt :⇐⇒
(

v≫∆

)

≻ B(v),

i.e., ∀{ε > 0} ∃{∆} ∀{∆′ ≫ ∆} ∀{w ∈ v∆′} |w− v| < ε. In Lebesgue integration, more
general partitions are allowed, hence a function is more likely to be Lebesgue integrable
than Riemann integrable. Now a partition can consist of any kind of measurable sets, not
just intervals, but the definition of integral stays otherwise the same.

(16) Hölder’s inequality. If y ∈ Lp∗[a . . b] and x ∈ Lp[a . . b] with 1/p + 1/p∗ = 1, then
the product yx : t 7→ y(t)x(t) is Lebesgue integrable and

|ytx| = |

∫ b

a

y(t)x(t) dt| ≤ ‖y‖p∗‖x‖p.

Equality: ytx = ‖y‖p∗‖x‖p iff y = 0 or else, for some r ≥ 0,

x(t) =

{

r signum y(t) |y(t)|p
∗/p, if 1 < p < ∞

‖x‖∞ signum y(t), if y(t) 6= 0, p = ∞
a.e.

Here, a.e. := almost everywhere is meant to indicate that the asserted relation
is to hold for all t ∈ [a . . b] excepting a set of measure zero. This exception will appear
always since changing a function y on a set of measure zero will not change yt, i.e., will
not change its action as a linear functional on C([a . . b]). In particular, it will not change
its norm ‖y‖p∗ . For this reason, Lp∗ [a . . b] consists, strictly speaking, not of functions, but
of equivalence classes of functions, with x and y belonging to the same equivalence class iff
x = y a.e. Hölder’s inequality allows us to talk about the continuous dual of Lp[a . . b] as
well. If p < ∞, then this turns out to be representable via the scalar product by Lp∗ [a . .b],
with 1/p∗ + 1/p = 1. For p = ∞, though, the continuous dual is much messier.

(iv) The previous example can be further generalized. Instead of an interval, one
might take some suitable subset of R

m. Further, measures other than the Lebesgue measure
could be used (e.g., a weighted Lebesgue integral or a discrete measure). Finally, instead
of scalar-valued functions, one may consider functions into some fixed nls Y , with the
norm in Y playing the role played by the absolute value in F. For example, the obvious
consequence

‖
∑

y∈M

yw(y)‖ ≤
∑

y∈M

w(y)‖y‖
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of the triangle inequality in Y to finite linear combinations with nonnegative weights has
the following obvious continuous analog, called Minkowski’s inequality for integrals,

‖

∫ b

a

w(t)y(t) dt‖ ≤

∫ b

a

w(t)‖y(t)‖ dt,

in which y : [a . . b] → Y and w is nonnegative.

(v) C([a . . b]). The Riesz Representation Theorem asserts that the continuous
dual of X := C([a . . b]) (with the max-norm) can be represented by the space NBV [a . . b]
of functions of Normalized Bounded Variation. This means that, for λ ∈ X∗, there exists
exactly one yλ ∈ NBV [a . . b] so that

λx =

∫ b

a

x(t) dyλ(t), all x ∈ C([a . . b]),

with the integral taken in the Riemann-Stieltjes sense (which means that
∫ b

a
x(t) dy(t) is

the limit of sums
∑

I∈∆ x(I) measy(I), with ∆ an arbitrary finite partition of [a . . b] into
intervals I =: [I− . . I+], and measy(I) := y(I+) − y(I−)).

For example, the lfl δv of point evaluation at v > a is represented by the Heaviside
function

(· − v)0+ = χ
[v..b]

: t 7→

{

1, t ≥ v
0, t < v

,

with

(t)+ := max{0, t}

the truncation function. (What is δa represented by?)
To recall, the (total) variation of y : [a . . b] → R is, by definition, the (extended) real

number

var y := sup
a≤t1<···<tr≤b

∑

j

|y(tj+1) − y(tj)|,

and y is said to be of bounded variation if this number is finite. For any function y on
[a . . b] of bounded variation and any g ∈ X = C([a . . b]), and any interval partition ∆,
|
∑

I∈∆ x(I) measy(I)| ≤ ‖x‖∞ var y, while, for any refinement ∆′ of ∆,

|
∑

I∈∆

x(I) measy(I) −
∑

J∈∆′

x(J) measy(J)| ≤ ω(x, |∆|) vary,

with |∆| := maxI∈∆ |I+ − I−|. Hence

λy : X → F : x 7→

∫ b

a

x(t) dy(t)

is well-defined, linear, and bounded, with ‖λy‖ ≤ var y.
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Conversely, let λ ∈ X∗. By the Hahn-Banach Theorem (27) later in this chapter,
there exists a norm-preserving extension of λ to X1 := b([a . . b]); let µ be any such and
define

y := yλ : [a . . b] → F : s 7→ µ χ
[a..s]

.

Then, var y ≤ ‖λ‖ since, for any interval partition ∆ of [a . . b], and with εI(y(I+) −
y(I−)) := |y(I+) − y(I−)| for I ∈ ∆,

∑

I∈∆

|y(I+) − y(I−)| =
∑

I∈∆

εI(y(I+) − y(I−)) = µ

(

∑

I∈∆

εIχ(I−..I+]

)

≤ ‖µ‖ = ‖λ‖.

Further, for any x ∈ X , the piecewise constant function

I∆x :=
∑

I∈∆

x(I−)(χ
[a..I+]

− χ
[a..I−]

)

converges uniformly to x as |∆| → 0 while

µI∆x =
∑

I∈∆

x(I−)(y(I+) − y(I−))

converges to
∫ b

a
x(t) dy(t) by the latter’s definition. Hence, by the continuity of µ, the

integral must equal µx = λx. This implies that λy = λ, hence, in particular, ‖λ‖ ≤ var y,
therefore, altogether, var yλ = ‖λ‖.

We now know that the map y 7→ λy ∈ X∗ is norm-reducing and onto, but there is no
claim that it is 1-1. For that, one selects, from the many y that represent λ, a particular
one, called normalized, namely the one that vanishes at a and is continuous from the right
at every t > a.

The collection of all such normalized functions of bounded variation is denoted by
NBV [a . . b], for Normalized Bounded Variation. It is not hard to see that

NBV [a . . b] = NM [a . . b] − NM [a . . b],

with NM [a. .b] the collection of all f : [a. .b] → R with (i) f(a) = 0, (ii) f right-continuous
on (a . . b], (iii) f(b) < ∞, and (iv) s < t =⇒ f(s) ≤ f(t).

H.P.(6) Prove: Let f and g be functions defined on the interval [a . . b]. If
∫

b

a
f(s) dg(s) is defined, then

so is
∫

b

a
g(s) df(s), and their sum equals fg|ba := (fg)(b) − (fg)(a).

H.P.(7) Prove that, on bC(T ) (with the max-norm and with T ms) and for any finite U ⊆ T and any

a ∈ IFU , the lfl
∑

u∈U
a(u)δu has norm equal to ‖a‖1. (You may wish to prove first that ∀{s > 0, p ∈ T}

the function T → IR : t 7→ (1 − d(t, p)/s)+ is continuous.) Does this still hold when #U 6< ∞ (but still

‖a‖1 :=
∑

u∈U
|a(u)| < ∞ )?
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(Λt)−1{a}

r

ker µ

(17) Figure. The hypercircle

Application: Interpolation error and optimal recovery

We are now in a position to take up again the problem (introduced in (I.36)Problem) of
estimating µg for given µ ∈ X ′ from the information that Λtg = a for some Λ ∈ L(Rm, X ′).
We found then that we could either give µg exactly (in case µ = ctΛt, i.e., µ ∈ ran Λ), or
else we could say nothing.

We now consider the same problem with the additional information that

µ ∈ X∗, Λ ∈ bL(Rm, X∗), ‖g‖ ≤ r.

Throughout the discussion, we will assume that (Λt)−1{a} 6= {}, i.e., there actually
is some g ∈ X with Λtg = a. This will be so regardless of what a might be in case
Λt is onto, i.e., in case Λ is 1-1 (cf. (I.33)Proposition). With this assumption, the set
µ(B−

r ∩ (Λt)−1{a}) of all possible values for µg is a bounded interval, and is contained in
the intersection ∩ε>0µ(Br+ε ∩ (Λt)−1{a}) which, as we will see, is the Golomb-Weinberger
interval for µg; see (22).

** model example **

Throughout the discussion, you might hang on to the following example:

X = C(1)[0 . . 1] with the norm

‖x‖ := max{|x(0)|, ‖Dx‖∞},

Λtg := g U with #U = m, µg :=
∫ 1

0
g(t) dt.

** interpolation **

Also recall from Chapter I that the standard approach to estimating µg is by way of
a rule, i.e., to approximate µg by µPg, with P the lprojector given by some F and L. If
Λ is a basis for L, and V is the corresponding dual basis for F , then P = V Λt =

∑

i[vi]λi,
hence

µP = µV Λt =
∑

i

(µvi)λi.
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** model example (cont.) **

If X = C(1)[0 . . 1], µ :=
∫ 1

0
·, and Λtg := g U with #U = m, and F = Π<m, then

ℓu : t 7→
∏

u′ 6=u(t − u′)/(u − u′), u ∈ U , is the sequence in F dual to (δu : u ∈ U), and the
resulting quadrature rule for the nodes U is

∫ 1

0

g(t) dt ∼
∑

wug(u),

with the weights

wu = µℓu =

∫ 1

0

ℓu(t) dt, u ∈ U.

** Lebesgue inequality **

Since P is a linear projector, we have

∀{λ ∈ L} λ(1 − P ) = 0 and ∀{f ∈ F} (1 − P )f = 0,

therefore

∀{λ ∈ L, f ∈ F} µg − µPg = µ(1 − P )g = (µ − λ)(1 − P )(g − f).

By minimizing over all λ ∈ L and f ∈ F , this gives the

(18) Lebesgue inequality. |µg − µPg| ≤ d(µ, L)‖1− P‖d(g, F ).

Precise estimates for d(g, F ) and/or d(µ, L) can be obtained in specific instances
through the use of Approximation Theory. A formula for ‖P‖ is given in (38). For the
time being, I merely settle when P ∈ bL(X), i.e., when ‖P‖ < ∞:

(19) Proposition. P ∈ bL(X) ⇐⇒ L ⊆ X∗.

Proof: P ∈ bL(X) =⇒ Λt = ΛtV Λt = Λt
F P is bounded, since dim F < ∞.

Conversely, if L ⊆ X∗, then Λt is bounded, while V is always bounded, hence so is
P = V Λt.

** segue into optimal recovery **

If we only know that ‖g‖ ≤ r, then the best estimate for d(g, F ) we can give is r,
because of (III.7)Riesz’ Lemma. Further, µPg is entirely computable from Λtg. Hence,
from Lebesgue’s Inequality, this gives the computable interval

µPg ± d(µ, L)‖1− P‖r

within which µg must lie.
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** best rule in the sense of Sard **

Sard pointed out that we can compute the (usually) better interval

Ω

λg ± d(µ, L)r

by the simple device of determining the ba
Ω

λ to µ from L = ran Λ. For, since we know the
vector a := Λtg, we can calculate (Λc)g = ctΛtg for any c ∈ R

m. With this, we get the
computable estimate

(20) ∀{c ∈ IRm} |µg − (Λc)g| ≤ ‖µ − Λc‖r.

In particular, we can choose for λ := Λc a best approximation from L to µ, i.e.

Ω

λ ∈ L s.t. ‖µ −
Ω

λ‖ = d(µ, L).

Such a
Ω

λ (read ‘lambda crown(ed)’) is called a best rule (for µ from L) in the sense of
Sard, and the resulting bound

(21)
Ω

λg − d(µ, L)r ≤ µg ≤
Ω

λg + d(µ, L)r

is called the Sard interval for µg (based on the information Λtg = a and ‖g‖ ≤ r).

** GW-interval **

Often, though, we can do even better than that by milking (20) for all the information
it contains. From (20), we deduce that

−‖µ − λ‖r ≤ µg − λg ≤ ‖µ − λ‖r, all λ ∈ L,

therefore

(22) − inf
λ∈L

(λg + ‖µ + λ‖r) = sup
λ∈L

(λg − ‖µ − λ‖r) ≤ µg ≤ inf
λ∈L

(λg + ‖µ − λ‖r).

We call this the Golomb-Weinberger interval for µg. This interval is nonempty when
the given information is consistent, i.e., when

(23) {g ∈ X : Λtg = a, ‖g‖ ≤ r} 6= {},

but the converse need not hold. In fact, the GW-interval is continuous and monotone in
r (as well as in ‖ · ‖) as well as closed, hence, for given r = r0, is equal to the intersection
of all intervals for r > r0. Since (23) is satisfied for any r greater than ra := inf{‖g‖ : g ∈
X, Λtg = a}, it follows that the GW-interval is not empty for r = ra, even though (23)
might be violated in that case.
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H.P.(8) Locate ra in (17)Figure. Give an example, in a complete nls, for which ra = r but (23) does not
hold.

As we will see later (see the discussion preceding (40)Proposition), the GW-interval
provides the best possible information about µg given that we know only that Λtg = a and
that ‖g‖ ≤ r. The interval end points are computable (in principle) since they are given
as the inf (sup) of a convex (concave) function on a finite-dimensional linear space. In
particular, these are minima (maxima). For this computation, it is necessary to evaluate
the norm ‖ν‖ of ν := µ − λ, and that is usually not possible unless one knows how to
represent the action of ν in terms of some scalar product.

** a sharp estimate for
∫

g **

(24) Example. Bound µg :=
∫ 1

0
g(t) dt, given that g(0) = 0, g(1) = 1, and

‖Dg‖∞ ≤ 2 (e.g., g = ()2).
Choose X = C(1)[0 . . 1], with ‖x‖ := max{|x(0)|, ‖Dx‖∞}. Then ‖g‖ ≤ r with r = 2.

Also, Λtg = (g(0), g(1)).
To obtain a formula for ‖ν‖ = ‖µ − λ‖, use the Fundamental Theorem of Calculus

x(t) = x(0) +

∫ t

0

(Dx)(s) ds = x(0) +

∫ 1

0

(t − s)0+Dx(s) ds

to write νx in terms of x(0) and Dx, i.e., as

νx = ax(0) +

∫ 1

0

b(s)Dx(s) ds

for some coefficient a and some function b. Then

‖ν‖ = sup
ax(0) +

∫

bDx

max{|x(0)|, ‖Dx‖∞}
= |a| + ‖b‖1 = |a| +

∫ 1

0

|b(s)| ds

with equality achieved by x := signum(a) +
∫ ·

0
signum b. This function is not in X in case

b changes sign since then x has only a piecewise continuous first derivative, but there are
y ∈ X close to this x in the sense that ‖y‖ ∼ ‖x‖ and νy ∼ νx. I could have avoided this
point by including in X all functions with piecewise continuous first derivative.

For our particular situation, we compute

µx = x(0) +

∫ 1

0

∫ 1

0

(t − s)0+Dx(s) ds dt = x(0) +

∫ 1

0

(1 − s)Dx(s) ds

δ0x = x(0), δ1x = x(0) +

∫ 1

0

Dx(t) dt.

So, ν := µ − Λc =: µ − αδ0 − βδ1 has the representation

νx = (1 − α − β)x(0) +

∫ 1

0

{(1 − s) − β}Dx(s) ds.
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β

1

0
1

(25) Figure. ‖1− β − ·‖1 equals the shaded (unsigned) area; it is at a mini-
mum when β = 1/2.

Therefore
‖ν‖ = ‖µ − αδ0 − βδ1‖ = |1 − α − β| + ‖1 − β − ·‖1.

(i) Find
Ω

λ, i.e., minimize ‖ν‖ = ‖µ−αδ0 − βδ1‖ over α, β. Whatever β might be, the
choice α = 1−β can only make ‖ν‖ smaller; so we choose α that way. This leaves the task
of minimizing

‖1 − β − ·‖1 =







(1 − 2β)/2, β ≤ 0
(β2 + (1 − β)2)/2, 0 ≤ β ≤ 1
(2β − 1)/2, 1 ≤ β

.

This is uniquely minimized when β = 1/2, hence ‖µ−
Ω

λ‖ = 1/4 and
Ω

λ = (δ0 + δ1)/2,

the trapezoidal rule. Thus
Ω

λg = 1/2 and |µg− 1/2| ≤ 2(1/4) = 1/2, i.e., the Sard estimate
is

µg ∈ [0 . . 1].

(ii) Find the GW-interval. This requires the computation

sup

inf

(

λg
−

+
r‖µ − αδ0 − βδ1‖

)

=
sup

inf

(

β
−

+
2‖1 − β − ·‖1

)

=
1/8 (at β = 3/4)

7/8 (at β = 1/4)
,

in which, once again, the best choice of α makes the term involving it disappear, while the
extremization of β 7→ β∓2‖1−β−·‖ = β∓ (β2 +(1−β)2) on [0 . .1] leads to the equation
1 ∓ 2(β − (1 − β)) = 0, or β = 1

2 ± 1
4 . This gives the better estimate

µg ∈ [1/8 . . 7/8].

In this simple example, we can obtain the closure of the interval of all possible values
for µg immediately as follows. Since ‖Dg‖∞ ≤ 2, and g(0) = 0, g(1) = 1, the function g
must lie inside the cones with vertex (t, g(t)), t = 0, 1, and sides having slopes ±2. The
pointwise smallest function in the resulting parallelogram is made up of its two lower sides,
the pointwise biggest of its two upper sides, and these give the extreme values 1/8 and 7/8
for µg.

Note that r < 1 would have been inconsistent with Λtg = (0, 1), i.e., there would have
been no solution, while, for r = 1, the GW-interval would be {1/2}.
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1

1

(26) Figure. All functions f that agree with ()2 at 0 and 1 and also have
‖Df‖∞ ≤ 2 must lie in the shaded area.

H.P.(9) Consider the example with the additional information that, also, g(1/2) = 1/4. (Note: This still
fits the function ()2.)

(i) Determine again the GW-interval. (Feel free to use the abovementioned shortcut.)
(ii) Determine Sard’s best rule and the resulting interval for µg.

H.P.(10) Find the best estimate for f(b), given that f(a) = c,
∫

b

a
f(t) dt = d, and f is Lipschitz-continuous

with Lipschitz constant κ ≤ r. Actually, that is a bit messy, so, find the best rule in the sense of Sard and find
a formula for the smallest possible value of r in terms of a, b, c, d. (If you feel more comfortable with numbers,
you may choose (a, b, c, d, r) = (3, 4, 1, 0, 2).)

Hahn-Banach

The optimal recovery discussion contains the essential step in the classical proof of
the

(27) Hahn-Banach Theorem. Any f ∈ Y ∗ for a lss Y of the nls X has a norm-
preserving extension g ∈ X∗, i.e., there exists g ∈ X∗ such that ‖g‖ ≤ ‖f‖ and g Y = f .

For, the extension is made up one dimension step at a time. This means that we try
to extend f to the lss Y1 := ran[z] + Y for any particular z 6∈ Y . Call the extension g.
Then

g : Y1 → IR : αz + y 7→ αζ + fy

with the scalar ζ = gz to be chosen so that ‖g‖ ≤ ‖f‖. You see the parallel? We know g
on Y and wonder what gz could be, given that we know that ‖g‖ ≤ ‖f‖. Therefore, the
possible range of values ζ is given by the GW-interval

(28) sup
y∈Y

fy − ‖f‖ ‖z − y‖ ≤ ζ ≤ inf
y∈Y

fy + ‖f‖ ‖z − y‖.

To verify this directly, recall that (28) is equivalent to

|ζ − fy| ≤ ‖f‖ ‖z − y‖, all y ∈ Y,

hence to
|αζ − fy| ≤ ‖f‖ ‖αz − y‖, all α ∈ R\0, y ∈ αY = Y,
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therefore to
|gy| ≤ ‖f‖ ‖y‖, all y ∈ Y1,

i.e., to ‖g‖ ≤ ‖f‖. It remains to show that the GW-interval (28) is not empty. With g = f
on Y , this follows from the fact that

∀{y, y′ ∈ Y } fy − ‖f‖ ‖z − y‖ ≤ fy′ + ‖f‖ ‖z − y′‖,

i.e.,
f(y − y′) ≤ ‖f‖

(

‖z − y‖ + ‖z − y′‖
)

.

This inequality is obvious once one sees that

f(y − y′) ≤ ‖f‖ ‖y − y′‖ = ‖f‖ ‖y − z + z − y′‖ ≤ ‖f‖
(

‖y − z‖ + ‖y′ − z‖
)

.

This proves that f ∈ Y ∗ can always be extended in a norm-preserving way to Y1 =
ran[z]+Y , whatever z might be. Repetition of the argument will therefore prove existence
of such a norm-preserving extension, one dimension at a time, on ever larger superspaces Yn

of Y . If the codimension of Y in X is finite, this will finish the argument. If it is countable
(as it would be if X is separable), then complete induction will finish the argument. In
the general case, transfinite induction is needed, i.e., Zorn’s Lemma, or Hausdorff’s
Maximality Theorem. The latter asserts that any partially ordered set contains a maximal
totally ordered subset. In our context, the partially ordered set in question is the collection
G of all pairs (g, Yg), with g ∈ (Yg)

∗ and ‖g‖ ≤ ‖f‖ and g Y = f ; in particular, Y ⊂ Yg.
The partial ordering is provided by

(g, Yg) < (h, Yh) := Yg ⊆ Yh and h Yg
= g.

With Hausdorff’s Maximality Theorem as our support, let H be a maximal totally ordered
subset of G. Define Z :=

⋃

H Yh. Then Z is a lss. Further, the definition

g : Z → IR : x 7→ hx if x ∈ Yh

is consistent since hx = h′x whenever x also lies in Yh′ . It gives a norm-preserving extension
g of f . If now Z 6= X , then the earlier argument would allow construction of a proper
norm-preserving extension of g to a yet larger lss Z1 = ran[z] + Z of X , and this would
contradict the maximality of H.

** general HB **

In the full generality, the Hahn-Banach Theorem is not constructive. I will give later
(see (VI.18)) an instance of practical importance that indicates how one might construct
such a norm-preserving extension. For that, I need to discuss convexity. In that connection
I need the HB theorem in terms of a generalization of norm, i.e., in terms of a sublinear
functional.

Definition. X ls. p : X → IR is sublinear :=

∀{x ∈ X, α > 0} p(αx) = αp(x) (positive homogeneous)
∀{x, y ∈ X} p(x + y) ≤ p(x) + p(y) (subadditive)

For f, g ∈ IRX , we say that f is bounded by g (in symbols: f ≤ g), in case
∀{x ∈ X} f(x) ≤ g(x).
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H.P.(11) Adapt the above proof to show the following

(29) General Hahn-Banach Theorem. Let p be a sublinear fl on the ls X , Y a lss.
Then

f ∈ Y ′, f ≤ p =⇒ ∃{g ∈ X ′} g Y = f and g ≤ p.

H.P.(12) Let q be a superlinear functional on the nls X, i.e., q is positive homogeneous and superadditive
(meaning that ∀{x, y ∈ X} q(x + y) ≥ q(x) + q(y) ).

(i) Prove that p : x 7→ inf{‖x + y‖ − q(y) : y ∈ X} is a sublinear functional, provided that q ≤ ‖ · ‖.
(ii) Where in the proof is the condition q ≤ ‖ · ‖ used?
(iii) Prove that, for any sublinear fl p, p(0) = 0 and −p(−x) ≤ p(x).

** some uses of HB **

If Y is a lss of the nls X , then the HB theorem ensures that the map X∗ → Y ∗ : λ 7→
λ Y is always onto. However, this map is 1-1 iff Y − = X . Hence, if Y − 6= X , then Y ∗ and
X∗ are not obviously comparable.

The HB theorem ensures the existence of lfl’s satisfying certain linear conditions (as
given by the lss Y ) and a certain consistent bound. Thus, in conjunction with represen-
tation theorems for X∗, it provides existence of solutions to certain (usually variational)
problems, as illustrated in the H.P.(20). More explicitly, it says that there is λ ∈ X∗

satisfying λ Y = λ0 and ‖λ‖ ≤ r iff ‖λ0‖ ≤ r. Here is a very simple example.

(30) Corollary. For all x in the nls X , ‖x‖ = maxλ∈X∗ |λx|/‖λ‖.

Proof: Since |λx| ≤ ‖λ‖‖x‖, we have supλ∈X∗ |λx|/‖λ‖ ≤ ‖x‖, and there is triv-
ially equality here for every λ in case x = 0. So assume x 6= 0, and define Y := ran[x], and
f : Y → IR : αx 7→ α‖x‖. Then f ∈ Y ′ = Y ∗, and fx = ‖x‖, and 1 = ‖f‖. By HB, we can
find g ∈ X∗ s.t. ‖g‖ = 1 and g Y = f . Then gx = ‖x‖ = ‖g‖ ‖x‖, i.e., g||x. Therefore,
supλ |λx|/‖λ‖ ≥ |gx|/‖g‖ = ‖x‖.

The corollary implies that the canonical embedding

J : X → X∗∗ : x 7→ (λ 7→ λx)

is an isometry, and each Jx takes on its norm. X is called reflexive in case J is onto.
This is the case for any finite-dimensional X and also for Lp for 1 < p < ∞, but not for
p = 1 or p = ∞. The space c0 is not reflexive, and neither is C([a . . b]). Note that, by
(3)Proposition, a reflexive space is necessarily complete.

It follows that, if X is reflexive, then every λ ∈ X∗∗ takes on its norm. But, since
then also X∗ is reflexive, we have

(31) Corollary. If the nls X is reflexive, then every λ ∈ X∗ takes on its norm.

The converse also holds, but is much harder to prove.

** the dual of a lm **

The (continuous) dual of A ∈ bL(X, Y ) is the lm

A∗ : Y ∗ → X∗ : λ 7→ λA.

It is also bounded, in fact has the same norm as A:

the dual of a lm c©2002 Carl de Boor



80 IV. The (continuous) dual

(32) Corollary. ‖A∗‖ = ‖A‖.

Proof: ‖A∗‖ = supλ∈Y ∗
‖λA‖
‖λ‖ = supx∈X,λ∈Y ∗

|λAx|
‖λ‖‖x‖ = supx∈X

‖Ax‖
‖x‖ = ‖A‖.

Application: A sharp lower bound for d(x, Y )

In Approximation Theory and, more generally, in Optimization, linear functionals
are used to characterize ba’s, or minima of other functionals. These characterizations are
based on the fact that there is a dual problem whose solution the minimum of the original
problem serves, in turn, to characterize. Here is the simplest example (a dual version is
given in (39)Corollary), the socalled

(33) Duality (in Approximation Theory). For any lss Y of the nls X and any x ∈ X ,

d(x, Y ) = max
0 6=λ⊥Y

|λx|/‖λ‖.

Proof: ∀{0 6= λ ⊥ Y } Y ⊆ ker λ, so d(x, Y ) ≥ d(x, kerλ) = |λx|/‖λ‖, by
(10)Lemma. So, d(x, Y ) ≥ supλ⊥Y |λx|/‖λ‖. Hence, if d(x, Y ) = 0, then equality holds
trivially.

In the contrary case, set Y1 := ran[x] + Y , λ0 : Y1 → IR : αx + y 7→ αd(x, Y ). Then
‖λ0‖ = supα,y |αd(x, Y )|/‖αx + y‖ = supy d(x, Y )/‖x − y‖ = 1. By HB, can extend λ0 to
λ ∈ X∗ with ‖λ‖ = ‖λ0‖ = 1, thus λx/‖λ‖ = λx = λ0x = d(x, Y ) and λ⊥Y , showing that
the sup is taken on and equals d(x, Y ).

H.P.(13) Show that, with x ∈ X := C([a . . b]) and t0, . . . , tn arbitrary distinct points in [a . . b], d(x, Π<n) ≥

|δt0,...,tnx|/
∑

i

∏

j 6=i
|ti − tj |

−1. (See (I.48) for the definition of the divided difference δt0,...,tn .)

For Y ⊆ X and M ⊆ X∗, I use the abbreviations

Y ⊥ := (⊥Y ) ∩ X∗, M⊥ := M⊥.

In these terms, (33) says that d(x, Y ) is the norm of x as a linear functional on Y ⊥, i.e.,
d(x, Y ) = ‖(Jx) Y ⊥‖; see also (39)Corollary.

(34) Corollary. Let Y be a lss of the nls X , and x ∈ X . Then, x ∈ Y − ⇐⇒ ∀{λ ⊥
Y } λx = 0; i.e.

(35) Y − =
⋂

λ⊥Y

ker λ =
(

Y ⊥)⊥.

In particular, we get the
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(36) Corollary. The lss Y of the nls X is dense in X ⇐⇒ Y ⊥ = {0}.

H.P.(14)

(i) Give an example of a complete nls X and a lss L of X∗ for which L− 6= (L⊥)⊥. (Hint: X = C([0 . . 1]),
L = ran[δt : t > 0], and cf. H.P.(7).)

(ii) Show that (39)Corollary need not hold for an arbitrary lss L of X∗.

H.P.(15) Let A ∈ bL(X, Y ). Prove:
(i) ker A = (ran A∗)⊥, but ran A ⊆ (ker A∗)⊥ with equality iff ran A is closed.

(ii) ker A∗ = (ran A)⊥, but ran A∗ ⊆ (ker A)⊥ with equality only if ran A∗ is closed.

H.P.(16) Give an example of Bs’s X, Y and A ∈ bL(X, Y ) for which (ker A)⊥\(ran A∗)− 6= {}. (Hint:

Consider A : c[0 . . 1] → ℓ1 : f 7→ (f(x(n))/n2 : n ∈ N) with (x(n) : n ∈ N) an enumeration of the rationals in
(0 . . 1].)

Remark. See (VI.29) for a proof that ranA∗ = (ker A)⊥ in case ranA∗ is closed.

H.P.(17) Let X be a nls of sequences containing ran[e1, e2, . . .]. (a) Prove: If the action of the continuous
dual of X can be represented as scalar product with certain sequences, then ran[e1, e2, . . .] is dense. (b)
Prove that the converse holds in case the norm on X is monotone in the sense that |x| ≤ |y| implies ‖x‖ ≤ ‖y‖.

** bounded linear projectors and their norm **

(37) Corollary (to HB). Every finite-dimensional lss Y of a real nls X is the range of
some bounded linear projector.

Proof: If dim Y = n, then there exists V ∈ L(Rn, Y ) invertible, hence V −1 ∈
L(Y, Rn) = bL(Y, Rn), i.e., V −1 =: [µ1, . . . , µn]t for some (µj) in Y ′ = Y ∗ (these are the
coordinate fl’s for the basis V ; cf. Chapter I). By HB, we can extend µi to some λi ∈ X∗.
Then Λt = [λ1, . . . , λn]t ∈ bL(X, Rn) and ΛtV = 1, hence P := V Λt is a bounded lprojector
with ranP = ranV = Y .

H.P.(18) Prove: Every n-dimensional lss of an nls X is the range of a lprojector with norm ≤ n. (Hint:
(13)Auerbach’s Theorem)

Here is a formula for the norm of a linear projector.

(38) Proposition. If P is the lprojector given by F and L, with F a finite-dimensional
lss of the nls X and L a lss of X∗, then

‖P‖ = max
f∈F

min
λ∈L

‖f‖‖λ‖

|λf |
.

Proof: By H.P.(III.17),

‖P‖ = sup
x6∈ker P

‖Px‖/d(x, kerP ).

By duality, d(x, kerP ) = maxλ⊥ker P
|λx|
‖λ‖ , while λ ⊥ ker P iff ker λ ⊇ L⊥ iff λ ∈ L, the last

by (I.32)Lemma. Thus

‖P‖ = sup
x

min
λ∈L

‖Px‖‖λ‖

|λx|
.

But, for λ ∈ L, λx = λPx, i.e., it is sufficient to take the sup over x ∈ ranP = F .
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H.P.(19) Let P be a lprojector in some nls X, let V ∈ bL(ℓ∞(n), ran P ) be a basis for its range, and let
Λ ∈ bL(ℓ1(n), ran P ′ ⊂ X∗) be a basis for the space ran P ′ of its interpolation functionals. Prove that ‖P‖ is in

the interval ‖(ΛtV )−1‖∞[1/(‖V −1‖‖Λ−1‖) . . ‖V ‖‖Λ‖).

Remark. If X = C(T ), then, for any A ∈ L(X), ‖A‖ = ‖ℓA‖∞, with ℓA : t 7→ ‖δtA‖.
This is often a better starting point for computing the norm of a lprojector on C(T ) than
is (38)Proposition.

** norm of a lfl on a lss **

The HB Theorem ensures that, for any lss Y of the nls X and any ν ∈ Y ∗,

‖ν‖ = min{‖λ‖ : λ ∈ X∗, λ Y = ν}.

This is often the only way to compute ‖ν‖, provided a ready representation for X∗ makes
it easy to compute ‖λ‖ for λ ∈ X∗.

(39) Corollary (to HB). If X is a nls, ν ∈ X∗, and L a finite-dimensional lss of X∗,
then ‖ν ker L‖ = d(ν, L).

Proof: Set Y := ker L = L⊥. By HB, ‖ν Y ‖ = min{‖λ‖ : λ ∈ X∗, λ Y = ν Y },
while λ Y = ν Y iff λ − ν ∈ Y ⊥ = (L⊥)⊥ = L, the last equality by (I.32)Lemma since
dim L < ∞.

H.P.(20) Use (39) to determine the maximum of
∫

1

0
xf(x) dx over all measurable f with

∫

1

0
f(x) dx = 0

and
∫

1

0
|f(x)|2 dx = 1.

** GW-interval is sharp **

We now return to the Optimal Recovery problem of providing all the information we
can about µg, given that µ ∈ X∗, ‖g‖ ≤ r, and Λtg = a for some 1-1 Λ ∈ L(Rm, X∗) and
a ∈ R

m. We established that µg must lie in the GW-interval given in (22), i.e.,

sup
λ∈ranΛ

(λg − ‖µ − λ‖r) ≤ µg ≤ inf
λ∈ranΛ

(λg + ‖µ − λ‖r).

But we have yet to show that each s in this interval is actually the value of µg for some
such g.

This will certainly be so in case inf{‖g‖ : [Λ, µ]tg = (a, s)} < r since then there will
even be such g with ‖g‖ < r. To investigate further, recall that Λ is 1-1, and assume that
µ 6∈ ran Λ (there being nothing to prove otherwise). Then [Λ, µ] is 1-1, hence [Λ, µ]t is
onto, hence we may (and do) pick g0 such that [Λ, µ]g0 = (a, s), and compute

inf{‖g‖ : [Λ, µ]tg = (a, s)} = inf{‖g0 − h‖ : [Λ, µ]th = 0} = d(g0, ker[Λ, µ]t),

while, by (33)Duality,

d(g0, ker[Λ, µ]t) = max
λ⊥ker[Λ,µ]t

|λg0|

‖λ‖
= max

λ∈ran[Λ,µ]

|λg0|

‖λ‖
,
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the last equation because λ ⊥ ker[Λ, µ] iff λ ∈ ran[Λ, µ], by (I.32)Lemma. We conclude
that

inf{‖g‖ : [Λ, µ]tg = (a, s)} = ‖Ms‖,

with Ms the lfl

Ms : ran[Λ, µ] → R : Λc + αµ 7→ (Λc + αµ)g0 = cta + αs.

Recalling the proof of (27)HB, we recognize that ‖Ms‖ ≤ r since s lies in the GW-interval.
We conclude that for any ε > 0, Br+ε intersects the ‘feasible set’ ([Λ, µ]t)−1{(a, s)}. It is
in this sense that the GW-interval is sharp.

If ‖Ms‖ < r, then even Br intersects the ‘feasible set’, i.e., there even exists g ∈ X
with ‖g‖ < r and Λtg = a and µg = s. But if ‖Ms‖ = r, then the ‘feasible set’ may not
contain an element of norm ≤ r (even if X is complete, cf. H.P.(8)), unless the situation
is special. E.g., we do know by HB that X∗∗ contains some M with ‖M‖ = ‖Ms‖ and
M = Ms on ran[Λ, µ]. Therefore, if X is reflexive, then J−1M is an element in the ‘feasible
set’ and of norm ‖M‖ = ‖Ms‖ ≤ r.

For the record, here is a simple version of the main point just established.

(40) Proposition. Let X be a nls, Λ ∈ L(Rn, X∗), g0 ∈ (Λt)−1{a} for some a ∈ R
n, and

Ma : ran Λ → IF : λ 7→ λg0. Then inf ‖(Λt)−1{a}‖ := infg∈(Λt)−1{a} ‖g‖ = ‖Ma‖.

H.P.(21) Prove: The image J(BX ) of the unit ball of X in X∗∗ is w*-dense in the unit ball BX∗∗ of the
bidual of X, i.e., dense with respect to the topology of pointwise convergence (on their common domain,
i.e., on X∗). (Hint: Recall that the typical w∗-neighborhood of h ∈ X∗∗ (i.e., neighborhood in the topology
of pointwise convergence on X∗) is of the form Br,L(h) = {k ∈ X∗∗ : maxλ∈L |(h − k)λ| < r} for some finite
subset L of X∗ and some positive r, hence is certain to contain all k ∈ X∗∗ that agree with h on ran[L], and
apply (40)).

H.P.(22) Give an example of a complete nls X and some finite-rank data map Λt, so that, for some choice
of a, r, and µ ∈ X∗, the GW-interval GW (Λt, a, r, µ) is an interval of positive length, yet for none of its points

s is there g ∈ B−
r with Λtg = a and µg = s. (Hint: Perhaps a variant of (III.13)Example could work here?)
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