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II. Preliminaries: Advanced Calculus

Topology

** continuity **

Recall that

f : R → R is continuous at t

means that

lim
n→∞

xn = t =⇒ lim
n→∞

f(xn) = f(t).

Equivalently, it means that

∀{ε > 0}∃{w > 0} |x − t| < w =⇒ |f(x) − f(t)| < ε.

The abstract (yet eminently practical) intuitive idea behind this is the following.
Suppose f : T → U , and we want to know u := f(t). Usually, we do not know t exactly,
we only know that t lies in some ‘small’ set N , and must wonder just how ‘small’ the
corresponding set f(N) := {f(s) : s ∈ N} is, i.e., how ‘closely’ we may know f(t) in
this case. More than that, we would like to be able to make f(N) ‘small’ by making N
suitably ‘small’. We can do just that in case f is ‘continuous’ at t in the following intuitive
sense: For every ‘neighborhood’ M , however ‘small’, of the point f(t) ∈ U , there is some
‘neighborhood’ N of t ∈ T that gets entirely mapped into M by f .

Of course, this requires some reasonable definition of ‘neighborhood’ of a point, and
this leads to one of several equivalent ways of defining a ‘topology’. For its discussion, the
following notations are useful.

** working with a collection of subsets **

For A, C collections of subsets of some set T and f some map on T , we abbreviate

A∩·C := {A ∩ C : A ∈ A, C ∈ C}, fA := {f(A) : A ∈ A},

and use

(1) Definition. A ≻ C (in words: A refines C) := ∀{C ∈ C} ∃{A ∈ A} A ⊆ C.

Thus, A ⊇ C =⇒ A ≻ C, but the converse does not hold. In fact, it may be
possible to have A ≻ C even though A is much smaller than C in some sense, e.g., even
though A ⊂ C. Note that A ≻ C implies that fA ≻ fC.

** topology defined **

We specify a topology (i.e., a way of telling far from near) in T by associating with
each t ∈ T a neighborhood system(nbhdsystem B(t), i.e., a nonempty collection of
sets, all containing t. For this to work out properly, this specification has to satisfy two
technical assumptions. The first is that the intersection of any two neighborhoods of t
contains a neighborhood of t:
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(2) Neighborhood Assumption 1. ∀{t ∈ T} B(t) ≻ B(t)∩·B(t).

The second is given in (5) below. Three instructive examples are B(t) := {{t}}, B(t) :=
{T}, and B(t) := {S ⊂ T : t ∈ S, #(T\S) < ∞}. For T = R

n, a standard choice is
B(t) := {Bε(t) : ε > 0}, with Br(t) := {s ∈ T : |s − t| < r} the open ball around t

of radius r, and |a| :=
√

ata =
( ∑

i |a(i)|2
)1/2

the Euclidean length of the n-vector a.
These are good examples to try out on the general material to follow.

With the specification of a (proper) nbhdsystem B(t) for each t, the set T , or more
precisely, the pair (T,B) becomes a topological space (=: ts).

(3) Definition. T, U ts’s, f : T → U . f is continuous at t ∈ T := fB(t) ≻ B(f(t)).

For example, if T = R = U and B(t) = {Bε(t) : ε > 0}, with Bε(t) = (t − ε . . t + ε),
then this definition says that f : R → R is continuous at t iff, for every positive ε, one
can find a positive w so that f(Bw(t)) ⊆ Bε(f(t)). This is exactly the definition recalled
earlier.

We say that f : T → U is continuous and write this as

f ∈ C(T → U)

if f is continuous at every t ∈ T .
The identity map 1 : T → T : t 7→ t is always continuous. Also, the composition of

continuous maps is continuous. I.e., if f : T → U is continuous at t and g : U → W is
continuous at f(t), then gf : T → W : t 7→ g(f(t)) is continuous at t. This is so since
fB(t) ≻ B(f(t)) implies that g(fB(t)) ≻ gB(f(t)), and so, since gB(f(t)) ≻ B(gf(t)), we
also have (gf)B(t) ≻ B(gf(t)).

** equivalent topologies **

The notion of continuity depends, of course, on the particular choice of topologies
or nbhdsystems. For example, if we use the discrete topology on T , i.e., B(t) = {{t}}
for all t ∈ T , then every f on T is continuous, while, with the indiscrete (or, trivial)
topology, i.e., with B(t) = {T}, all t ∈ T , only constant functions on T are, offhand,
continuous. In general, the fewer sets there are in B(f(t)) and/or the more sets there
are in B(t), the easier it is to prove that f is continuous at t. Yet, even if an alternative
nbhdsystem B′(t) is obtained from B(t) by throwing out some sets, it may still happen
that B′(t) ≻ B(t), i.e., that the identity map

1 : T ′ → T : t 7→ t

is continuous at t. Here, I have used T ′ as an abbreviation for (T,B′), i.e., to denote the
ts made up of the set T with the alternative nbhdsystems B′.

If B′(t) ≻ B(t) for all t ∈ T , we write B′ ≻ B and say that (the topology provided by)
B′ is stronger than (the topology provided by) B. B′ is stronger than B iff 1 ∈ C(T ′ →
T ), and, in that case, for any f ∈ C(T → U), the composite function T ′ 1−−→ T f−−→ U
is also continuous, i.e., f ∈ C(T ′ → U). It follows that B and B′ lead to the same
continuous functions, i.e., C(T ′ → U) = C(T ′ → U) for all ts U , if and only if B and B′

are equivalent in the sense that

B′ ≻ B ≻ B′ (=: B ∼ B′),
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and this, in turn, holds if and only if both 1 : T → T ′ and 1 : T ′ → T are continuous.
This is a very useful concept, because it may lead us to a particularly simple specifica-

tion of a given topology, and may simplify the determination of whether a given function
is continuous.

H.P.(1) Prove: If B(t) ≻ A, then B(t) and B′(t) := B(t) ∪ A are equivalent.

For example, on T = R
n, we might use the much smaller nbhdsystem

B′(t) := {B1/m(t) : m = 1, 2, 3, . . .}

which consists of only countably many sets, yet gives rise to the same notion of continuity
as the much richer standard system

B(t) := {Bε(t) : ε > 0}

or the even richer system
{N ⊆ R

n : B(t) ≻ {N} }.
For example, on T = R

n, we might use B∞(t) := {Bε,∞(t) : ε > 0}, made up of the
boxes

Br,∞(t) := {s ∈ R
n : max

i
|s(i) − t(i)| < r},

instead of B(t). The two topologies are equivalent since each euclidean ball Br(t) around
t is contained in the corresponding box Br,∞(t), (thus B(t) ≻ B∞(t) ), while, also, each
such euclidean ball contains some box Bs,∞(t) for some appropriately small but positive s
(hence also B∞(t) ≻ B(t) ).

H.P.(2) What happens with this last example as n → ∞?

Thus, if also U ′ is the same set as U but with an equivalent topology B′, then any
function f : T → U continuous in the original topologies is also continuous with respect
to the equivalent topologies since it can be viewed as the composition

T ′ 1−−→ T f−−→ U 1−−→ U ′

of continuous maps.

(4) Example Here is an example of two familiar nbhdsystems that are not equiv-
alent. The standard nbhdsystem B∞(f) for f ∈ R

S associated with ‘uniform conver-
gence’ consists of the ‘balls’

Br(f) := {g ∈ R
S : sup

s∈S
|g(s)− f(s)| < r}, r > 0.

An alternative nbhdsystem Bpw(f) is associated with ‘pointwise convergence’ and con-
sists of the ‘balls’

Br,R(f) := {g ∈ R
S : max

s∈R
|g(s) − f(s)| < r}, r > 0, R ⊂ S, #R < ∞.
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H.P.(3) (a) Prove that B∞(f) ≻ Bpw(f) but that Bpw(f) 6≻ B∞(f) in case #S 6< ∞. (b) Try to explain

the terms “uniform” and “pointwise” used here in terms of convergence of a sequence (fn) in R
S .

** open and closed sets **

Let T , or, more precisely, (T,B), be a ts. Here is a list of standard terminology
concerning the possible relationships between a point t ∈ T and a subset U of T . For it,
B(t)∩·U := B∩· {U}.

t is an interior point of U := t ∈ Uo := B(t) ≻ {U}, i.e., there exists N ∈ B(t)
s.t. N ⊆ U . E.g., ∀{N ∈ B(t)} t ∈ No trivially.

t is a closure point of U := t ∈ U− := {} /∈ B(t)∩·U, i.e., ∀{N ∈ B(t)} N∩U 6= {}.
t is an isolated point of U := {t} ∈ B(t)∩·U , i.e., ∃{N ∈ B(t)} N ∩ U = {t}.
t is a cluster point of U := {} 6∈ B(t)∩· (U\t), i.e., ∀{N ∈ B(t)} (N ∩ U)\t 6= {},

i.e., t is a non-isolated closure point of U .
The set Uo of all interior points of U is called the interior of U . The set U− of all

closure points of U is called the closure of U , and U is dense (in T ) in case U− = T .
Finally, the set U−\Uo =: ∂U is the boundary of U . We have

W ⊂ U =⇒ W o ⊂ Uo, W− ⊂ U−.

Also,
Uo ⊆ U ⊆ U−,

and equality here deserves a special name:
U is open := Uo = U . E.g., T and {} are open.
U is closed := U = U−. E.g., T and {} are closed.
Note that t is a closure point of U iff t is not an interior point of the complement

\U := T\U = {s ∈ T : s /∈ U}

of U (in T ). In other words, any subset U of T divides all of T into two disjoint classes:
the closure points of U and the interior points of \U . I.e., \(U−) = (\U)o. In particular,
U is closed iff \U is open.

You should verify that all the properties just introduced will be unchanged if B is
replaced by an equivalent nbhdsystem.

Open sets often provide the most efficient way to describe a topological situation.
For example, the standard definition of a topology on T starts off with a collection

of sets, closed under finite intersection and arbitrary unions and containing T and {},
called the open sets and, in their terms, B(t) is taken to be the collection of all open sets
containing t. Correspondingly, the other technical assumption a proper nbhdsystem has
to satisfy is most easily stated in terms of open sets:

(5) Neighborhood Assumption 2. For every t ∈ T , the collection

Bo(t) := {O ⊆ T : t ∈ O = Oo}

refines B(t), i.e., every neighborhood of t contains an open set containing t.

H.P.(4) Prove that (5) is not equivalent to the earlier observation that ∀{N ∈ B(t)} t ∈ No. (Hint: Show
by an example (e.g., T := {1, 2, 3}, B(1) := {{1, 2}}, B(2) := {{2, 3}}, B(3) := {{3, 1}}) that, with only (2)
and not (5), the interior of a set need not be open.)
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H.P.(5) Prove that the nbhdsystems B∞ and Bpw of (4)Example both indeed satisfy (5).

H.P.(6) Prove that (5) is equivalent to the following property (which does not explicitly mention open sets
but makes more explicit that (5) is an assumption on the way in which nbhdsystems for different points interact):
∀{t ∈ T, N ∈ B(t)} ∃{M ∈ B(t)} ∀{m ∈ M} ∃{Nm ∈ B(m)} Nm ⊆ N.

H.P.(7) Prove: If (T, B) is ts, and C : T → 2(2T ) is equivalent to B (i.e., ∀{t ∈ T} B(t) ≻ C(t) ≻ B(t)),
then C is a nbhdsystem provided that ∀{t ∈ T, C ∈ C(t)} t ∈ C.

H.P.(8) Prove: (a) The closure U− of a set U is closed. (That’s good.) Equivalently, the interior Uo of
a set U is open. (b) The collection of open sets is closed under finite intersection and arbitrary union; i.e.,
the intersection of finitely many open sets is open, and the union of an arbitrary collection of open sets is open.

(6) Proposition. Bo(t) is equivalent to B(t).

Proof: (5) explicitly states that Bo(t) ≻ B(t) while B(t) ≻ Bo(t) follows from
the fact that Bo(t) consists of open sets containing t.

Thus, when convenient, we may work with the nbhdsystem Bo. For example, we may
take it for granted that any open set is a neighborhood for all its elements.

Further, we are able to prove the following efficient

(7) Characterization of continuity. f : T → U is continuous iff f−1(O) is open for
every open O ⊆ U .

Proof. ‘=⇒’: If O is open and t ∈ f−1(O), then O ∈ Bo(f(t)) ≺ fB(t), therefore
f−1(O) ≺ B(t), thus f−1(O) is open.

‘⇐=’: ∀{t} ∀{O ∈ Bo(f(t))} we have f−1(O) ∈ Bo(t), so fBo(t) ⊇ Bo(f(t)), there-
fore fBo(t) ≻ Bo(f(t)), , i.e., f is continuous.

This characterization of continuity doesn’t show the practical purpose of continuity,
but is often quite useful and efficient in mathematical arguments.

Here is a typical application of continuity.

(8) Proposition. If f ∈ C(T → R) and Z ⊆ T , then sup f(Z) = sup f(Z−).

Proof: Recall that, for R ⊆ R, supR := min{s ∈ R : ∀{r ∈ R} r ≤ s}, hence
R ⊆ S =⇒ sup R ≤ sup S, and supR = sup R−. If f is continuous, then f−1(f(Z)−)
is closed and contains Z, hence contains Z−. Therefore, f(Z) ⊆ f(Z−) ⊆ f(Z)−, thus
sup f(Z)− = sup f(Z) ≤ sup f(Z−) ≤ sup f(Z)−, hence sup f(Z) = sup f(Z−).

Metric space

** metric **

The standard topology on R
n is given by a metric.

A metric space (=: ms) (X, d) is a set X and a metric d, i.e., a map d : X×X → R

satisfying the three conditions

d(x, y) ≥ 0, with equality iff x = y (positive definite)
d(x, y) = d(y, x) (symmetry)
d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)
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Note that the triangle inequality can also be stated as

d(x, y)− d(y, z) ≤ d(x, z),

and, by interchanging z and x here, we get the symmetric statement

(9) |d(x, y)− d(y, z)| ≤ d(x, z).

Standard examples include

X = R
n, d(x, y) := ‖x − y‖p

with

‖x‖p :=
( n∑

i=1

|x(i)|p
)1/p

for 1 ≤ p ≤ ∞. The interpretation for p = ∞ is that of a limit as p → ∞. Thus

‖x‖∞ := max
i

|x(i)|.

For p = 2, we get the ‘usual’ metric of R
n, the Euclidean metric.

By letting here n → ∞, one obtains the ms ℓp := {x ∈ R
N : ‖x‖p < ∞} with metric

d(x, y) := ‖x − y‖p, and ‖x‖p
p :=

∑
i |x(i)|p for p < ∞, while ‖x‖∞ := supi |x(i)|.

A continuous analog of this metric is provided by the strongly related example

X = C([a . . b]), d(f, g) := ‖f − g‖p

with

‖f‖p :=
(∫ b

a

|f(t)|p dt
)1/p

for 1 ≤ p ≤ ∞. Again, the case p = ∞ is meant as a limit,

‖f‖∞ := sup
a≤t≤b

|f(t)|.

There are analogous formulæ when the interval [a . . b] is replaced by some suitable
subset of R

n.
In all of these examples, you should verify (e.g., by looking up the argument) that the

proposed metric is, in fact, a metric. In this, it is usually hardest to verify the triangle
inequality. Correspondingly, it is the most useful property of a metric.

Note that any subset of a ms is itself a ms. E.g., (Z, | · |) is an instructive example of
a ms.

A metric space (X, d) is a ts, with the nbhdsystem for x ∈ X given by

B(x) := {Br(x) : r > 0},
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or by the equivalent, but simpler

B(x) := {B1/m(x) : m = 1, 2, . . .}.

Here,
Br(x) := {y ∈ X : d(y, x) < r}

is the open ball of radius r and center x.
Think of d(x, y) as the distance between the points or elements x and y. Then

d(x, Y ) := inf
y∈Y

d(x, y)

gives the distance of x from the subset Y of X . Note the use of “inf” instead of “min”
here. This implies that ∃{(yn) in Y } s.t. limn→∞ d(x, yn) = d(x, Y ). But this by itself
does not guarantee that there is some y ∈ Y for which d(x, y) = d(x, Y ). If such a y exists,
we call it a best approximation (=: ba) to x from Y . See (III.13) for an example of a
lss that is closed yet fails to provide a b.a. to any x (not in that lss).

We define

Br(Y ) := {x ∈ X : d(x, Y ) < r}, B−
r (Y ) := {x ∈ X : d(x, Y ) ≤ r}

the open, resp. closed ball of radius r and center Y . Note that Y1 ⊂ Y2 implies
Br(Y1) ⊂ Br(Y2). This implies that Br(Y ) ∪ Br(Z) ⊂ Br(Y ∪ Z), while, conversely, for
any x ∈ Br(Y ∪ Z), we must have r′ := d(x, Y ∪ Z) < r, hence, for all s > r′, there must
be v ∈ Y ∪Z with d(x, v) < s, and, in particular, there must be v in either Y or Z so that
d(x, v) < r, i.e., x must be in Br(Y )∪Br(Z). This proves that Br(Y ∪Z) = Br(Y )∪Br(Z),
and, in particular,

Br(Y ) =
⋃

y∈Y

Br(y).

H.P.(9) Verify that Br(Y ) deserves the epithet “open”, and B−
r (Y ) the epithet “closed” (Hint: Show that

d(·, Y ) is continuous), but that B−
r (Y ) 6= Br(Y )− is possible. (Hint: X = integers with the absolute value

metric).

H.P.(10) Verify that B as defined for a ms satisfies the two properties (2) and (5) of a neighborhood system.
(Hint, consider Y = {t} in the previous homework.)

H.P.(11) When algebraists refer to the natural topology on the collection A of all formal power series

f =:
∑

α∈Zd
+

f̂(α)Xα in d variables with real or complex coefficients, they mean the topology given by the

metric A × A → R : (f, g) 7→ 1/ grade(f − g), with grade f := inf{|α| : f̂(α) 6= 0} and |α| =
∑

i
αi.

(i) Prove that d is indeed a metric. (ii) Show that the topology is equivalent to the translation-invariant

topology whose neighborhood system at 0 is (Mk := {f ∈ A : f̂(α) = 0, |α| ≤ k} : k ∈ N). (iii) Prove that

C ∈ L(A, Y ) is bounded if and only if C : f 7→
∑

|α|<k
f̂(α)cα for some c ∈ Y

{α∈Zd
+

:|α|≤k}
and some k ∈ N.

The closure Y − of a subset Y of X can be characterized in terms of d:

(10)

x ∈ Y − ⇐⇒ ∀{ε > 0} ∃{y ∈ Y } d(x, y) < ε

⇐⇒ d(x, Y ) = 0

⇐⇒ ∀{r > 0} x ∈ Br(Y )

⇐⇒ x ∈
⋂

r>0

Br(Y ).
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Thus, the last term shows an example of an intersection of open sets that is not open.
Y is bounded := ∃{r, x} Y ⊆ Br(x). Since Br(x) ⊆ Br+d(x,y)(y), the boundedness

does not depend on the choice of x, but the radius r certainly will. We could measure the
size of Y by the smallest possible r (even if it does not exist). Instead, one measures the
size of such a set Y by the diameter of Y :

diamY := sup
x,y∈Y

d(x, y) ≤ 2 inf{r : Y ⊆ Br(x)}.

E.g., diam Br(x) ≤ 2r.

H.P.(12) Prove that the last two inequalities could be strict. (Hint: (Z, | · |).)

(11) Lemma. diamY = diamY −.

Proof. ∀{x, y ∈ Y −, r > 0} ∃{x′, y′ ∈ Y } d(x, x′), d(y, y′) < r, therefore

|d(x, y)− d(x′, y′)| ≤ |d(x, y)− d(x, y′)| + |d(x, y′) − d(x′, y′)| ≤ 2r.

Conclusion: {d(x, y) : x, y ∈ Y −} ⊆ {d(x′, y′) : x′, y′ ∈ Y }−. Therefore

diam Y − ≤ sup
x′,y′∈Y

d(x′, y′) = diam Y ≤ diam Y −,

the first inequality using the fact that sup Z = sup Z− for Z ⊆ R (cf. (8)).

H.P.(13) Prove that ∀{z, Y ⊆ X} Y ⊆ B−
d(z,Y )+diam Y

(z).

H.P.(14) Show that (11)Lemma is a special case of (8)Proposition.

** modulus of continuity **

t

(12) Figure. Construction of ωf,t (heavy) as the ‘sunrise function’
h 7→ max{fr(s), fl(s) : s ≤ h} of fr : h 7→ |f(t + h) − f(t)|
(dashed) and fl : h 7→ |f(t − h) − f(t)| (dotted).

In a ms, we have the following quantitative description of continuity. For T, U ms’s,
t ∈ T , and f : T → U , the function

ωf,t : R+ → R+ : h 7→ sup
d(s,t)<h

d(f(s), f(t))
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is the modulus of continuity of f at t. If the supremum is also taken over t, we get

ωf (h) := sup
t∈T

ωf,t(h) = sup
d(s,t)<h

d(f(s), f(t)),

the (uniform) modulus of continuity of f . These moduli are nondecreasing, nonnega-
tive functions, hence ωf,t(0+) := limh→0 ωf,t(h) and ωf (0+) are well-defined.

f is continuous at t iff ωf,t(0+) = 0 ; f is uniformly continuous iff ωf (0+) = 0. The
modulus of continuity gives the continuity information of practical interest: If we want
to ensure that the uncertainty in f(N) is < r, i.e., that f(N) ⊆ Br(f(t)), then we must
choose N in Bw(t) with w ≤ ω−1

f,t (r). (Here we set ω−1(r) := ∞ in case suph ω(h) < r.)

H.P.(15) Sketch ωf,0 on [0 . . 1] for f that vanishes at 0 and agrees with (i) t 7→ sin(1/t) (ii) t 7→ t sin(1/t)

for t 6= 0. Also, sketch ωf on [0 . . 3] for f := (1 + ()2)−1.

H.P.(16) For f : [a . . b] → R and t := (a = t1 < t2 < · · · < tℓ+1 = b), let Ptf denote the broken line
interpolant to f at t, i.e., Ptf is the unique continuous piecewise linear function on [a . . b] with breakpoints
t2, . . . , tℓ that agrees with f at t. Prove that supx∈[a..b] |f(x) − Ptf(x)| ≤ ωf (maxj(tj+1 − tj)).

The moduli of continuity of two functions are close if the functions are uniformly close.
Precisely:

(13) Lemma. ωf,t ≤ ωg,t + 2d∞(f, g), with

d∞(f, g) := sup
t∈T

d(f(t), g(t)).

Proof: d(f(s), f(t)) ≤ d(f(s), g(s)) + d(g(s), g(t)) + d(g(t), f(t))
≤ d∞(f, g) + d(g(s), g(t)) + d∞(f, g).

(14) Corollary. If f : T → U is in the closure, in the sense of the metric d∞, of C(T → U),
then f ∈ C(T → U).

Proof: By the lemma, ωf,t ≤ ωg,t+2d∞(f, g), and therefore ωf,t(0+) ≤ 2d∞(f, g)
for every continuous g. Since, by assumption, I can make d∞(f, g) as small as I please,
ωf,t(0+) = 0 follows.

Continuous functions are classified by just how fast ωf (h) approaches 0 as h → 0.
For example, we say that f is Lipschitz continuous in case ωf (h) ≤ κh, all h, for some
constant κ, called a Lipschitz constant for f .

E.g., the function d(·, Y ) is Lipschitz continuous (with constant 1). Any continuously
differentiable function f on the interval [a . . b] is Lipschitz continuous since

|f(s) − f(t)| = |
∫ s

t

Df(u) du| ≤ ‖Df‖∞|s − t|,

with the Lipschitz constant equal to the absolute max of the derivative. For 0 < α < 1, the
function ()α : [0 . . 1] → [0 . . 1] : t 7→ tα fails to be Lipschitz continuous since its modulus
of continuity is ω()α(h) = hα.

H.P.(17) Prove that f : [0 . . 1]n → R is constant in case ωf ≤ const()α for some α > 1.

H.P.(18) Prove that d(·, Y ) is Lipschitz continuous with constant 1.
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** convergence of sequences **

To be precise, a sequence (xn) = (x1, x2, . . .) in a ms X is a map

x : N → X : n 7→ xn

from the natural numbers into X .
We say that (xn) converges to y and write limxn = y in case y ∈ X and

lim d(xn, y) = 0. If also limxn = z, then d(y, z) ≤ d(y, xn) + d(xn, z) n→∞−−−−−→ 0, so
y = z. If ranx ⊆ Y (i.e., ∀{n} xn ∈ Y ) and y = limxn, then y ∈ Y −. In other words,
convergence of sequences in a metric space behaves just like convergence of sequences of
real numbers.

Remarks. It is worthwhile (in view of more general topologies you might run into
later) to pursue a little further the (rigorous) view that a sequence (xn) in the ms X is
the map x : N → X : n 7→ xn, and so to think of convergence as a question of “continuity
at infinity”. For, we have y = limxn exactly when

∀{ε > 0} ∃{n ∈ N} ∀{m > n} xm ∈ Bε(y).

Hence, if we define
>n := {m ∈ N : m > n},

then this says that
∀{ε > 0} ∃{n ∈ N} x(>n) ⊆ Bε(y),

with
x(>n) = x>n = {xm : m > n}

the n-tail of the sequence x. So, even more succinctly, limxn = y iff

xB(∞) ≻ B(y),

where
B(∞) := {>n : n ∈ N}

plays the role of the neighborhood system “at ∞” (even though ∞ 6∈ N).
This makes explicit that, as far as the limit is concerned, the essential feature of a

sequence x is the collection of its n-tails.
In these terms, it is obvious that, for f : X → U continuous at y = limxn, we have

lim f(xn) = f(y) ; it’s just the continuity at ∞ of the composite map N
x−−→ X f−−→ U . Of

course, you can (and should) verify this directly.
Note that a convergent sequence is necessarily bounded, i.e., lies entirely in some

ball, since, for every r > 0, some n-tail must lie in Br(x∞), hence the entire sequence must
lie in the ball of radius r + maxj≤n d(xj , x∞) around the limit, x∞.

Convergence of a sequence makes sense in a general ts X : We say that x : N → X
converges to y in case {x>n : n ∈ N} ≻ B(y). But ms’s (and certain other ts’s) are special
in that the topology can be characterized in terms of sequence behavior. For example, the
closure Y − of a subset Y in the ms X is its sequential closure, i.e., the set of all limits
of sequences in Y . Here is another example:
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(15) Lemma. X, Y ms’s, f : X → Y . Then

f is continuous at z ⇐⇒ lim
n

xn = z implies lim
n

f(xn) = f(z).

Proof: We just proved ‘=⇒’. The proof of ‘⇐=’ is by contradiction: If f fails to
be continuous at z, then ∃{r > 0} ∀{s > 0} f(Bs(z)) 6⊆ Br(f(z)), i.e., ∃{r > 0} ∀{s >
0} ∃{xs ∈ Bs(z)} with f(xs) 6∈ Br(f(x)), i.e., lims→0 xs = z yet f(xs) 6∈ Br(f(z)) for any
s.

In more general ts’s, for example in C([a. .b]) with the topology Bpw (see (4)Example)
of pointwise convergence, the convergence behavior of sequences is not sufficient to charac-
terize the topology (see H.P.(20)). More general ‘sequences’ called ‘nets’, or, equivalently,
‘filter bases’ are needed. The latter concept seems more straightforward: A filter basis
is a collection C of nonempty subsets that satisfies (2)Neighborhood Assumption 1, i.e.,
C ≻ C∩·C. The filter basis C converges to t if C ≻ B(t). This is related to the fact that,
in ts’s more general than ms’s, it may be impossible to find an equivalent nbhdsystem that
is totally ordered by inclusion.

H.P.(19) Prove that convergence of a sequence n 7→ fn in (FT ,Bpw) is, indeed, pointwise convergence,
i.e., f = limn→∞ fn in this topology if and only if, for all t ∈ T , the numerical sequence n 7→ fn(t) converges to
the number f(t).

H.P.(20) Consider the space X := b(T ) of all bounded real-valued functions on some uncountable set T
(e.g., T = [0 . . 1]), with the topology of pointwise convergence (cf. (4)Example and H.P.(19)). Let X0 := {f ∈
X : # supp f < ∞}. Prove that X0 is dense in X, but that the sequential closure of X0 is a proper subset of X,
namely Xc := {f ∈ X : supp f is countable}.

H.P.(21) Let T and U be ts’s, f : T → U, t ∈ T . Prove: f is continuous at t iff, for every filter basis
C in T , limC = t implies lim fC = f(t). (Hint: if f is not continuous at t, then, for some N ∈ B(f(t)),

{B\F−1N : B ∈ B(f(t))} is a filter basis.)

Application: Contraction maps and fixed point iteration

(16) Problem. X ms, f : X → Y continuous. Given y ∈ Y , find x ∈ X s.t. f(x) = y.

One can usually solve this basic problem by turning the given equation f(?) = y into
an equivalent fixed point equation

? = g(?)

for some continuous g : X → X (which depends on the given y, of course), and then
generating a sequence (xn) of approximations to the solution x by fixed point iteration,

xn+1 := g(xn), n = 0, 1, 2, . . . ,

starting with some initial guess x0.

Example 1. X = R
m, f = A ∈ R

m×m, i.e., we are solving a linear system of
equations. This can be brought into equivalent fixed point form by a splitting A = M−N ,
with M invertible. Then Mx = Nx + y, or, x = M−1Nx + M−1y =: g(x). I trust that
your Numerical Analysis background includes a discussion of this fixed point iteration.
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Example 2. X = C([a . . b]), f(x) := x −
∫ b

a
k(·, t)x(t) dt, leads to an integral

equation of the second kind. If the kernel k is suitable, then fixed point iteration with

g(x) :=
∫ b

a
k(·, t)x(t) dt + y will converge to the solution of the integral equation. I come

back to this later, in Chapter VIII.

Example 3. The equation x2 = a (with x, a ∈ R+) has the well known equivalent
fixed point form

x = g(x) := (x + a/x)/2.

Starting at any positive x0, the resulting fixed point iterants x0, x1, x2, . . . seem to cluster
at the unique fixed point of g, i.e., at the unique x with x = g(x).

Is there such a point?

If the sequence (xn) generated by fixed point iteration converges, to some x∞, then,
by the assumed continuity of g, g(x∞) = x∞. So, in general, the limit of such an iteration
sequence is a sought-for fixed point. But how can we ensure convergence?

A computationally effective way is to prove (if possible) that g is a (proper) con-
traction, i.e., g is Lipschitz continuous with Lipschitz constant κ < 1. This means that

∀{x, z ∈ X} d(g(x), g(z)) ≤ κd(x, z)

for some κ < 1. In these circumstances, g has at most one fixed point, i.e., we have
uniqueness: Indeed, if both x = g(x) and z = g(z), then

d(x, z) = d(g(x), g(z)) ≤ κd(x, z) ≤ d(x, z),

and this shows that κd(x, z) = d(x, z) which, given that |κ| < 1, is possible only if d(x, z) =
0, i.e., x = z.

Further,
d(xn+1, xn) = d(g(xn), g(xn−1)) ≤ κd(xn, xn−1),

and so, by induction,

d(xn+1, xn) ≤ κrd(xn+1−r, xn−r), r = 1, 2, . . . .

So, in particular,
d(xn+1, xn) ≤ κnd(x1, x0).

Consequently, for m > n,

d(xm, xn) ≤ d(xm, xm−1)+d(xm−1, xm−2)+ · · · +d(xn+1, xn)
≤

(
κm−1 + κm−2 + · · · + κn

)
d(x1, x0)

i.e.

(17) d(xm, xn) ≤ κn κm−n − 1

κ − 1
d(x1, x0).
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This shows (given that 0 ≤ κ < 1 ) that

lim sup
m,n→∞

d(xm, xn) = 0,

or, equivalently, that
lim

n→∞
diam x>n = 0.

A sequence having this property is said to be a Cauchy sequence, or, for short, to be
Cauchy. If we know nothing else, then we cannot conclude anything else.

For example, the set X := Q ∩ [1 . . 2] of rational numbers in the interval [1 . . 2] is a
metric space under the usual metric d(x, y) := |x − y|. Starting with x0 = 2, fixed point
iteration with the function

g(x) := (x + 2/x)/2

of Example 3 (with a = 2) generates a sequence (xn) of numbers all in X . This sequence
is easily seen to be Cauchy since |Dg| ≤ 1/2 (on [1 . .2]), therefore |g(x)− g(y)| ≤ |x−y|/2
(there). Yet the sequence fails to converge, since its limit would have to be the number√

2 and this number is not rational.
This motivates the discussion of

** completeness **

For any sequence x : N → X in a ms X , diam x>n decreases (or, at least, does not
increase) as n increases. Therefore, limn diam x>n = 0 iff ∀{r > 0} ∃{n} s.t. diam x>n <
r, i.e., s.t. , for all m, m′ > n, d(xm, xm′) < r.

If x : N → X converges, say to y, then ∀{r > 0} ∃{n} s.t. x>n ⊆ Br(y), therefore, x
is Cauchy. In a complete ms, the converse holds as well.

(18) Definition. X ms is complete := every Cauchy sequence converges (to some point
in X).

The failing of the particular metric space Q ∩ [1 . . 2] in the earlier example, or of Q

itself, is that it is not complete. By completing the rationals, we obtain the reals. This
process of completing a metric space consists of adjoining, if necessary, points to the space
to provide a limit for every Cauchy sequence. This can always be done in a reasonable
way, i.e., so that the metric can be extended in a reasonable way to this larger set. Here
is the naive approach.

We start off with the collection X ′ of all Cauchy sequences in X . We can embed X
in X ′ by associating y ∈ X with the constant sequence N → X : n 7→ y. On X ′, we define

d′ : X ′ × X ′ : (x, y) 7→ lim
n→∞

d(xn, yn),

and this is well-defined since

d(xn, yn) − d(ym, xm) = d(xn, yn) − d(xm, yn) + d(xm, yn) − d(xm, ym),

hence diam{d(xm, ym) : m > n} ≤ diam x>n + diam y>n, showing that the real sequence
n 7→ d(xn, yn) is Cauchy, hence converges. On the other hand, while d′ is symmetric and
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satisfies the triangle inequality, it fails to be definite since, for any two sequences x and y
with the same limit, d′(x, y) = 0.

To take care of this, one groups the elements of X ′ into classes:

〈x〉 := {y ∈ X ′ : d′(y, x) = 0},

and observes that these classes are disjoint (since y ∈ 〈x〉 =⇒ 〈y〉 ⊆ 〈x〉), hence the map

lim : X ′ → X ′′ := {〈x〉 : x ∈ X ′} : x 7→ 〈x〉

is well-defined.
It is now easy to verify (using the continuity of d, i.e., the fact that x → x′ and y → y′

implies that d(x, y) → d(x′, y′)) that

d′′ : X ′′ × X ′′ : (〈x〉, 〈y〉) 7→ d′(x, y)

is well-defined (in particular, does not depend on the particular representatives x ∈ 〈x〉
and y ∈ 〈y〉 used here in d′(x, y)), and a metric, and reduces to d on X as embedded in
X ′′, and X is dense in X ′′, and, finally and most importantly, X ′′ is complete. This says
that, whatever new Cauchy sequences we might now be able to build in addition to those
already in X , their limit is already in X ′′, i.e., we need not go through this process again.

H.P.(22) Prove that the map X → X′′ : y 7→ 〈(y)〉 is onto if and only if X is complete.

H.P.(23) Given the Cauchy sequence n 7→ 〈x(n)〉 in X′′, determine its limit. (Hint: Show first that one

may assume wlog that the diameters of the tailends of the sequence x(n) go to zero uniformly in n; then try the

sequence (x(n)
n : n ∈ N).)

H.P.(24) Prove: The ms X is complete iff every decreasing sequence A1 ⊇ A2 ⊇ · · · of nonempty closed
sets with diam An → 0 has a nontrivial intersection.

From a practical point of view, this only provides a gain in neatness since these
additional points can usually not be constructed anyway, but must be approximated by
the terms of a sequence converging to it, i.e., by the terms of a Cauchy sequence that gave
rise to that point in the first place. Don’t underestimate neatness, though. Completeness
will lead us to the uniform boundedness principle which allows us to connect convergence
to stability in various Numerical Analysis processes.

The scalars F with the usual metric are complete. More generally, F
m with any of the

p-metrics mentioned earlier is complete. More generally:

(19) Proposition. The metric space

b(T )

of all bounded real (or complex) functions on T with the uniform metric

d∞(f, g) := ‖f − g‖∞
is complete.

Proof: If x : N → b(T ) is Cauchy, then, for all t ∈ T , N → F : n 7→ xn(t) is scalar
Cauchy, hence, by the completeness of F, the function

x∞ : T → F : t 7→ limxn(t)
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is well defined. Further, for any t,

(x∞ − xn)(t) = (x∞ − xm)(t) + (xm − xn)(t),

therefore, for any m ≥ n,

(x∞ − xn)(t) ≤ |(x∞ − xm)(t)| + diam x≥n.

By letting m → ∞, this shows that

‖x∞ − xn‖∞ ≤ diam x≥n n→∞−−−−−→ 0.

In particular, ‖x∞‖∞ ≤ ‖xn‖∞ +diam x≥n < ∞, i.e., x∞ ∈ b(T ), and so x∞ = limxn (in
the metric of b(T ) ).

(20) Lemma. A closed subset of a complete ms is complete.

In particular, if T is ms, then bC(T ) := b(T ) ∩ C(T ) is complete, since bC(T ) is a

closed subset of b(T ), by the Corollary to (13)Lemma.

** summary on contraction **

(21) Proposition. A proper contraction g (with Lipschitz constant κ) on a complete
metric space X has exactly one fixed point, y say. This point is the limit of any sequence
x0, x1, x2, . . . of iterates generated by fixed point iteration starting from an arbitrary initial
guess in X . The distance of xn from y can be estimated by

d(y, xn) ≤ d(x1, x0)κ
n/(1 − κ).

This estimate follows from (17) by letting m → ∞.

You see here a good opportunity for using the equivalence of topologies, specifically
the equivalence of certain metrics. For, while equivalent metrics give the same convergent
sequences, the Lipschitz constant κ depends very much on the details of the particular
metric. Here are two classical examples.

Linear iteration If g : R
n → R

n : x 7→ Mx for some M ∈ R
n×n, then its Lipschitz

constant is the norm ‖M‖ := supx ‖Mx‖/‖x‖ of the matrix M with respect to the norm
‖ · ‖ that provides the metric for R

n (see the next chapter, particularly the material on
approximate inverses). The central result concerning such linear iteration is that it
converges iff ‖M‖ < 1 in some norm.

Picard iteration occurs in the discussion of first-order ODEs: Assume f : [0 . .
b]×[−M . .M ] → R continuous, and uniformly Lipschitz continuous in its second argument,
i.e., ∃{κ} ∀{r ∈ [0 . . b], s, t ∈ [−M . . M ]} |f(r, s) − f(r, t)| < κ|s − t|. Given the initial
value c, we are seeking

(22) x ∈ C(1)([0 . . b]) s.t. x(0) = c, Dx(t) = f(t, x(t)) for t ∈ [0 . . b].
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Picard’s iteration function

g(x) := c +

∫ ·

0

f(s, x(s)) ds

seems a natural one for the construction of a solution since x satisfies (22) exactly when x
is a fixed point of g. But, in the simple metric d∞, we only get

d∞(g(x), g(y)) ≤ max
t

∫ t

0

|f(s, x(s))− f(s, y(s))| ds ≤ bκd∞(x, y),

hence get a proper contraction only for sufficiently small κ and/or b. Now consider the
equivalent metric d(x, y) := maxt e−at|x(t) − y(t)|. Since

∫ t

0

|f(s, x(s))− f(s, y(s))| ds ≤
∫ t

0

easκe−as|x(s) − y(s)| ds ≤
∫ t

0

eas ds κd(x, y),

we obtain d(g(x), g(y)) ≤ maxt e−atκ(eat − 1)/a d(x, y). Hence, with a sufficiently large
(e.g., a = 2κ), g is a proper contraction, and so (21)Proposition becomes applicable,
providing for existence and uniqueness of a solution of (22), provided we can ensure that
x([0 . .b]) ⊂ [−M . .M ] implies that also g(x)([0 . .b]) ⊂ [−M . .M ]. For this (cf. (23)Figure),
observe that g(x)(s)−c ∈ s[min f . . max f ], with, e.g., min f := min f([0 . .b]× [−M . .M ]),
hence we are ok in case c + b[min f . . max f ] ⊂ [−M . . M ]. Otherwise, we either have to
cut down b and/or try a more sophisticated analysis (using a Gronwall inequality).

M

−M

c

0 b

c + b max f

c + b min f

(23) Figure. Bounds relevant in Picard iteration.

H.P.(25) Prove that the two metrics used in the Picard example lead to equivalent topologies.
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Compactness and total boundedness

** limit points **

In the best of circumstances, a numerical method generates a Cauchy sequence, i.e.,
a sequence (xn) with diam(x>n) → 0. At times, though, one has to be satisfied with

a sequence (xn) that settles down in the much weaker sense that the set
⋂

n∈N

(
x>n

)−

of its limit points is not empty. If y = limxn, then d(y, x>n) = 0 for all n, therefore

y ∈ ⋂
n∈N

(
x>n

)−
. In fact, in this case (as for any Cauchy sequence), diam(x>n)− =

diam(x>n) → 0, hence y is the only limit point of (xn). In general, a sequence may have
fewer or more limit points.

For example, the sequence given by xn := (−1)n, all n, has both 1 and −1 as its limit
points, and none other, while the sequence given by

xn := n/10k if 10k−1 ≤ n < 10k

has every point in [(.1) . . 1] as limit point (and none other), and the sequence given by
xn = n, all n, has none.

H.P.(26) Prove that any limit point of a sequence is a closure point of its range, but that the converse
does not hold.

Equivalently, y is a limit point of the sequence (xn) iff d(y, x>n) = 0 for all n. Thus, y is
a limit point iff, for every n, there is an mn > mn−1 (with m0 := 0) so that d(y, xmn

) < 1/n
(since, whatever mn−1 might be, the mn−1-tail of x would have y in its closure). In more
conventional terms, this states that some subsequence of (xn) converges to y. We call
the ms X sequentially compact if every sequence has limit points.

A standard example of a sequence (xn) without limit points is one for which r :=
infn6=m d(xn, xm) > 0, since no ball of radius < r/2 can contain more than one point from
that sequence.

H.P.(27) Prove: (i) Any Cauchy sequence having a limit point converges; and (ii) A sequence converges
iff every subsequence has the same nonempty set of limit points.

For any real sequence n 7→ xn, the related sequence n 7→ sup x>n is monotone nonin-
creasing, hence converges if it is bounded below. In that case, its limit is called the limit
superior of (xn), in symbols

lim sup
n→∞

xn := lim
n→∞

sup x>n.

Correspondingly, the limit inferior is the limit of the sequence n 7→ inf x>n. Any limit
point of (xn) lies between these the two extreme limit points of the sequence.

** compactness **

Completeness ensures existence of a limit in case the sequence is Cauchy. Sequential
compactness ensures the existence of a limit point for every sequence. I now discuss the
relationship of sequential compactness of a ms to the more general notion of compactness
of a subset of a ts. There are various equivalent definitions of compactness. The standard
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definition is: The subset Y of the ts (X,B) is compact := Every open cover O for Y
contains a finite subcover. This phrase means that, if

Y ⊆ ∪O :=
⋃

O∈O

O

for some collection O of open sets, then already

Y ⊆ ∪O′

for some finite subcollection O′ of O.
This is a technically convenient definition. For example, it is easy (as you should

verify) to prove the

(24) Lemma. If f ∈ C(X → U) and Y ⊆ X is compact, then f(Y ) is compact.

or the

(25) Lemma. Any closed subset Y of a compact set X is compact.

Proof: Any open cover for the closed set Y becomes an open cover for the entire
set after adjunction of the open set X\Y . After removal, if need be, of X\Y from the
resulting finite subcover for the compact set X , we must have a finite cover for Y , from
the original cover for Y .

Here is a final example of the efficiency of the above definition of compactness.

(26) Lemma. A continuous function on a compact ms is uniformly continuous.

Proof: Let f ∈ C(T → U), with T, U ms’s, and T compact. We must show that
ωf (0+) = 0. Let ε > 0 be arbitrary. We must prove that ωf (h) < ε for some h > 0 (hence
ωf (h′) < ε for all h′ ≤ h). Since f is continuous, all the numbers ht := (ωf,t)

−1(ε/2) are
positive, hence {Bht/2(t) : t ∈ T} is an open cover for T . Since T is compact, there must
already be a finite W so that {Bht/2(t) : t ∈ W} covers T . It follows that h := mint∈W ht/2
is positive, and that, for any d(s, t) < h, there is some w ∈ W with t ∈ Bhw/2(w),
therefore both t and s are in Bhw

(w), hence d(f(s), f(t)) ≤ d(f(s), f(w))+d(f(w), f(t)) <
ε/2 + ε/2 = ε.

On the other hand, the purpose to which compactness is most often put is easier to
discern if you write down the equivalent definition in terms of closed sets, recalling that
a set is closed iff its complement is open. This equivalent definition of the compactness
of Y reads: If Y fails to have any point in common with ∩A (for some collection A of
closed sets), then there must already be a finite subcollection A′ ⊆ A so that ∩A′ has
no point in common with Y . To put this implication the other way: In order to know
that (∩A) ∩ Y 6= {} for some collection A of closed sets, it is sufficient to know that A is
centralized wrto Y , i.e., has the socalled

(27) Finite Intersection property w.r.to Y . ∀{ finite A′ ⊆ A} (∩A′) ∩ Y 6= {}.
This equivalent characterization of the compactness of Y shows that compactness is

associated with the existence of certain points: Think of each A ∈ A as the set of points
satisfying a certain condition. Then compactness allows us to conclude the existence of a
point in Y satisfying infinitely many conditions as soon as we can show that every choice
of finitely many conditions is satisfied by some point in Y . For example,
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(28) Proposition. If f ∈ C(X → R) and X is compact, then there is x ∈ X s.t.
f(x) = sup f(X).

Proof. By definition of M := sup f(X) := supx∈X f(x), we have

∀{r < M} ∃{x ∈ X} f(x) ≥ r.

This says that the collection of sets

f−1[r . . M ], r < M,

has the Finite Intersection Property, while the continuity of f ensures that each such set
is closed (as the inverse image of a closed set). Therefore, by compactness, one can find
x ∈ ∩r<Mf−1[r . . M ], i.e., ∃{x ∈ X} ∀{r < M} r ≤ f(x) ≤ M . But this says that
f(x) = M .

Remark. The full force of continuity of f is not needed here. It is only required
that f−1[r . . ∞) be closed for every r. A real-valued function having this property is
called upper semicontinuous (why?). By considering −f instead, we also find x ∈ X
for which f(x) = inf f(X), and can do that already if f is merely lower semicontinuous,
i.e., f−1(−∞ . . r] is closed for every r.

(29) Corollary. For a compact ms T , bC(T ) = C(T ).

Here are further examples of the use of compactness for proving existence:

(30) Proposition. A compact set is sequentially compact.

Indeed, for any sequence x : N → X , the collection of closed sets (x>n)− is decreasing
(i.e., (x>n)− ⊇ (x>m)− for n ≤ m), hence trivially has the Finite Intersection Property,
therefore

⋂
n∈N(x>n)− is nonempty by compactness, i.e., the sequence has limit points.

H.P.(28) Prove that, in a ms, any limit point of a sequence is the limit of some subsequence (of that
sequence). Can you give an example of a ts in which this conclusion does not hold? (see H.P. (V.15))

(31) Proposition. A compact set Y in a ms X provides best approximations for every
x ∈ X .

Indeed, apply (28)Proposition to the function f : Y → R : y 7→ −d(x, y). In fact, this
conclusion can already be reached if Y is merely boundedly compact, i.e., B−

r (x)∩Y is
compact for every (finite) r and x.

We observed earlier (see (25)Lemma) that a closed subset of a compact set is compact.
The complementary statement holds under additional assumptions.

(32) Lemma. If Y ⊆ X is compact and X is, e.g., a ms, then Y is closed.

Proof: Let z ∈ Y −. Then every nbhd of z intersects Y , hence so does the closure
of every nbhd of z, therefore, by (2),

B−(z) := {N− : N ∈ B(z)}
has the FIP wrto Y . Since Y is compact, this implies that (∩B−(z)) ∩ Y 6= {}. Hence,
any assumption (e.g., that X is a ms) that guarantees that ∩B−(z) = {z} finishes the
proof.
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(33) Note. A ts with the property that ∩B−(x) = {x}, or, equivalently, the prop-
erty that y 6= z =⇒ {} ∈ B(y)∩·B(z), is called Hausdorff. In particular, any ms is
Hausdorff, since y 6= z implies that 2r := d(y, z) > 0, hence Br(y) and Br(z) are noninter-
secting nbhds of y and z, respectively.

H.P.(29) (a) Let X be ts. Prove: ∀{x ∈ X} the set {x} in the ts X is closed iff ∀{x ∈ X} ∩ B(x) = {x}.
A ts in which {x} is closed for every x ∈ X is called a T1-space.

(b) Show by an example that a T1-space need not be a T2-space, i.e., Hausdorff.
(c) Show by an example that a T0-space, i.e., a space in which, for every x 6= y, some nbhd of x excludes

y or else some nbhd of y excludes x, need not be a T1-space.

H.P.(30) Prove: The ts X is Hausdorff iff every filter basis has at most one limit. (Hint: If {} 6∈
B(x)∩·B(y), then the collection of all finite intersections of nbhds of x and of y is a filter basis that converges to
both x and y.)

Finally, if Y is closed and compact, then Y is compact in any Z containing it, since
then, for any subset A of Z closed in Z, A ∩ Y is closed.

H.P.(31) Prove: X, U ms’s, X compact. f : X → U 1-1, onto, continuous =⇒ f−1 continuous.

** total boundedness **

In a ms (X, d) (and in certain other ts’s), compactness is closely related to total
boundedness. Recall that a subset Y ⊆ X is bounded if Y ⊆ Br(x) for some r and some
x.

(34) Definition. Y ⊆ X is totally bounded := ∀{r > 0} ∃{finite U ⊆ X} s.t. Y ⊆
Br(U) :=

⋃
x∈U Br(x). Any such finite set U for given r is called an r-net for Y .

Any convergent sequence (or, more precisely, the set consisting of the entries of a
convergent sequence) is totally bounded. In contrast, any set containing a sequence (xn)
with infn6=m d(xn, xm) > 0 fails to be totally bounded. For example, the elements en :
N → R : i 7→ δin of the ms ℓ1 are each at distance 2 from each other, yet all lie in the
bounded set B−

1 (0), hence the latter fails to be totally bounded.

H.P.(32) Prove: If Y is totally bounded, then the required r-nets can always be chosen from Y . (But,
in verifying total boundedness, it is at times handy not to have to insist on that.)

(35) Theorem. (X, d) ms. X is compact iff X is complete and totally bounded.

Proof: compact =⇒ complete: Any sequence (xn) in X has a limit point, say
y, by compactness. If the sequence is also Cauchy, then d(xn+1, y) ≤ diam(x>n)− =
diam x>n n→∞−−−−−→ 0.

compact =⇒ totally bounded: ∀{r > 0} the collection {Br(x) : x ∈ X} is an open
cover for X , hence must contain a finite subcover, by compactness.

complete & totally bounded =⇒ compact: The proof is an abstract version of the
familiar argument by contradiction for the Heine-Borel Theorem, as follows.

Suppose that O is an open cover of X containing no finite subcover. Now, by as-
sumption, any set in X can be covered by finitely many balls of a given radius, hence if
each of these balls were finitely coverable, then so would be the entire set. It follows that
any Z ⊆ X that cannot be finitely covered from O contains subsets of arbitrarily small
(positive) diameter that also cannot be finitely covered from O. This permits inductive
construction of a decreasing sequence X = Z1 ⊇ Z2 ⊇ · · · of sets with limn diam(Zn) = 0
and none finitely coverable from O; in particular, none is empty. However, X is complete
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by assumption, hence (see H.P. (24)) there is some z ∈ ∩nZ−
n , and therefore, certainly,

some O ∈ O containing z and, O being open, therefore also containing Br(z) for some
r > 0, hence z ∈ Z−

n ⊂ O as soon as diam(Zn) < r, showing that all but finitely many of
the Zn are finitely coverable from O after all.

H.P.(33) Prove: A totally bounded sequence (i.e., a sequence with a totally bounded range) has a
Cauchy subsequence. (You might have fun supplying the details for the following auxiliary argument: If there
are no Cauchy subsequences, then X := {xn : n ∈ N} = ran(xn) is complete, hence compact, hence (xn) has
convergent subsequences.)

(36) Corollary. Let X ms. Then: X is compact ⇐⇒ X is sequentially compact.

Proof. By (30)Prop., compact =⇒ sequentially compact. For the converse, assume
that X is not compact. Then X is not complete or else X is not totally bounded. If X is
not complete, then it contains a Cauchy sequence without a limit, hence without a limit
point (since, by H.P.(II.27), any limit point of a Cauchy sequence is necessarily its limit),
so X is not sequentially compact. If X is not totally bounded, then, for some r > 0, no
matter how we choose the finite set U , X fails to be covered by Br(U). This permits choice
of a sequence u1, u2, . . . in X in that order so that

un ∈ X\Br(u<n), n = 1, 2, . . . .

This implies that d(un, um) ≥ r for all n 6= m, hence (un) has no limit point.

** examples of compact sets **

(37). X = R
m with uniform metric, Y ⊆ X . Y is compact ⇐⇒ Y is closed and bounded.

Proof: ‘=⇒’: true in any metric space.
‘⇐=’: X complete and Y closed =⇒ Y complete. Also, any bounded set in R

m

is totally bounded. Here is a formal proof: Let

f : R
m → Z

m : x 7→
(
⌊x(i)⌋

)m

i=1

(with Z the integers and ⌊t⌋ := the largest integer no bigger than t). Then d(x, f(x)) ≤ 1
and #f(Br(0)) < ∞ for any finite r. Therefore, for any r > 0, fr : x 7→ rf(x/r) satisfies
d(x, fr(x)) ≤ r and fr(Bs(0)) is finite for any s. If now Y is bounded, then Y ⊆ Bs(0) for
some s > 0. But then, for any r > 0, Y ⊆ Br(U) with U := fr/2(Bs(0)).

Actually, this is a special case of

(38) Arzelà-Ascoli. Y ⊆ X = C(T ) with T a compact ms. Then
Y compact ⇐⇒ Y closed, bounded and equicontinuous, i.e., ωY := supf∈Y ωf

satisfies ω(0+) = 0.

Proof: ‘=⇒’: Since Y is bounded, Y ⊆ BM (0) for some M , hence ∀{f ∈ Y } ωf ≤
2M . Therefore ωY := supf∈Y ωf is well-defined and nondecreasing. Hence, ωf (0+) = 0 iff
∀{r > 0} ∃{h > 0} ωY (h) < r.

Let r > 0. For any f ∈ C(T ), ωf (0+) = 0 by the compactness of T (see (26)Lemma),
hence there is hf > 0 so that ωf (hf ) < r. Further, Y is totally bounded, hence there is
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some finite U so that Y ⊂ Br(U), while (by (13)Lemma) ωBr(f) ≤ ωf + 2r. Therefore,
h := minf∈U hf > 0 and

ωY (h) ≤ max
f∈U

ωBr(f)(h) ≤ max
f∈U

ωf (h) + 2r ≤ 3r,

and that is sufficient.
To be sure, the total boundedness is essential here. For example, for T = [0 . . 1] and

Y = {()α : α > 0}, we have ω(h) = supα>0 hα = 1, hence ω(0+) = 1 6= 0 in this example.
‘⇐=’: Since the metric of C(T ) is the restriction to C(T ) of the metric of b(T ), it is

sufficient to prove that Y is a compact subset of b(T ). For this, Y is complete (as a closed
subset of the complete ms C(T )) by (20)Lemma, and is totally bounded, by the following
Lemma.

(39) Figure. An r-net for a totally bounded set of functions.

(40) Lemma. If T is totally bounded, then any bounded and equicontinuous subset Y
of b(T ) is totally bounded.

Proof: Construct an r-net for Y in b(T ) as follows. Let h := ω−1(r/2) and let
{t1, . . . , ts} be an h-net for T . Further, let

Ei := Bh(ti)\Bh(t<i), i = 1, . . . , s.

Since Y is bounded, there is some finite interval I containing Y (T ). Choose an r/2-net W
for I. We claim that the (finite!) collection U of functions with values in W and constant
on each Ei is an r-net for Y : If f ∈ Y , let g be the function in U whose value on Ei is
within r/2 of f(ti), all i. Then, for t ∈ Ei, d(t, ti) < h, therefore

|g(t)− f(t)| ≤ |g(Ei) − f(ti)| + |f(ti) − f(t)| < r/2 + r/2.
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Remark. The essence of the proof is that the cartesian product of totally bounded
sets is totally bounded (in the product metric d((p, q), (p′, q′)) := d(p, p′)+d(q, q′) ).
H.P.(34) Extend the above proof of (40)Lemma to the case where b(T ) denotes all bounded functions on the
totally bounded ms T into some boundedly compact ms R, i.e., a complete ms in which closed and bounded
sets are totally bounded (instead of into R).

** Tykhonov **

In full generality, the topology of pointwise convergence (recall (4)Example) is not
metrizable, i.e., is not equivalent to a topology derived from some metric. This means that
we must look for different ways to establish compactness in such spaces. The basic result
is

(41) Tykhonov’s Theorem. The cartesian product X := ×t∈T Xt of an arbitrary
(nonempty) indexed collection (Xt : t ∈ T ) of compact ts’s is compact in the product
topology.

To be sure, we can think of x ∈ X as a map on T that associates t ∈ T with some
x(t) ∈ Xt, all t. Further, the product topology is, in effect, that of pointwise convergence.
Precisely, for x ∈ X ,

B(x) := { ×
t∈T

Nt : Nt

{
∈ B(x(t)), t ∈ S,
= Xt otherwise

}
, S ⊆ T, #S < ∞}.

Proof: Let A be a nonempty collection of closed sets having the FIP (= Finite
Intersection Property). We show that

⋂
A 6= {}.

For this, let C be a largest collection of sets having the FIP and containing A. (Such
a maximal collection exists by the Hausdorff Maximality Theorem; see the latter’s use in
the proof of the (IV.27) Hahn-Banach Theorem.) Then, C contains any set containing
some set in C. More interestingly, C is closed under finite intersections, i.e., contains the
intersection of any finitely many of its elements. Most interestingly, C contains any C ⊆ X
that intersects every set in C: indeed, the adjoining of such a set to C will not destroy the
FIP since, for any finite subset C′ of C, also

⋂
C′ is in C, hence is intersected by C.

Now set, for t ∈ T and C ⊆ X ,

C t := {x(t) : x ∈ C}.
Then, for each t ∈ T , {(C t)

− : C ∈ C} is a collection of closed sets having the FIP, hence,
by the compactness of Xt, there is some a(t) ∈

⋂
{(C t)

− : C ∈ C}. This implies that
every neighborhood Nt of a(t) intersects C t for every C ∈ C, therefore, the set

×
s∈T

{
Nt s = t,
Xs s 6= t

}

intersects every C ∈ C, hence is in C, by the latter’s maximality, hence so is the intersection
of finitely many such sets. Since the latter are the neighborhoods of a, this implies that
every neighborhood of a intersects every C ∈ C, hence a ∈ ⋂

C∈C C−. In particular,
a ∈

⋂
A.

We will only need here the following special case.

(42) Proposition. For an arbitrary (nonempty) set T and arbitrary closed and bounded
intervals It, the set X := ×t∈T It is compact in the topology of pointwise convergence.
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