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IX. The spectrum of a lm

** point spectrum **
An eigenpair for A ∈ L(X) is any (x, z) ∈ (X\0) × IF satisfying Ax = zx. The

scalar z in such an eigenpair is called an eigenvalue for A and the vector x is called an
eigenvector for A belonging to the eigenvalue z. The collection of all eigenvectors of A
belonging to z is ker(A − z)\0. Thus z is an eigenvalue of A iff (A − z) fails to be 1-1.

The collection of all eigenvalues of A is called the point spectrum of A and is denoted
by

σP (A).

Eigenstructure of a matrix

If X is finite-dimensional, then A is a matrix and one is naturally led to look into the
eigenstructure of A when one looks for a basis V , i.e., an invertible lm V : IFn → X,

A
X → X

V ↑ ↑ V

IFn → IFn

Â

for which the corresponding matrix representation Â = V −1AV for A is particularly
simple. Ideally, one wants Â to be a diagonal matrix. If there is such V , then A is
called diagona(liza)ble. Assuming that Â is diagonal, Â = diagdz1, . . . , znc say, then
necessarily Avj = zjvj , all j, i.e., the basis V must consist of (nontrivial) eigenvectors of
A.

Whether or not Â is diagonal, Â is said to be similar to A.

** who cares about eigenstructure? **
If you look into the question as to why one might want a particularly simple matrix

representation for A in the first place, you will find that it is useful for understanding the
powers of A, of importance in the analysis of fixed-point iteration for solving linear (and
nonlinear) systems, the solution of a system of first-order ODEs, and in the numerical
solution of evolution equations.

For example, a square matrix A is powerbounded, i.e., {Ak : k ∈ IN} is a bounded
set iff ∀{z ∈ σP (A)} |z| ≤ 1 with equality only if z is not defective, i.e., only if ran(A−z)∩
ker(A−z) = {0}. Further, A is convergent, i.e., limk→∞ Ak exists iff ∀{z ∈ σP (A)} |z| ≤
1 with equality only if z is not defective and z = 1. Finally, A is convergent to 0, i.e.,
limk→∞ Ak = 0 iff ∀{z ∈ σP (A)} |z| < 1 (as was mentioned already in Chapter 2 in the
discussion of fixed point iteration).
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150 IX. The spectrum of a lm

** polynomials in a lm **
More generally, one is interested in understanding the behavior of linear combinations∑

j≤k a(j)Aj of such powers, i.e., of polynomials p(A) in A (with p :=
∑

j()
ja(j)), and,

ultimately, of functions f(A) in A, to the extent that f can be approximated arbitrarily
closely by polynomials p, hence f(A) can be understood as the limit of p(A) as p → f .
E.g., y(t) = exp(tA)y0 is the unique (vector-valued) solution at t of the first-order ODE
Dy = Ay with side condition y(0) = y0.

Having a complete understanding of the eigenstructure of A vastly simplifies all deal-
ings with p(A). Indeed, if A = V ÂV −1, then, for any p ∈ Π,

p(A) = V p(Â)V −1,

while, for a diagonal matrix Â = diagd. . . , zj , . . .c,

p(Â) = diagd. . . , p(zj), . . .c.
Thus, for a diagonalizable A,

σP (p(A)) = p(σP (A)).

This is a particular example of the Spectral Mapping Theorem.
Work with polynomials in the lm A is materially helped by the seemingly trivial fact

that any two polynomials in the same linear map commute:

(1) ∀{p, q ∈ Π;A ∈ L(X)} p(A)q(A) = q(A)p(A).

H.P.(1) Prove (1).

As an illustration, here is a proof of the basic fact that every A ∈ L(X) with 0 <
dim X < ∞ and IF = C has eigenvalues. Indeed, there is x ∈ X\0 and, for any such
x, [x,Ax,A2, . . . , Adim Xx] must fail to be 1-1, hence there is a 6= 0 so that p(A)x :=∑

j a(j)Ajx = 0, showing that p(A) fails to be 1-1, even though p 6= 0. Let d := max{j :
a(j) 6= 0}. Then, wlog, a(d) = 1, i.e., p is monic. Further, d > 0 since x 6= 0. Since
IF = C, we can therefore write p as the product

∏
j(· − zj) of d > 0 linear factors. But,

since p(A) =
∏

j(A − zj) fails to be 1-1, at least one of the factors A − zj must fail to be
1-1.

** A-invariant direct sum decompositions **
As a start toward a simplest matrix representation, assume that P is a spectral

projector for the lm A, i.e., a lprojector that commutes with A,

PA = AP.

Then the corresponding direct sum decomposition

X = X1+̇X2, X1 := ran P, X2 := ker P

is A-invariant in the sense that its summands are A-invariant,

AXi ⊂ Xi, all i.
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Conversely, for any such A-invariant direct sum decomposition X = X1+̇X2, the corre-
sponding lprojector, given by ranP = X1, ker P = X2, is spectral for A since ran(AP ) =
AX1 ⊆ X1 = ranP , hence PAP = AP , while also ran(A(1 − P )) = AX2 ⊆ X2 = ker P ,
hence PA(1 − P ) = 0, therefore, altogether, PA = PAP + PA(1 − P ) = AP .

If now X is finite-dimensional, then so are the Xi, and, with Vi any basis for Xi, V :=
[V1, V2] is a basis for X with the happy property that Â = V −1AV = [V1, V2]−1[AV1, AV2]
is block-diagonal, in particular,

Â =
[

Â1 0
0 Â2

]
, Âi := V −1

i A Xi
Vi,

since the columns of AVi are in Xi, hence their coordinates wrto V have nonzero entries
only corresponding to the columns of Vi in V .

If you conclude from this that a search for ‘simple’ matrix representations for A ∈
L(X) is equivalent to a search for A-invariant direct sum decompositions for A with many
summands or, equivalently, a search for a many-termed sequence (Pi) in L(X) with PiPj =
δij and APi = PiA, all i, j, then you would be quite right.

** primary decomposition **
Here, for the record, is a first step in that direction that goes back to Frobenius. To

be sure, this first step does not, in general, do the complete job. For that, just skip to the
heading ‘A finest A-invariant direct sum decomposition’.

Assuming dim X to be finite-dimensional, so is L(X), hence [Ar : r = 0, . . . ,dim L(X)]
cannot be 1-1, therefore there are polynomials p 6= 0 that annihilate A in the sense that
p(A) = 0. Let p be any such monic annihilating polynomial and assume, for simplicity,
that IF = C. Then

p =:
∏

i

pi,

with pi = (· − zi)mi , and zi 6= zj for i 6= j. It follows that the polynomials

`i := p/pi, all i,

do not have a common zero, hence

1 =
∑

i

`ihi

for certain polynomials hi. Indeed, let hi be the unique polynomial of degree < mi for
which `ihi agrees mi-fold with 1 at zi. Then 1−∑

i `ihi is a polynomial of degree <
∑

i mi

and vanishes mi-fold at zi, all i, hence must be zero.
Set

Pi := `i(A)hi(A), Xi := ker pi(A), all i.

Then
1 =

∑
i

Pi,
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152 IX. The spectrum of a lm

and, for j 6= i, Pj vanishes on Xi (since then `j has pi as a factor), hence 1 = Pi on Xi,
while ranPi ⊆ Xi (since pi`ihi has p as a factor). Consequently, each Pi is a lprojector,
with ran Pi = Xi, and PjPi = 0 for j 6= i, giving us the direct sum decomposition

X = ⊕iXi,

which is A-invariant in the sense that AXi ⊂ Xi and, correspondingly, APi = PiA, all i.
Of course, some of these summands may be trivial, unless we choose p a bit more

carefully. In particular, choose p to be pA, i.e., the minimal (annihilating) polynomial
for A, i.e., an annihilating monic polynomial of smallest possible degree. Then ker(A− zi)
is not trivial (since, otherwise, A − zi would be invertible, hence already `i would be
annihilating, contradicting the minimality of pA). More than that,

Xi = ker pi(A) =
⋃
r

ker(A − zi)r = ker(A − zi)mi .

Indeed, since A−zi is nilpotent on Xi, any A−zj = (zi−zj)−(zi−A)) =: (zi−zj)(1−N)
for j 6= i is 1-1 on Xi (since, for any nilpotent N , the sum

∑
r Nr is well-defined since it

is finite, while
∑

r Nr(1 − N) = 1, hence 1 − N is 1-1). Since also A − zi maps each Xj

into itself, and the Xj are in direct sum, (A − zi)rx = 0 can hold only if Pjx = 0 for all
j 6= i, i.e., for x ∈ Xi.

It follows that deg pA ≤ dim X and that mi is the degree of nilpotency of A − zi on
Xi, i.e., mi is the smallest integer r for which ker(A − zi)r = ker(A − zi)r+1.

It also follows that A = zi + (A − zi) on Xi, with (A − zi)mi = 0 there, hence

exp(tA) = exp(tzi) exp(t(A − zi)) = exp(tzi)
∑

r<mi

tr(A − zi)r/r! on Xi,

thus providing a very helpful quite detailed description of the solution y : t 7→ exp(tA)y0

of the aforementioned first-order ODE.

** A finest A-invariant direct sum decomposition **
Consider now an A-invariant direct-sum decomposition

X = X1+̇ · · · +̇Xr

that is finest in the sense that none of its summands can be split further into a nontrivial
A-invariant direct-sum decomposition. This latter property can be shown (see H.P.(2)) to
imply (assuming that IF = C) for each summand Xi the existence of a scalar zi and a
vector xi ∈ Xi so that Xi has Vi := [(A − zi)qi−jxi : j = 1, . . . , qi := dimXi] as a basis.
The matrix representation with respect to the resulting basis V := [Vi : i = 1, . . . , r] for X
is a Jordan canonical form for A.
H.P.(2) Let A be a lm on the n-dimensional ls X over IF = C and assume that any A-invariant direct sum
decomposition of X has only the summands X and {0}. Prove the following:

(a) For some z ∈ C, there is x ∈ X and q ∈ IN so that, for the map N := A − z, Nq−1x 6= 0 = Nqx.
(b) With N , x, and q as in (a), there exists λ ∈ X′ so that λNq−1x 6= 0, and then X is the direct

sum of ran V and kerΛt, with V := [Nq−jx : j = 1, . . . , q] and Λ := [λNi−1 : i = 1, . . . , q]. (Hint: ΛtV is
‘obviously’ invertible.)

(c) Among the q satisfying (a), there is a largest one and, for that q, Nq = 0 6= Nq−1, and V of (b) is
a basis for X, hence q = dim X.

(d) The matrix representation for A wrto V is a ‘Jordan block’, i.e., of the form z+[0, e1, e2, . . . , en−1].
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** Jordan form **
It is easy to verify that the Jordan form is unique up to permutation of its diagonal

blocks (since the number and sizes of the blocks associated with a particular eigenvalue zi

are related in a 1-1 manner to the nondecreasing numerical sequence (dim ker(A − zi)j :
j = 0, 1, . . .). In particular, not every lm A is diagonalizable, i.e., in this way similar to a
diagonal matrix. However, the Jordan form has no practical importance since it does not
depend continuously on A, hence cannot be constructed stably numerically.

For example, if A =
[

π 1
0 3(π/3)

]
, then, depending on the finite arithmetic used, the

two diagonal entries of A may or may not be the same. If they are, then A is its own Jordan
form, showing just one Jordan block. However, if they are not, then A is diagonable, and
the Jordan form for A has two blocks.

** Schur form **
Instead (assuming without loss that X is an ips), one relies on the Schur form in

which V is unitary, i.e., the basis is o.n., and Â is ‘only’ upper triangular. Its construction
still requires knowledge of the spectrum of A since A − z = V (Â − z)V −1 implies that
σ(A) = σ(Â) while the fact that Â is upper triangular implies that σ(Â) = {Â(j, j) : j =
1, . . . , n}. In order to discuss the standard derivation of this form, we need the hermitian
of a lm.

** c dual of a map **
Having a matrix representation wrto an o.n. basis V has the advantage that the matrix

reflects properties which involve the ip. For, having V o.n. is equivalent to having

(2) 〈V a, V b〉 = 〈a, b〉 ( =
∑

j

a(j)b(j) ).

In other words, V is angle preserving. Here and below, 〈·, ·〉 is used to denote the
relevant ip on whatever ips its arguments come from.

The interactions of A ∈ bL(X,Y ) with the inner products on X and Y are conveniently
described in terms of the c(onjugate) dual or Hermitian Ac of A, which is the lm
Ac : Y → X defined by

(3) 〈Ax, y〉 =: 〈x,Acy〉, all x ∈ X, y ∈ Y.

In other words, Acy is the unique representer (with respect to the ip on X) for the
bounded lfl x 7→ 〈Ax, y〉, hence, by (VII.11)Riesz Representation Theorem, is well-defined
for every y ∈ Y in case X is complete. Note that Ac coincides with the dual A∗ : Y ∗ →
X∗ : λ 7→ λA if we identify the Hs’s X and Y with their duals X∗ and Y ∗ via the isometric
(but only skewlinear) map v 7→ 〈·, v〉. For,

A∗ : 〈·, y〉 7→ 〈·, y〉A = 〈A·, y〉 = 〈·, Acy〉.
In particular,

‖Ac‖ = ‖A‖.
H.P.(3) Verify that (3) defines a lm, and that Ac is the conjugate transpose of A, i.e., satisfies

A
c
(r, s) = A(s, r), all r, s,

in case X = IFn (with the scalar product as inner product).
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154 IX. The spectrum of a lm

** Derivation of the Schur form **
Let A be a lm on the n-dimensional ips X over the complex scalars. There is nothing

to prove for n = 1. For n > 1, let (vn, z) be an eigenpair for Ac (which exists since
IF = C), and extend vn to an orthogonal basis V = [v1, . . . , vn] for X. Then 〈Avj , vn〉 =
〈vj , A

cvn〉 = z〈vj , vn〉 = 0 for j < n, showing that {vn}⊥ = ran[v1, . . . , vn−1] =: Y is A-
invariant. Therefore, by induction, we may choose the orthogonal basis W := [v1, . . . , vn−1]
for Y so that W−1A Y W is upper triangular. But then, with V = [W,vn], also V −1AV is
upper triangular.

We will also need the following elegant twist: Assume, in addition, that also C ∈ L(X)
and that AC = CA. Then also AcCc = CcAc, hence (see H.P.(4)), we can choose vn above
to be an eigenvector for both Ac and Cc. The argument therefore supports the following.

(4) The Schur Form.Let A and C be lm’s on the finite-dimensional ips X over
IF = C. If A and C commute (i.e., AC = CA), then there exists an o.n. basis V for X so
that both V −1AV and V −1CV are upper triangular.

H.P.(4) Prove: If X is a ls over IF = C, and A, C ∈ L(X) commute, then A and C have a common
eigenvector. (Hint: Show that, for any eigenvector y of C, the lss Π(A)y := ran[y, Ay, A2y, . . .] is A-invariant
and any of its nonzero elements is an eigenvector for C.)

** spectral theorem for normal matrices **
Let Â := V −1AV for A ∈ L(X), with V o.n. Then, 〈Âa, b〉 = 〈V −1AV a, b〉 =

〈AV a, V b〉 = 〈V a,AcV b〉 = 〈a, V −1AcV b〉, hence

(Â)c = (̂Ac).

Thus if A is hermitian, i.e., A = Ac, then also Âc = Â. Hence, if, by (4)Schur, Â
is upper triangular, then Â must be diagonal and its diagonal entries must be real. This
proves the

(5) Spectral Theorem for hermitian matrices. A hermitian map on a finite-dimens-
ional ips is unitarily similar to a real diagonal matrix.

Let now, more generally, A be normal, i.e., A and Ac commute. Then, by (4)Schur,
we can so choose the o.n. basis V that both Â and (̂Ac) = Âc are upper triangular. But
that means that they must both be diagonal!

(6) Spectral Theorem for normal matrices. A lm on a finite-dimensional ips is normal
iff it is unitarily similar to a diagonal matrix.

Eigenstructure of bounded lm’s

If X is infinite-dimensional, then even the Schur form is, in general, not available. But,
as we shall see, the spectral theorem still holds for normal lm’s if they are also compact.

** spectrum **
Let now X be nls and A ∈ bL(X). Then

σ(A) := {z ∈ IF : A − z is not boundedly invertible}
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is called the spectrum of A. It contains the point spectrum but need not coincide with it
if X is infinite dimensional, since, in that case, A − z may fail to be boundedly invertible
even though it is 1-1.

(7) Example The simplest linear maps on IFn are the diagonal matrices. For more
general function spaces X ⊆ IFT , these correspond to multipliers, i.e., to maps of the
form

Ma : f 7→ af,

with a ∈ IFT . Consider, in particular, a ∈ X := C(T ) with T compact metric, hence
Ma ∈ bL(X). I claim that

σ(Ma) = ran a.

Indeed, since T is compact, so is ran a, hence rana is closed. Therefore, if z ∈ IF\ ran a,
then 1/(a − z) ∈ X, hence M1/(a−z) is the bounded inverse for Ma−z = Ma − z, therefore
z 6∈ σ(Ma). Conversely, if z ∈ ran a, then z = a(t) for some t. But now, for any ε > 0,
the function fε : s 7→ (1 − d(s, t)/ε)+ is in X\0, has norm 1, but has support only on
I := B−

ε (t), hence ‖Ma−zfε‖ ≤ ‖(a − a(t)) I‖∞ = ωa,t(ε), therefore

‖Ma−zfε‖/‖fε‖ = ωa,t(ε) ε→0+−−−−−→ 0

since a is continuous, hence Ma−z fails to be bounded below, and so z ∈ σ(Ma).
But, while σ(Ma) = ran a, Ma may fail to have eigenvalues. For, if (Ma − z)f = 0,

then f = 0 on T\a−1{z}, hence z can be an eigenvalue for Ma only if a−1{z} is substantial
enough to support a nontrivial continuous function.

(8) Example Another instructive example is provided by the Volterra operator on
X := C[0 . . 1], i.e., by the linear map given by

(V f)(t) :=
∫ t

0

f(s) ds.

For any z ∈ C\0, V − z = (−z)(1 − V/z) is a second-kind integral operator, hence, by
(VIII.10)Fredholm-Alternative, boundedly invertible if and only if it is 1-1. On the other
hand, if (V − z)f = 0, then zDf = f and f(0) = 0, i.e., f is a solution of a homogeneous
ODE with homogeneous initial conditions, therefore f = 0. This shows that V − z is 1-1
for every z ∈ C. Thus, the only point possibly in the spectrum of V is 0, and it is indeed
in the spectrum since V is compact, hence, although 1-1, cannot have a bounded inverse
(or is directly seen not to be bounded below) (see H.P. (VIII.3)).

The spectrum is closed since its complement is open, by (III.17)Proposition (since
thereby the bounded invertibility of A − z implies the bounded invertibility of A − z′ for
every z′ ∈ B‖(A−z)−1‖−1(z)). By the same proposition,

σ(A) ⊂ B−
‖A‖,

since |z| > ‖A‖ implies ‖z−1‖−1 = |z| > ‖A‖ = ‖z − (z − A)‖.
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** resolvent **
As z ∈ C\σ(A) approaches z′ ∈ σ(A), ‖(A − z)−1‖ must go to infinity since, oth-

erwise, r := lim supz→z′ ‖(A − z)−1‖ < ∞, hence A − z′ would be boundedly invertible
by (III.17)Proposition since there would be z (namely all z close enough to z′) for which
‖(A − z′) − (A − z)‖ < ‖(A − z)−1‖−1. This implies that the spectrum σ(A) is the set of
singularities of the map

R : C\σ(A) → bL(X) : z 7→ (A − z)−1,

called the resolvent of A. It is continuous on its domain (since C → bL(X) : z 7→ A − z
is). Therefore, R is bounded on any compact subset of \σ(A).

R is also differentiable, hence analytic, since

R(z) − R(z′) = R(z)((A − z′) − (A − z))R(z′) = (z − z′)R(z)R(z′),

therefore dR(z)/ dz = (R(z))2. This makes complex variable theory available as a con-
venient and powerful tool for the analysis of the resolvent and, ultimately, the spectral
properties of A.

Remark If you are uncomfortable with operator-valued functions, consider instead
the complex-valued function z 7→ λR(z)x for arbitrary λ ∈ X∗ and arbitrary x ∈ X.

The spectrum σ(A) is the set of singularities of R. In particular, R is analytic at
infinity. Precisely, A − z = −z(1 − A/z), hence the Neumann series

(A − z)−1 = −(1/z)
∞∑

n=0

(A/z)n = −(1/z)
∞∑

n=0

(A/r)n (r/z)n

converges for |z| > r if also supn ‖(A/r)n‖ < ∞, hence converges for

|z| > inf{r : sup
n

‖(A/r)n‖ < ∞} = lim sup ‖An‖1/n =: %(A)

and so provides the Taylor series for R at infinity. (The equality in the last display is famil-
iar from standard considerations concerning the radius of convergence of a power series: Let
c(r) := supn ‖(A/r)n‖. If c(r) < ∞, then ‖An‖1/n ≤ rc(r)1/n, hence lim supn ‖An‖1/n ≤
r lim supn c(r)1/n = r, showing the inf to be ≥ the lim sup. Conversely, if r equals the
lim sup, then, for all ε > 0 and all n ≥ nε, ‖An‖1/n < r + ε, i.e., ‖(A/(r + ε))n‖1/n < 1,
and therefore supn ‖(A/(r + ε))n‖1/n < ∞, showing the inf to be ≤ the lim sup.)

In particular, since σ(A) comprises the singularities of R, %(A) must equal the spec-
tral radius of A, i.e.,

%(A) = sup |σ(A)|.

** spectral radius **
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(9) Lemma. X nls, A ∈ bL(X). Then limn ‖An‖1/n exists, hence equals %(A), and
∀{k ∈ IN} %(A) ≤ ‖Ak‖1/k.

Proof: For given k ∈ IN, write each n ∈ ZZ+ as n = r(n) + m(n)k, with
r(n),m(n) ∈ ZZ+ and r(n) < k. Then 1 = r(n)/n + (m(n)/n)k, therefore (since r(n)/n →
0) we must have m(n)/n → 1/k. This implies that

‖An‖1/n = ‖Ar(n)+km(n)‖1/n ≤ ‖A‖r(n)/n‖Ak‖m(n)/n
n→∞−−−−−→ ‖Ak‖1/k,

hence
lim sup ‖An‖1/n ≤ ‖Ak‖1/k,

therefore
lim sup ‖An‖1/n ≤ lim inf ‖Ak‖1/k.

H.P.(5) Prove that %(A) does not change when we change the norm in X to an equivalent one.

H.P.(6) Prove directly, i.e., without recourse to complex function theory, that %(A) = max |σ(A)| if A is
a square matrix. (Hint: Use the Schur form and an appropriate diagonal matrix to show that among matrices
similar to a given one are ones whose off-diagonal entries are as small as one pleases to make them.)

(10) Corollary. If X is an ips and A ∈ bL(X) is normal, then %(A) = ‖A‖.
Proof: A normal =⇒ ∀{y ∈ X} ‖Ay‖2 = 〈Ay,Ay〉 = 〈AcAy, y〉 = 〈AAcy, y〉 =

〈Acy,Acy〉 = ‖Acy‖2, hence ∀{x ∈ X} ‖A(Ax)‖ = ‖Ac(Ax)‖, and therefore ‖A2‖ =
‖AcA‖. On the other hand, ∀{C ∈ bL(X)} ‖C‖2 = ‖CcC‖ since

‖C‖2 = sup
x

|〈CcCx, x〉|/‖x‖2 ≤ sup
x

‖CcCx‖/‖x‖ = ‖CcC‖ ≤ ‖Cc‖‖C‖ = ‖C‖2.

Therefore ‖A2‖ = ‖A‖2, hence %(A) = lim ‖An‖1/n = lim ‖A2n‖2−n

= lim ‖A‖ = ‖A‖.
Note the fact just proved that a blm A on an ips X is normal iff ∀{x ∈ X} ‖Ax‖ =

‖Acx‖.
** isolating parts of the spectrum **

(11) Theorem. Let Γ be a simple closed curve in the complex plane that does not
intersect σ(A), hence partitions σ(A) into σ1∪̇σ2, with σ1 the part inside Γ. Then

(12) P :=
−1
2πi

∫
Γ

R(z) dz

is a bounded spectral projector for A, with σ(A ran P ) the part of σ(A) in the interior of
Γ, hence σ(A ker P ) the part of σ(A) in the exterior of Γ.

In particular, (i) P a bounded lprojector that commutes with A, hence (ii) both
X1 := ran P and X2 := ran(1 − P ) = kerP are A-invariant closed lss’s, and X = X1+̇X2,
and (iii) Aj := A Xj

∈ bL(Xj), and (iv) σ(Aj) = σj .

Proof: (i) P is bounded (e.g., by (|Γ|/2π)max ‖R(Γ)‖). To see that P is a pro-
jector, note that P is unchanged if we deform Γ as long as we don’t cross σ(A) in the
process. Therefore

P 2 =
−1
2πi

∫
Γ

−1
2πi

∫
Γ′

R(z)R(z′) dz′ dz =
−1
2πi

∫
Γ

−1
2πi

∫
Γ′

R(z) − R(z′)
z − z′

dz′ dz

=
−1
2πi

∫
Γ

R(z) dz = P,
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the crucial equality by Cauchy’s formula if we (as we may) choose Γ′ close to Γ but enclosing
it, hence ∫

Γ′

R(z)
z − z′

dz′ = R(z)
∫

Γ′

dz′

z − z′
= −2πiR(z),

while ∫
Γ

R(z′)
z − z′

dz = R(z′)
∫

Γ

dz

z − z′
= 0.

(ii) Since R(z) = (A − z)−1 commutes with A, so does P , hence Xj is invariant
under A (i.e., AXj ⊂ Xj). In effect, A = diagdA1, A2c with Aj := A Xj

∈ bL(Xj) and
X = X1+̇X2.

(iii) Therefore
Rj(z) := (Aj − z)−1 = R(z) Xj

.

(iv) In particular, σ(Aj) ⊂ σ(A), while if both A1 − z and A2 − z are boundedly
invertible, then so is A − z. Therefore

σ(A1) ∪ σ(A2) = σ(A).

On the other hand, for any z′ outside Γ,

R(z′)P =
−1
2πi

∫
Γ

R(z′)R(z) dz =
−1
2πi

∫
Γ

R(z′) − R(z)
z′ − z

dz =
1

2πi

∫
Γ

R(z)
z′ − z

dz

which shows that R1 = R X1
has no singularities outside Γ. Correspondingly, R2 has no

singularities inside Γ. Hence, σ(Aj) = σj .

Recall that we call such P a spectral projector for A, and note that it commutes with
any spectral projector Q of A. Further, P and Q are disjoint (i.e., PQ = QP = 0) in case
the curves used in their definition exclude one another.

Note that P = 1 in case σ2 = {}. This is a special case of the assertion that

(13) f(A) =
1

2πi

∫
Γ

f(z)(z − A)−1 dz

in case f is analytic on an open set containing σ(A), and Γ is chosen in that open set and
surrounding σ(A). Note the exact analogue to Cauchy’s formula.

Strictly speaking, (13) is an assertion only in case f is a polynomial or, more generally,
a rational function, for then we have an alternative notion of what f(A) might be. For more
general f , (13) serves as a natural definition which is sensible since we can approximate
such f uniformly by polynomials, hence obtain this definition as the limit.

** isolated eigenvalues **
The practically interesting case occurs when P is of finite rank. In that case, A1

is a matrix, hence σ1 = σ(A1) consists of finitely many points, each an eigenvalue of A,
and we can compute the complete eigenstructure of A1, including algebraic and geometric
multiplicities of the eigenvalues.
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In particular, each z ∈ σ(A1) is an isolated point of σ(A), hence we can define

Pz :=
−1
2πi

∫
Γz

(A − z′)−1 dz′

with Γz a simple closed curve enclosing z and excluding the rest of σ(A). Its range
Xz := ranPz is finite-dimensional and equals ∪n ker(A−z)n, i.e., consists of the generalized
eigenvectors of A belonging to z. For this reason, Xz is also called the generalized
eigenspace of A belonging to z.

The restriction Az := A Xz
of A to Xz has the simple form z+Jz, with Jz a nilpotent

map (i.e., (Jz)q = 0 for some integer q).
H.P.(7) Why was the letter J used in the preceding sentence?

** numerics **
Further, if C ∈ bL(X) is sufficiently close to A, then

PC :=
−1
2πi

∫
Γz

(C − z′)−1 dz′

will be close to Pz, hence so will ranPC be to Xz. This shows that generalized eigenvectors
of C belonging to eigenvalues of C inside Γz are close to those for A belonging to z and
that even the algebraic multiplicities of these eigenvalues of C sum up to the algebraic
multiplicity of z. These observations justify the approximate calculation of eigenpairs of A
by the simple device of computing those of a nearby C and provide precise error estimates
in terms of ‖A − C‖.

Note that the required smallness of ‖A − C‖ depends very much on how far away
from σ(A) Γz can be chosen. For, we require that, for all z′ ∈ Γz and all t ∈ [0 . . 1], the
linear map A − z′ − t(C − A) be boundedly invertible. Only with a condition of this kind
can we be assured that the spectrum of C captured by the contour Γz is comparable in its
multiplicity and generalized eigenspace to that of the eigenvalue z of A. Thus we need, in
effect, a condition like

‖A − C‖ < inf
z′∈Γz

1/‖(A − z′)−1‖.

On the other hand, to the extent that the piece of C enclosed by Γz is ‘large’, our com-
puted information about the part of σ(C) inside the contour may not be a very accurate
description of z.

This approach becomes feasible only if C is particularly simple, or else if it has finite
rank.

An example of the first kind might be the approximate calculation of the eigenstructure
of a linear ordinary differential operator A := Dm +

∑
j<m ajD

j by the exact construction
of part of the eigenstructure of the OD operator C obtained from A by replacing the
coefficients by piecewise constant or piecewise linear approximants which makes it possible
to construct elements in ker(C − z) exactly.

The approximation of A by a finite-rank C is the more customary procedure. Since
it also requires that C approximate A uniformly, it is restricted to compact A.
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** eigenstructure of a compact lm **
Let X Bs and K ∈ bL(X) be compact. By (VIII.10)Fredholm-Alternative, any z ∈

σ(K)\0 is necessarily an eigenvalue of K, i.e.,

σP (K) ⊃ σ(K)\0.

Further, for each z ∈ σ(K)\0, dimker(K − z) < ∞ by (VIII.8)Prop., i.e., each nonzero
eigenvalue has finite multiplicity, and ran(K − z) is closed, by (VIII.9)Prop.

This implies

(14) Lemma. σ(K)\0 consists of isolated points.

Proof: The assumption that some z ∈ σ(K)\0 is not isolated implies the existence
of a sequence (zn) of distinct points in σ(K) with c := infn |zn| > 0. By H.P.(VIII.4), this
contradicts the compactness of K.

It follows that each z ∈ σ(K)\0 has an associated finite-dimensional generalized
eigenspace Xz and that the corresponding spectral projector

Pz :=
−1
2πi

∫
Γz

(K − z′)−1 dz′

has as its interpolation functionals the range of its dual, i.e., the range of

P ∗
z =

−1
2πi

∫
Γz

(K∗ − z′)−1 dz′,

hence this consists of the generalized eigenvectors of K∗ belonging to z.

Spectral Theorem for compact normal maps

Let X Hs and A ∈ bL(X) be normal. Then each spectral projector

P =
−1
2πi

∫
Γ

(A − z)−1 dz

commutes with its conjugate

P c =
−1
2πi

∫
Γ

(Ac − z)−1 dz,

hence is an orthogonal projector. Note the appearance of Γ here; the corresponding reversal
of direction accounts for the fact that there is again (−1/2πi) in front of the integral, rather
than its conjugate.
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H.P.(8) Prove that a normal lprojector is an orthogonal projector.

This implies that, for a normal compact lm K ∈ bL(X), every Pz for z ∈ σ(K)\0 is
an orthogonal projector. Further, ranPz = Xz = ker(K − z), since Kz = K Xz

is normal
and has the single eigenvalue z, hence KPz = zPz. Since

PzPz′ = Pz′Pz = δz,z′ ,

any finite sum Q :=
∑

z∈Z Pz is also an orthogonal projector and K =
∑

z∈Z zPz on ranQ,
and σ(K(1 − Q)) = σ(K)\Z. Therefore, ‖K − KQ‖ = %(K − KQ) = max |σ(K)\Z|.

If #σ(K) < ∞, this proves that

K =
∑

z∈σ(K)\0
zPz.

In the contrary case, 0 is the only cluster point of σ(K), hence is the limit of the sequence
(zj) that contains the eigenvalues of K ordered by magnitude. Now we have

‖K −
∑
j<n

zjPzj
‖ = |zn| n→∞−−−−−→ 0,

hence
K =

∑
j

zjPzj

in this (norm) sense.
An alternative formulation of this Spectral Theorem for compact normal maps makes

explicit use of an o.n. basis, i.e., writes Pz explicitly as VzV
c
z =

∑
v∈Vz

[v]〈·, v〉, with Vz any
o.n. basis for Xz = ker(K − z). This gives the formula

K =
∑

n

∑
v∈Vzn

zn[v]〈·, v〉.

In order to obtain the exact analogue of the spectral theorem for normal matrices, let
(vj) be the sequence made up of the v ∈ Vzn

, n = 1, 2, . . ., in such a way that

vj ∈ Vzn
, vk ∈ Vzm

, j < k =⇒ n ≤ m.

Then
K = V K̂V c,

with V the unitary map
V : `2 → X : a 7→

∑
j

vja(j)

and
K̂ = diagd. . . , zn, . . . , zn,︸ ︷︷ ︸

dim Xzn times

, . . .c.
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The SVD for compact maps

The Singular Value Decomposition, or SVD for short, of a matrix has become a
powerful tool for the analysis of ‘incorrect’ linear systems, i.e., systems which are either not
square or else are singular or nearly singular in some sense. The same tool is available for a
compact K ∈ L(X,Y ) with X,Y Hs’s. For, both KcK and KKc are positive semidefinite,
hence all their eigenvalues are nonnegative. Therefore, the spectral theorem for compact
normal lm’s permits us to write

KcK = UΣ2U c, KKc = V Σ2V c,

hence KUΣ2U c = KKcK = V Σ2V cK, therefore (multiplying from the left by V c and
from the right by U)

V cKUΣ2 = Σ2V cKU,

with Σ a diagonal matrix with a nonnegative nonincreasing diagonal so that Σ2 contains
in its diagonal in nonincreasing order the elements of σ(KcK) = σ(KKc), i.e., the squares
of the singular values of K. This implies that V cKU is block-diagonal,

V cKU = diagd. . . , Ej , . . .c

say, with different blocks belonging to different singular values. The matrix version of the
SVD theorem provides, for each such diagonal block Ej , unitary matrices Uj and Vj of the
same size so that V c

j EjUj is diagonal. Hence, altogether

S diagd. . . , Vj , . . .cV cKU diagd. . . , Uj , . . .c

is diagonal and nonnegative, the diagonal matrix S having been chosen appropriately. It
then follows that this diagonal matrix must be Σ, hence

K = AΣCc,

with
A := V diagd. . . , Vj , . . .cSc, C := U diagd. . . , Uj , . . .c

both unitary.

c©2002 Carl de Boor


