X. Linearization and Newton's Method

** linearization

X, Y nls's, $f: G \subseteq X \rightarrow Y$. Given $y \in Y$, find $z \in G$ s.t. $f z=y$. Since there is no assumption about f being linear, we might as well assume that $y=0$.

Since the only equations we can solve numerically are linear equations, the solution of the equation $f z=0$ is found by solving (the first few in) a sequence of linear equations. The typical step is this: With z_{0} a guess for z, pick a linear map $A=A_{z_{0}}$ so that

$$
f x \sim f z_{0}+A\left(x-z_{0}\right) \quad \text { for } x \sim z_{0}
$$

and solve the linear equation

$$
f z_{0}+A\left(x-z_{0}\right)=0
$$

instead. Its solution, z_{1}, may be closer to z than z_{0} is, and further improvement is possible by repetition of this process. This leads to the iteration

$$
z_{n+1}=T z_{n}, \quad n=0,1,2, \ldots
$$

with T the (usually nonlinear) map given by the rule

$$
T x:=x-\left(A_{x}\right)^{-1} f x
$$

The choice of A_{x} for given x is, of course, crucial for the convergence of the sequence $\left(z_{n}\right)$ of iterates to z.

There is, in effect, only one technique for proving such convergence, and that is by contraction, i.e., by showing that T is a proper contraction on some nbhd of z (see (II.21)). We'll discuss variants of that argument below.

** differentiation **

The best known scheme and model for all others is to choose A_{u} in such a way that the affine function

$$
x \mapsto f u+A_{u}(x-u)
$$

touches f at u, i.e., so that

$$
\begin{equation*}
\left\|f x-\left(f u+A_{u}(x-u)\right)\right\|=o(\|x-u\|) \tag{1}
\end{equation*}
$$

Here, x is meant to vary over some open nbhd of u. Note that, if also the affine function $f u+C(\cdot-u)$ touches f at u, then

$$
\left\|\left(C-A_{u}\right)(x-u)\right\|=o(\|x-u\|)
$$

hence $\left\|C-A_{u}\right\|=0$. This shows that A_{u} is uniquely defined by the touching condition (1). There is, of course, no guarantee that such a linear map A_{u} exists. But, if $f u+C(\cdot-u)$ touches f at u for some $C \in b L(X, Y)$, then we write

$$
C=D f(u)
$$

and call this map the (Fréchet-)derivative of f at u.

** examples

If f is a bounded affine map, i.e., $f: x \mapsto y+C x$ for some $C \in b L(X, Y)$, then $D f(u)=C$ for all $u \in X$.

If $X=\mathbb{R}^{n}, Y=\mathbb{R}^{m}$, then $D f(u) \in \mathbb{R}^{m \times n}$, i.e., $D f(u)$ is a matrix, called the Jacobian of f at u. If $f \in C^{(1)}\left(G, \mathbb{R}^{m}\right)$ for some open domain G, then $D f(u)$ exists for all $u \in G$ and depends continuously on u there.

In particular, if $Y=\mathbb{R}$, i.e., if f is a real-valued function of n variables, then $D f(u)$ (if it exists) is a linear functional, called the gradient of f at u and often denoted by $\nabla f(u)$. If $h \in X$ and $g: \mathbb{R} \rightarrow \mathbb{R}: t \mapsto f(u+t h)$, then $g^{\prime}(0)=\nabla f(u) h$.

More generally, if $D f(u)$ exists, then

$$
(f(u+t h)-f u) / t=\underbrace{(f(u+t h)-f u) / t-D f(u) h}_{\|h\| o(t) / t}+D f(u) h,
$$

hence

$$
g^{\prime}(0)=D f(u) h,
$$

with

$$
g: \mathbb{R} \rightarrow Y: t \mapsto f(u+t h)
$$

But $g^{\prime}(0)$ may well exist even though $D f(u)$ does not. This leads to the weaker notion of the directional (or, Gateaux) derivative

$$
D_{h} f(u):=\lim _{t \rightarrow 0+}(f(u+t h)-f u) / t
$$

and this equals $g^{\prime}(0+) . f$ is Gateaux-differentiable at u if $D_{h} f(u)$ exists for all $h \in X$. In any case, $h \mapsto D_{h} f(u)$ is positive homogeneous, and $f \mapsto D_{h} f(u)$ is linear.

If $D f(u)$ exists, then, as just remarked, $D_{h} f(u)=D f(u) h$. In particular, $h \mapsto D_{h} f(u)$ is then a bounded linear map. This makes it easy to come up with maps f that have all directional derivatives at a point, yet fail to be Fréchet-differentiable there. For example, the map $f: X \rightarrow \mathbb{R}: x \mapsto\|x\|$ has $D_{h} f(0)=\|h\|$, all h (since $(\|0+t h\|-\|0\|) / t=\|h\|$), but the resulting map $h \mapsto D_{h} f(0)=\|h\|$ obviously is not linear. On the other hand, if $h \mapsto D_{h} f(u)$ is a bounded linear map, then it provides the only possible candidate for the Fréchet-derivative, and so assists in the latter's construction.

For example, consider the map

$$
f: C^{(m)}([a \ldots b]) \rightarrow C([a \ldots b]): x \mapsto\left(t \mapsto F\left(t, x(t), \ldots,\left(D^{m} x\right)(t)\right)\right)
$$

with $F \in C^{(1)}\left(\mathbb{R}^{m+2}\right)$. Then

$$
\begin{aligned}
\frac{f(u+s h)-f u}{s}(t) & =\frac{F\left(t, u(t)+s h(t), \ldots, D^{m} u(t)+s D^{m} h(t)\right)-F\left(t, u(t), \ldots, D^{m} u(t)\right)}{s} \\
& =\left(\operatorname{sh}(t) D_{2} F+\cdots+s D^{m} h(t) D_{m+2} F+O\left(s\|h\| \omega_{D F}(s\|h\|)\right)\right) / s \\
& =\sum_{j=2}^{m+2} D_{j} F\left(t, u(t), \ldots, D^{m} u(t)\right) D^{j-2} h(t)+o\left(s\|h\|^{2}\right) .
\end{aligned}
$$

Hence, $(f(u+s h)-f u) / s$ approaches

$$
D_{h} f(u)=\sum_{j=2}^{m+2} D_{j} F\left(\cdot, u(\cdot), \ldots, D^{m} u(\cdot)\right) D^{j-2} h
$$

as $s \rightarrow 0$, and this convergence is uniform in $\|h\|$. Also, $D_{h} f(u)$ is linear in h, and bounded with respect to $\|h\|$. This implies that

$$
D f(u)=\sum_{j=2}^{m+2} D_{j} F\left(\cdot, u(\cdot), \ldots, D^{m} u(\cdot)\right) D^{j-2}
$$

a linear m-th order OD operator.

** basic rules for Fréchet and Gateaux derivative *

The Fréchet-derivative shares all the basic properties of a derivative familiar from elementary Calculus. In particular, $D f(u)$ is linear in f and satisfies the chain rule:

$$
D(g f)(u)=D g(f u) D f(u) .
$$

Further, if $D f(u)$ exists, then f is continuous at u, since

$$
\|f x-f u\| \leq \underbrace{\|f x-f u-D f(u)(x-u)\|}_{o(\|x-u\|)}+\|D f(u)(x-u)\|=O(\|x-u\|) .
$$

This shows that f is even Lipschitz continuous, with (local) Lipschitz constant $\sim\|D f(u)\|$.
H.P.(1) Prove: (i) (If f is Gateaux-differentiable at u, then) $h \mapsto D_{h} f(u)$ is positive homogeneous. (ii) $f \mapsto D_{h} f(u)$ is linear (as a map on the linear space of all maps on some nls X into the same nls Y and Gateaux-differentiable at u). (iii) chainrule: (If f is Fréchet-differentiable at u and g is Fréchetdifferentiable at $f(u)$, then) $D(g \circ f)(u)=D g(f u) D f(u)$. (iv) product rule: (If f and g are scalar-valued and Gateaux-differentiable at u and $f g: u \mapsto f(u) g(u)$, then) $D_{h}(f g)(u)=D_{h} f(u) g(u)+f(u) D_{h} g(u)$.

** meanvalue estimates

On the other hand, already for functions into \mathbb{R}^{2}, we no longer have the customary mean value theorem, i.e., $f y-f x$ usually does not equal $D f(\xi)(y-x)$ no matter how we choose $\xi \in[x \ldots y]$. For example, for $f: \mathbb{R} \rightarrow \mathbb{R}^{2}: t \mapsto\left(t^{2}, t^{3}\right)$, we get $D f(t)=\left[2 t 3 t^{2}\right]^{\prime}$, hence $(1,1)=f 1-f 0 \stackrel{!}{=} D f(t)(1-0)$ would imply the contradictory statements $t=1 / 2$ and $t=(1 / 3)^{1 / 2}$.

Nevertheless, one obtains even for $f: X \rightarrow Y$ with X, Y nls's, the usual

(2) Meanvalue Estimate.

$$
\begin{equation*}
\|f x-f y\| \leq \sup \|D f([x . . y])\|\|x-y\| \tag{3}
\end{equation*}
$$

with the aid of HB: By (IV.27)HB, one can find $\lambda \in S_{Y^{*}}$ so that

$$
\|f y-f x\|=\lambda(f y-f x)=g(1)-g(0)=D g(\theta), \quad \text { for some } \theta \in[0 \ldots 1]
$$

with $g:[0 \ldots 1] \rightarrow \mathbb{R}: t \mapsto \lambda f(x+t(y-x))$, hence

$$
D g(\theta)=\lambda D f(x+\theta(y-x))(y-x) \leq\|\lambda\|\|D f(x+\theta(y-x))\|\|y-x\|
$$

and this proves (3) since $\|\lambda\|=1$.
If you are comfortable with vector-valued (hence with map-valued) integration, then (3) can be obtained directly by

$$
\begin{aligned}
f y-f x=\int_{0}^{1} D f(x+t(y-x)) \mathrm{d} t(y-x) & \leq \int_{0}^{1}\|D f(x+t(y-x))\| \mathrm{d} t\|y-x\| \\
& \leq \sup \|D f([x \ldots y])\|\|y-x\| .
\end{aligned}
$$

H.P.(2) Let A be a boundedly invertible lm from the nls X to the nls Y, let K be a convex subset of X, and let $f: K \rightarrow Y$ be Fréchet differentiable. Prove that the map $(A-f): K \rightarrow Y: x \mapsto A x-f(x)$ is $1-1$ in case $\sup _{x \in K}\left\|A^{-1} D f(x)\right\|<1$.

We can improve this estimate in case $D f$ has some smoothness, as follows.
(4) Lemma. If $u \mapsto D f(u)$ is continuous on some convex set N with modulus of continuity ω, i.e.,

$$
\forall\{y, z \in N\} \quad\|D f(y)-D f(z)\| \leq \omega(\|y-z\|)
$$

then

$$
\forall\{x, y \in N\} \quad E_{f}(x, y):=f y-(f x+D f(x)(y-x)) \leq \int_{0}^{1} \omega(t\|y-x\|) \mathrm{d} t\|y-x\|
$$

In particular,

$$
\left\|E_{f}(x, y)\right\| \leq \frac{K}{2}\|y-x\|^{2}
$$

in case $D f$ is Lipschitz continuous on N with constant K.
Proof: Let λ be a lff of norm 1 that takes on its norm on the vector $E_{f}(x, y)$, and consider again the function $g:[0 \ldots 1] \rightarrow Y: t \mapsto \lambda f(x+t(y-x))$. Now

$$
\lambda f y-\lambda f x=g(1)-g(0)=\int_{0}^{1} D g(t) d t=\int_{0}^{1} \lambda D f(x+t(y-x))(y-x) \mathrm{d} t
$$

hence

$$
\begin{aligned}
\left\|E_{f}(x, y)\right\| & =\lambda(f y-(f x+D f(x)(y-x)) \\
& =\int_{0}^{1} \lambda\{D f(x+t(y-x))-D f(x)\}(y-x) \mathrm{d} t \\
& \leq \int_{0}^{1}\|\lambda\| \omega(t\|y-x\|)\|y-x\| \mathrm{d} t=\int_{0}^{1} \omega(t\|y-x\|) \mathrm{d} t\|y-x\|
\end{aligned}
$$

This argument, too, can be simplified if you are willing to use map-valued integration, as follows:

$$
\begin{aligned}
f y-f x-D f(x)(y-x) & =\int_{0}^{1}(D f(x+t(y-x))-D f(x)) \mathrm{d} t(y-x) \\
& \leq \int_{0}^{1} \omega_{D f}(t\|y-x\|) \mathrm{d} t\|y-x\|
\end{aligned}
$$

Newton's method

Assume that the map $f: X \rightarrow Y$ (for which we seek $z \in X$ s.t. $f z=0$) is continuously Fréchet-differentiable at z, i.e., f is Fréchet-differentiable in some nbhd N of z and $\|(D f)(x)-(D f)(z)\| \leq \omega_{D f}(\|x-z\|)$ for some modulus of continuity $\omega_{D f}$. Then, for $x \in N$, we compute a (better?) approximation y to z by dropping all higher order terms from the expansion

$$
0=f z=f x+D f(x)(z-x)+\text { higher order terms }
$$

i.e., by solving

$$
\begin{equation*}
0=f x+D f(x)(?-x) \tag{5}
\end{equation*}
$$

thus getting the (improved?) approximation

$$
y=x+h=x-D f(x)^{-1} f x
$$

Then
$y-z=x-z-D f(x)^{-1}(f x-f z)=D f(x)^{-1}\left(D f(x)-\int_{0}^{1} D f(z+(x-z) s) \mathrm{d} s\right)(x-z)$.
But

$$
D f(x)-\int_{0}^{1} D f(z+(x-z) s) \mathrm{d} s=\int_{0}^{1}(D f(x)-D f(z+(x-z) s)) \mathrm{d} s \leq 2 \omega_{D f}(\|x-z\|)
$$

Hence, altogether,

$$
\|y-z\| \leq\left\|D f(x)^{-1}\right\| 2 \omega_{D f}(\|x-z\|)\|x-z\|
$$

This assumes that $D f(x)$ is boundedly invertible, as it would have to be for any sufficiently small neighborhood N^{\prime} of z since we assume that $D f$ is continuous at z, provided we assume that $D f(z)$ is boundedly invertible. But, in that case, we can choose $N^{\prime} \subseteq N$ small enough so that also $\sup _{x \in N^{\prime}}\left\|D f(x)^{-1}\right\|=:\left\|D f\left(N^{\prime}\right)^{-1}\right\|<\infty$. Therefore, for $x \in N^{\prime}$, the solution y of the linear system (5) satisfies

$$
\|y-z\| \leq\left\|D f\left(N^{\prime}\right)^{-1}\right\| 2 \omega_{D f}(\|x-z\|)\|x-z\| \xrightarrow[x \rightarrow z]{ } 0 .
$$

This implies the existence of $r>0$ so that the Newton map

$$
T: x \mapsto x-D f(x)^{-1} f x
$$

carries $B_{r}(z)$ into itself, and

$$
\exists\{q<1\} \forall\left\{x \in B_{r}(z)\right\} \quad\|z-T x\| \leq q\|z-x\|
$$

Hence, the Newton iteration, started "sufficiently close to" z (i.e., in $B_{r}(z)$), stays in $B_{r}(z)$ and converges at least linearly to z.

Note that continuity of $x \mapsto D f(x)$ at z is only used to conclude the uniform existence of $D f(x)^{-1}$ for all x near z. This could have been concluded from the continuity at any nearby point. In other words, continuity of $x \mapsto D f(x)$ at $x=z$ implies that f maps some nbhd of $z 1-1$ onto a nbhd of 0 . In fact, the same is then true for any g sufficiently close to f in the sense that

$$
\|g x-f x\|+\|D g(x)-D f(x)\| \ll 1 \quad \forall x \in N^{\prime}
$$

Under the assumption that f is continuously Fréchet-differentiable at the solution z, the more general iteration function

$$
\widetilde{T} x:=x-A_{x}^{-1} f x
$$

also generates a sequence converging to z, as long as A_{x} stays close enough to $D f(z)$. Precisely, with $y:=\widetilde{T} x$, we have

$$
0=f x+A_{x}(y-x)
$$

while (with $E_{f}(x, z):=f(z)-f(x)-D f(x)(z-x)$ as in (4)Lemma)

$$
0=f z=f x+A_{x}(z-x)+\left(D f(x)-A_{x}\right)(z-x)+E_{f}(x, z)
$$

therefore

$$
0=A_{x}(z-y)+\left(D f(x)-A_{x}\right)(z-x)+E_{f}(x, z)
$$

Consequently

$$
z-y=-A_{x}^{-1}\left(\left(D f(x)-A_{x}\right)(z-x)+E_{f}(x, z)\right)
$$

or

$$
\|z-y\| \leq\left\|A_{x}^{-1}\right\|\left(\left\|D f(x)-A_{x}\right\|+\omega_{D f}(\|z-x\|)\right)\|z-x\|
$$

Here, the expression multiplying $\|z-x\|$ can be made small on some nontrivial ball around z by ensuring that that ball is small enough so that $D f(x)$ is close to $D f(z)$, as long as also A_{x} is chosen close enough to $D f(z)$.

The well-known "quadratic convergence", though, is obtained only if $A_{x} \xrightarrow[x \rightarrow z]{ }$ $D f(z)$, i.e., essentially only for Newton's method, and this needs further smoothness assumptions. E.g., for Newton's method, the assumption that $x \mapsto D f(x)$ is Lipschitz continuous in a nbhd of z is sufficient, since the above combined with (4)Lemma gives the following
(6) Proposition. If $x \mapsto D f(x)$ is Lipschitz continuous in some convex neighborhood N of z, with constant K, then $\|z-T x\| \leq\left\|D f(N)^{-1}\right\|(K / 2)\|z-x\|^{2}$.

In practice, though, it is tough to come up with estimates for ω and/or $\left\|D f(N)^{-1}\right\|$ and/or K since they are likely to hold only locally, near the solution, and we don't know
the solution in the first place. The real value of the analysis is to demonstrate that Newton's method converges quadratically. This is a condition that can be checked for the Newton iterates computed. In fact, it constitutes a very important check. For, the Fréchet derivative is not easy to get right (by hand), and any mistake in the $D f(x)$ is sure to kill the quadratic convergence, leaving you, usually, with linear convergence. Hence, once you detect linear convergence, it is time to check your formulæ or program for $D f(x)$.

This leaves open the question of how to get close, i.e., how to obtain a 'sufficiently close' initial guess. In a way, it is reasonable for this to be a problem since there may be many solutions, hence by picking an initial guess we are picking a particular solution.

** a posteriori error estimates **

This finishes the standard local convergence theory for Newton's method and its variants. There is an elaborate theory, associated with the name of Kantorovich, to allow the conclusion of convergence from numerical evidence computed in the first Newton step. This includes a proof that the given map f has a zero near the initial guess. The idea is a generalization of the well known univariate observation that a continuously differentiable f for which $T x:=x-D f(x)^{-1} f x$ lies close to x must have a zero near x in case f doesn't curve too much, e.g., if $D f$ is Lipschitz continuous with a sufficiently small constant K.

** infinite-dim. problems also need discretization **

When the underlying Bs X is infinite-dimensional, then linearization (i.e., Newton's method and its variants) is only half the battle since the linear systems to be solved will in general be infinite-dimensional. Discretization, i.e., reduction to an approximate linear problem in finitely many unknowns, needs to be used. Of course, one could also discretize the original problem and thereby obtain right away a finite-dimensional problem, but now that problem is nonlinear in general, hence must be linearized, e.g., by Newton's method. When the discretization is done by projection, then it doesn't matter in which order we do this: The Newton equation

$$
D f(x) h=-f x
$$

for the correction h to the current guess x, when projected by P becomes

$$
P(D f(x) h)=P(-f x)
$$

with h to be found in some finite-dimensional F, assumed from now on to be ran P for simplicity, while the Newton equation for the projected equation $\operatorname{Pf} x=0$ for $x \in F$ is

$$
D(P f)(x) h=-P f x
$$

with h again sought in F. But, for any bounded $\operatorname{lm} P, D(P f)(x)=P D f(x)$ (as you should verify!). It is usually easier, though, to carry out the details by linearizing (symbolically, e.g., using Maple) f itself, and then solving the resulting linear problem by projection. A proof of convergence of such a double iteration requires some uniformity of f. Typically, the problem of solving $f x=0$ for x can be rewritten as a fixed point equation

$$
x=g x
$$

and, in some nbhd N of the sought-for solution z, g is Fréchet-differentiable, with $D g(x)$ compact uniformly for $x \in N$. Further,

$$
E_{g}(x, y):=g y-g x-D g(x)(y-x) \leq \omega(\|y-x\|)\|y-x\|
$$

for some modulus of continuity ω that depends only on the nbhd N. Finally, $1-D g(x)$ should be bounded and bounded below uniformly for $x \in N$. If also $P:=P_{n} \xrightarrow{s} 1$, then, $1-P D g(x)$ is boundedly invertible for all sufficiently large n, hence the Newton iteration step

$$
y=T x:=x-(1-P D g(x))^{-1}(x-P g x)
$$

can be carried out for any x sufficiently close to z and the resulting approximation y satisfies

$$
\left\|z_{P}-y\right\| \leq \mathrm{const} \omega\left(\left\|z_{P}-x\right\|\right)\left\|z_{P}-x\right\|
$$

with z_{P} the unique solution in N of the projected equation $x=P g x$.
All of this you should (and could by now) verify!
** example: solving a second-order non-linear ode by collocation **
Consider the second-order non-linear ode

$$
D^{2} z=z / 2-2(D z)^{2} \quad \text { on }[0 \ldots 1] ; \quad z(0)^{2}=1, z(1)=1.5
$$

to be solved for some $z \in X:=C^{(2)}([0 \ldots 1])$. This means that we are trying to find a zero of the map

$$
\begin{equation*}
f: C^{(2)}([0 \ldots 1]) \rightarrow \mathbb{R} \times C([0 \ldots 1]) \times \mathbb{R}: x \mapsto\left(x(0)^{2}-1, g x, x(1)-1.5\right) \tag{7}
\end{equation*}
$$

with

$$
g x:=D^{2} x+2(D x)^{2}-x / 2
$$

We try to solve this problem by collocation. This means that we look for a zero of the (non)linear map

$$
\Lambda: x \mapsto\left(x(0)^{2}-1,(g x)\left(t_{2}\right), \ldots,(g x)\left(t_{n-1}\right), x(1)-1.5\right) \in \mathbb{R}^{n}
$$

in some n-dimensional lss F of X, hoping that, for an appropriate choice of the collocation points t_{2}, \ldots, t_{n-1} in $[0 \ldots 1], \Lambda$ is $1-1$ on a suitable part of some such F.

From the earlier example, we read off that the Fréchet derivative of g is the linear map

$$
D g(x): h \mapsto D^{2} h+4(D x) D h-h / 2,
$$

while $x \mapsto x(t)$ is linear, hence its own Fréchet derivative. Therefore (by the chain rule),

$$
D \Lambda(x): h \mapsto\left(2 x(0) h(0), \ldots,(D g(x) h)\left(t_{j}\right), \ldots, h(1)\right) .
$$

Thus, with x our current guess for the solution of $\Lambda ?=0$ in F, Newton's method would provide the improved(?) guess $y:=x+h$, with $h \in F$ solving the linear problem

$$
\begin{equation*}
(D \Lambda)(x) h=-\Lambda x \tag{8}
\end{equation*}
$$

Now note that, in this derivation, we made no use of the fact that we are seeking a solution in F, nor did we pay particular attention to the collocation points. In fact, for the map f (see (7)) for which we are trying to find a zero, we have

$$
(D f)(x): h \mapsto(2 x(0) h(0), D g(x) h, h(1)) .
$$

This means that, with x our current guess for the solution z of $f ?=0$, Newton's method would provide the improved(?) guess $y:=x+h$, with h solving the linear problem

$$
(D f)(x) h=-f x
$$

i.e., the linear second order ordinary boundary value problem

$$
D^{2} h+4(D x) D h-h / 2=-g x \quad \text { on }[0 \ldots 1], \quad 2 x(0) h(0)=1-x(0)^{2}, h(1)=1.5-x(1)
$$

If we now try to solve this ode problem by collocation at the points t_{2}, \ldots, t_{n-1} with $h \in F$, we are back at (8), provided our current guess x is also in F.

** implicit function theorem **

There is no time to go into these theories. Instead, I bring quickly an important application of the contraction map idea and Newton's method, viz. the

(9) Figure. The Implicit Function Theorem
(10) Implicit Function Theorem. $X, Y, Z B s ' s, f: X \times Y \rightarrow Z, f\left(x_{0}, y_{0}\right)=0, f$ continuous on $N:=B_{r}\left(x_{0}\right) \times B_{s}\left(y_{0}\right)$ for some $r, s>0$. Further, $\forall\left\{y \in B_{s}\left(y_{0}\right)\right\} f(\cdot, y)$ is Fréchet-differentiable on $B_{r}\left(x_{0}\right)$, and the resulting map $(x, y) \mapsto D f(\cdot, y)(x)$ is continuous at $\left(x_{0}, y_{0}\right)$. Also, $A:=\operatorname{Df}\left(\cdot, y_{0}\right)\left(x_{0}\right)$ is boundedly invertible. Then, for some $r^{\prime}, s^{\prime}>0$, and for all $y \in B_{s^{\prime}}\left(y_{0}\right)$, the equation

$$
f(x, y)=0
$$

has exactly one solution $x=x(y)$ in $B_{r^{\prime}}\left(x_{0}\right)$, and the resulting map

$$
B_{s^{\prime}}\left(y_{0}\right) \rightarrow X: y \mapsto x(y)
$$

is continuous.
Proof: To be specific, take the norm on $X \times Y$ to be $(x, y) \mapsto \max \{\|x\|,\|y\|\}$. The equation $f(x, y)=0$ is equivalent to the fixed point equation

$$
x=T(x, y):=x-A^{-1} f(x, y)
$$

Its iteration function, $T(\cdot, y)$, is a strict contraction near x_{0} and uniformly so for y near y_{0} since, by assumption,

$$
D T(\cdot, y)(x)=1-A^{-1} D f(\cdot, y)(x)
$$

is a continuous function of $(x, y) \in N$, and $D T\left(\cdot, y_{0}\right)\left(x_{0}\right)=0$. Precisely, this implies that, for some $r^{\prime}>0$ and some $q<1,\|D T(\cdot, y)(x)\| \leq q$ on $B_{r^{\prime}}\left(x_{0}, y_{0}\right)$. Thus $\forall\left\{(x, y),\left(x^{\prime}, y\right) \in\right.$ $\left.B_{r^{\prime}}\left(x_{0}, y_{0}\right)\right\}$

$$
\left\|T\left(x^{\prime}, y\right)-T(x, y)\right\| \leq \sup \left\|D T(\cdot, y)\left(\left[x \ldots x^{\prime}\right]\right)\right\|\left\|x^{\prime}-x\right\| \leq q\left\|x^{\prime}-x\right\|
$$

by the Meanvalue estimate. This shows that $T(\cdot, y)$ is a strict contraction on $B_{r^{\prime}}\left(x_{0}\right)$ uniformly in $y \in B_{r^{\prime}}\left(y_{0}\right)$. It remains to show that $T(\cdot, y)$ maps some closed subset of $B_{r^{\prime}}\left(x_{0}\right)$ into itself. For this, observe that

$$
\begin{array}{rll}
\left\|T(x, y)-x_{0}\right\| & \leq\left\|T(x, y)-T\left(x_{0}, y\right)\right\| & +\left\|T\left(x_{0}, y\right)-x_{0}\right\| \\
& \leq & q\left\|x-x_{0}\right\| \\
& + & (1-q) r^{\prime}
\end{array}
$$

for all $y \in B_{s^{\prime}}\left(y_{0}\right)$ for some positive $s^{\prime} \leq r^{\prime}$ so choosable since T is continuous and $T\left(x_{0}, y_{0}\right)=x_{0}$. For any such $y, T(\cdot, y)$ is a proper contraction on $B_{r^{\prime}}\left(x_{0}\right)$ into $B_{r^{\prime}}\left(x_{0}\right)$, hence has a unique fixed point there. Call this fixed point $x(y)$. Then

$$
\begin{aligned}
\left\|x(y)-x\left(y^{\prime}\right)\right\| & =\left\|T(x(y), y)-T\left(x\left(y^{\prime}\right), y^{\prime}\right)\right\| \\
& \leq\left\|T(x(y), y)-T\left(x(y), y^{\prime}\right)\right\|+\underbrace{\left\|T\left(x(y), y^{\prime}\right)-T\left(x\left(y^{\prime}\right), y^{\prime}\right)\right\|}_{\leq q\left\|x(y)-x\left(y^{\prime}\right)\right\|} .
\end{aligned}
$$

Therefore

$$
\left\|x(y)-x\left(y^{\prime}\right)\right\| \leq \frac{1}{1-q}\left\|T(x(y), y)-T\left(x(y), y^{\prime}\right)\right\|
$$

which implies the continuity of $y \mapsto x(y)$ even if we only know that $T(x(y), \cdot)$ is continuous.
H.P.(3) Prove the following stronger version of the Implicit Function Theorem which merely assumes the existence of an approximate inverse for $D f(\cdot, y)(x)$ uniformly in (x, y) : Let X, Y, Z be Bs's, r,s>0,f:N:= $B_{r}\left(x_{0}\right) \times B_{s}\left(y_{0}\right) \rightarrow Z$ continuous, $f\left(x_{0}, y_{0}\right)=0$. Assume further that, for some boundedly invertible $A \in b L(X, Z), \sup \left\{\left\|1-A^{-1} D f(\cdot, y)(x)\right\|:(x, y) \in N\right\}<1$. Then there exists $r^{\prime}, s^{\prime}>0$ and exactly one function $g: B_{s^{\prime}}\left(y_{0}\right) \rightarrow B_{r^{\prime}}\left(x_{0}\right)$, necessarily continuous, so that $g\left(y_{0}\right)=x_{0}$ and $f(g(y)$, $y)=0$ for all $y \in B_{s^{\prime}}\left(y_{0}\right)$.
H.P.(4) Prove the following Inverse Function Theorem: If X, Y are Bs's and $g: X \rightarrow Y$ is Fréchetdifferentiable in some nbhd N_{0} of some $x_{0} \in X$ and $D g\left(x_{0}\right)$ is invertible (hence, by OMT, has a bounded inverse), then there is some nbhd M of x_{0} that is mapped by $g 1-1$ onto some nbhd of $g\left(x_{0}\right)$, and the corresponding g^{-1} is Fréchet-differentiable on $g(M)$.

Basic subjects not covered

Brouwer and Schauder fixed point theorems.
Discretization of functional equations.
Stability of difference schemes for PDEs.
In addition, there is the whole richness of nonlinear functional analysis.

