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VI. Convexity

Convex sets

In Analysis, convex sets appear as sensible domains from which to single out solutions
of certain problems by extremizing convex fl’s. This chapter deals with the simple aspects
of this problem. Typical examples include the search for a point at which a given blm
takes on its norm, or for a ba from a convex set. In both of these examples, and in general,
the convexity of the unit ball in a nls plays an important role. In this chapter, F = R.

** convexity is local linearity **

Let X ls. For any two x, y ∈ X , we call

[x . . y] := {(1 − α)x + αy : α ∈ [0 . . 1]}

the (closed) interval spanned by x and y. A subset K of X is called convex if it is
closed under interval formation, i.e.,

x, y ∈ K =⇒ [x . . y] ⊆ K.

Thus convexity is a kind of local linearity. It follows that the intersection of convex sets
is convex and that any linear map preserves convexity, i.e., it maps convex sets to convex
sets.

The unit ball B as well as the closed unit ball B− in a nls X are convex since

‖(1 − α)x + αy‖ ≤ (1 − α)‖x‖ + α‖y‖ whenever α ∈ [0 . . 1].

** convex hull **

The convex hull
conv M

of the set M in the ls X is, by definition, the smallest convex set containing M , hence is
the intersection of all convex sets containing M .

For example, conv{x, y} = [x . . y] since the latter is convex and must be contained in
every convex set containing x and y. Also,

(1) conv{x, y, z} = [x . . [y . . z]] = [[x . . y] . . z]

since both sets must be contained in any convex set containing {x, y, z}, and the first
(hence, by symmetry, also the second) equals the 2-simplex

{[x, y, z]a : a ∈ R
3
+; ‖a‖1 = 1}.

Indeed, if u = xa(1) + ya(2) + za(3) with a nonnegative and a(1) + a(2) + a(3) = 1, then
either a(2) = 0 = a(3), hence u = x, or else u = v := xα+(1−α)(yβ +(1−β)z) with α :=
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102 VI. Convexity

a(1), β := a(2)/(a(2)+a(3)) ∈ [0 . .1], hence, either way, u ∈ [x . . [y . . z]], while, conversely,
any such v is of the form xa(1)+ya(2)+za(3) with a := (α, (1−α)β, (1−α)(1−β)) ∈ R

3
+

and ‖a‖1 = 1. One verifies similarly that the n-simplex

conv(x0, . . . , xn) := {[x0, . . . , xn]a : a ∈ R
n+1
+ ; ‖a‖1 = 1}

is the convex hull of {x0, . ., xn}. Its elements are called the convex combinations of the
xi’s.

For an arbitrary set M with subsets Mi, the convex hull of M contains

[M1 . . M2] := ∪xi∈Mi
[x1 . . x2],

hence contains, with M (1) := M , the inductively defined sets

M (k) := [M (s) . . M (k−s)], 0 < s < k; k = 2, 3, . . . ,

with the various right-hand sides here indeed equal since

conv(x1, . . . , xk) = [conv(x1, . . . , xs) . . conv(xs+1, . . . , xk)], 0 < s < k.

Each element of M (k) is a convex combination of k elements of M , i.e.,

M (k) = ∪F⊂M ;#F=k conv F, with conv F = {[F ]a : a ∈ R
F
+; ‖a‖1 = 1}.

The sequence M (1) = M, M (2), . . . is increasing, and its union is convex since [M (r) . .
M (s)] ⊆ M (r+s). Since this union also lies in every convex set containing M , it follows
that

(2) conv M = ∪n∈NM (n).

If M is finite, then conv M = M (#M). Whether or not M is finite,

conv M = M (dim X+1);

this is part of (8)Caratheodory’s Theorem below.

H.P.(1) Here is convex set very useful for testing claims about convex sets. Let X be the linear space of all
finitely supported infinite real sequences, and let K := {x ∈ X : x(deg x) > 0}, with deg x := max{k : x(k) 6= 0}.
Prove that K is convex.

H.P.(2) Here is a useful weakening of convexity: The set K is said to be starlike with respect to the set Y
if, [Y . . K] ⊂ K. (Thus, a set is convex iff it is starlike wrto itself.) Prove: If K is starlike wrto Y , then K is
starlike wrto conv Y . (Hint: Use (1) to prove [A . . [B . . C]] ⊆ [[A . . B] . . C]; then use (2).)

H.P.(3) Here is a useful strengthening of convexity: The set H is said to be a flat (or, an affine set) if
x, y ∈ H implies x + ran[y − x] ⊆ H. Further, ♭M := the affine hull of M or flat spanned by M , is the

smallest flat containing M . Prove: (i) ♭M = {[F ]a : F ⊂ M, #F < ∞,
∑

f∈F
a(f) = 1}, i.e., ♭M is the set of

all affine combinations of elements of M. (ii) H is a flat iff H = x + Y for some lss Y (and every x ∈ H).
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Convex sets 103

** closure and interior of a convex set **

The topological structure of a convex set in a nls is quite simple.

(3) Lemma. K convex, x ∈ Ko, y ∈ K− =⇒ [x . . y) ⊆ Ko.

Proof: (4)Figure tells the story, but here are the algebraic facts, to be sure. x ∈
Ko =⇒ ∃{r > 0} x + Br ⊆ K, while y ∈ K− =⇒ ∀{s > 0} ∃{ys ∈ K ∩ Bs(y)}. Hence,
∀{z ∈ [x . . y)} ∃{t > 0} z + Bt ⊆ K, since, with z =: (1 − α)x + αy, we have 0 ≤ α < 1
and

z + Bt ⊆ (1 − α)x + αys + α(y − ys) + Bt

⊆ (1 − α)x + αys + Bt+αs = (1 − α)(x + Br) + αys ⊆ K

if (t + αs)/(1 − α) = r, i.e., t = (1 − α)r − αs, and this is positive for sufficiently small s
since 1 − α > 0.

x y
z ys

(4) Figure. Proof of (3)Lemma

(5) Corollary. K convex =⇒ Ko, K− convex.

Proof: If x, y ∈ Ko, then [x . . y] ⊂ Ko by (3)Lemma, hence Ko is convex. If
x, y ∈ K−, then x = limn xn, y = limn yn for sequences (xn), (yn) in K. Therefore, for
every α ∈ [0 . . 1], (1 − α)x + αy = limn((1 − α)xn + αyn) ∈ K−, i.e., K− is convex.

H.P.(4) Prove: K convex, Ko 6= {} =⇒ (i)K− = (Ko)−, hence (ii)∀{λ ∈ X∗} sup λK = sup λ(Ko).

Remark. The lemma has an extension to any convex set that has relative interior,
i.e., interior as a subset of its affine hull. It has also an extension to linear topologies more
general than the norm topology.

For example, the n-simplex, σn := conv(x0, . . . , xn), is called proper if the flat
spanned by it is n-dimensional, i.e., if [x1 − x0, . . . , xn − x0] is 1-1. In that case, ♭σn

is the 1-1 affine image of R
n under the map

f : R
n → X : a 7→ x0 + [x1 − x0, . . . , xn − x0]a,

with
Tn := conv(ej : j = 0, . . . , n), e0 := 0,

the pre-image of σn. Correspondingly, the relative interior of σn is the image under f of
the interior of Tn. The latter equals

(6) T o
n = {a ∈ R

n : ∀{j} a(j) > 0;
∑

j

a(j) < 1}.
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104 VI. Convexity

Indeed, the right side here is a subset of Tn and is the intersection of n + 1 open sets,
hence open. On the other hand, any point a ∈ Tn but not in the right side here has either
a(j) = 0 for some j or else has

∑
j a(j) = 1, hence has points not in Tn in every one of its

neighborhoods, and so cannot be in T o
n .

H.P.(5) Give an example of a convex set without relative interior. Hint: H.P.(1).

** Caratheodory **

(7) Figure. Caratheodory’s Theorem in the plane.

(8) Caratheodory’s Theorem. If M ⊆ R
n, then ∀{x ∈ conv M} ∃{F ⊆ M} #F ≤ n+1

and x ∈ conv F . Further, if x ∈ ∂ conv M , then there is such an F with #F ≤ n.

Proof: To write x ∈ R
n as a convex combination of F is to write x̂ := (x, 1) ∈

R
n+1 as a nonnegative combination of F̂ := {f̂ := (f, 1) ∈ R

n+1 : f ∈ F}, i.e., to write

x̂ = [F̂ ]a =
∑

f∈F (f, 1)a(f) for some a ∈ R
F
+.

Since x ∈ conv M , it is in conv F for some finite subset F of M . Hence there is a
smallest subset F of M with x ∈ conv F . We prove that, for such a minimal F , [F̂ ] is

necessarily 1-1, hence #F = #F̂ ≤ dim R
n+1 = n + 1.

For this, write x̂ =: [F̂ ]a for some a ∈ R
F with a(f) > 0 for all f ∈ F , and assume

that 0 = [F̂ ]b for some b ∈ R
F \0. Then, without loss of generality, b(f) > 0 for some

f ∈ F , hence γ := min{a(f)/b(f) : b(f) > 0} is well defined, and produces c := a − γb
that vanishes on some f , yet c ≥ 0, while

[F̂ ]c = [F̂ ]a − γ[F̂ ]b = x̂ + 0 = x̂,

hence F is not minimal.

It remains to show that #F ≤ n in case x is a boundary point for conv M . Equiva-
lently, if the minimal F for x has n + 1 elements, then, for any particular f0 ∈ F , x is in
f0 + [f − f0 : f ∈ F\f0]T

o
n (see (6)) and this is an open set in conv F (hence in conv M)

since [F̂ ] is 1-1, hence onto, hence so is the linear map [f−f0 : f ∈ F\f0] which is therefore
open, by (V.18)OMT.
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The Separation Theorem 105

The Minkowski functional

The Separation Theorem is a version of HB that is more convenient in the consider-
ation of maximizing convex fl’s over convex sets than the original (equivalent) statement.
Its proof below uses the Minkowski fl of a convex (absorbing) set as the bounding sublinear
fl.

** Minkowski fl **

K ⊆ X (ls) is absorbing :⇐⇒ X =
⋃

r>0 rK. If K is absorbing, then the rule

µK : x 7→ inf{r > 0 : x ∈ rK}

defines a nonnegative functional on X , the Minkowski functional for K. The model
example is the Minkowski functional of the unit ball in a nls, which is just the norm:

µB = ‖ · ‖.

Note that µB = µK with K the nonconvex absorbing set (∂B) ∪ 0.
The Minkowski fl is positive homogeneous. Further, since L ⊆ K =⇒ µL ≥ µK

and α > 0 =⇒ µαK = µK/α, the Minkowski fl µK is bounded (i.e., bounded on (norm)-
bounded sets) in case 0 is an interior point of K, and is definite (i.e., µK(x) = 0 =⇒ x = 0)
in case K is bounded.

H.P.(6) Verify that K ⊆ µK
−1[0 . . 1], that Ko ⊆ µK

−1[0 . . 1), and that µK is positive homogeneous.

H.P.(7)
(i) Prove: A sublinear and bounded fl is (Lipschitz-)continuous.
(ii) Give an example of a discontinuous bounded Minkowski fl.

Now assume that, in addition to being absorbing, K is convex, which is the context
in which the Minkowski fl usually arises, for then it is sublinear.

(9) Lemma. K (absorbing and) convex =⇒ µK is subadditive (hence sublinear).

Proof: If x = αx′, y = βy′ for x′, y′ ∈ K and α, β > 0, then

x + y = αx′ + βy′ = (α + β)
( α

α + β
x′ +

β

α + β
y′

)
∈ (α + β)K,

therefore µK(x + y) ≤ inf{α + β : α, β > 0; x′ := x/α, y′ := y/β ∈ K} = µK(x) + µK(y) .

A converse of sorts holds in that µK
−1[0 . . 1] is convex in case µK is subadditive.

Now assume that, in addition to being convex, K has 0 as an interior point. Then K
is not only absorbing, it is even uniformly absorbing, i.e., ∀{s > 0} ∃{r > 0} Bs ⊆ rK.

(10) Lemma. K convex, 0 ∈ Ko =⇒ µK
−1[0 . . 1) = Ko.

Proof: By H.P.(6), it is sufficient to show that µK
−1[0 . . 1) ⊆ Ko. For this, note

that x ∈ µK
−1[0 . .1) =⇒ ∃{r < 1, y ∈ K} x = ry, i.e., x ∈ [0 . . y) with 0 ∈ Ko and y ∈ K.

Now apply (3)Lemma.
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106 VI. Convexity

H.P.(8) Prove: If K is balanced (i.e., −K = K) and convex with 0 ∈ Ko, then µK is a continuous
seminorm. If K also bounded, then µK is a (continuous) norm. For such K, K− = µK

−1[0 . . 1].

The Separation Theorem

(11) Separation Theorem. x ∈ X nls, K convex, x 6∈ Ko 6= {} =⇒
∃{λ ∈ X∗\0} supλK ≤ λx.

Proof: After a shift, may assume that 0 ∈ Ko. Then the Minkowski functional µK

for K is defined and sublinear. Set Y := ran[x], define λ0 : Y → R : αx 7→ αµK(x). Then
λ0 ∈ Y ′ and λ0 ≤ µK (on Y , of course, where else?). By the general HB Theorem (IV.29),
∃{λ ∈ X ′} λx = λ0x and λ ≤ µK . Since x 6∈ Ko, we have µK(x) ≥ 1 by (10)Lemma,
therefore sup λK ≤ sup µKK = 1 ≤ µK(x) = λx. Further, since 0 ∈ Ko, have Br ⊆ K for
some r > 0, so λ is bounded on Br, hence λ ∈ X∗.

H.P.(9) Give an example of a convex K set in a real linear space X for which it is impossible to find, for
given x ∈ X\K, a λ ∈ X′\0 with sup λK ≤ λx. (Hint: For the convex set K defined in H.P.(1), prove that
λK = R for all λ ∈ X′\0.)

** refinements **

(12) Corollary. K, L convex, K∩Lo = {} 6= Lo =⇒ ∃{λ ∈ X∗\0} sup λK ≤ inf λL.

Proof: Lo convex (by (5)Proposition), hence M := K − Lo convex and 0 6∈ M =
Mo 6= {}. Therefore, by (11), we can separate 0 from M , i.e., ∃{λ ∈ X∗\0} sup λK −
inf λLo = sup λM ≤ λ0 = 0. Since inf λLo = inf λL by H.P.(4), it follows that sup λK ≤
inf λL.

H.P.(10) Prove the Theorem of the Alternative: Let A ∈ R
m×n. Then the following two conditions

are mutually exclusive: (i) ran A ∩ {b ∈ R
m : b < 0} 6= {}; (ii) ∃{p 6= 0} 0 ≤ p ⊥ ran A.

(13) Corollary. K closed, convex, x 6∈ K =⇒ ∃{λ ∈ X∗} sup λK < λx.

Proof: x 6∈ K = K− =⇒ r := d(x, K) > 0 =⇒ K ∩ Br(x) = {} and Br(x)o =
Br(x) 6= {}. By (12)Corollary, ∃{λ ∈ X∗\0} sup λK ≤ inf λBr(x) = λx + inf λBr =
λx − ‖λ‖r < λx, the last inequality since ‖λ‖r 6= 0.

H.P.(11) Explain why the example from H.P.(9) does not contradict (13)Corollary.

H.P.(12) Prove Farkas’ Lemma: Let A ∈ R
m×n, b ∈ R

n. Then the following are equivalent: (i)
Ay ≥ 0 =⇒ bty ≥ 0; (ii) ∃{p ≥ 0} ptA = bt.

This lemma is often stated as a Theorem of the Alternative, i.e., not ∃{y} Ay ≥ 0, bty < 0 if and only if
(ii).

H.P.(13) Prove the Dubovitskii-Milyutin Separation Theorem: Let K0, . . . , Kn be convex sets in the
nls X with 0 ∈ K−

i
for all i and Ki open for i > 0. Then ∩iKi = {} iff (Ki : i = 0, . . . , n) is separated at 0

in the sense that there exist λ0, . . . , λn in X∗ not all zero, with
∑

i
λi = 0 and inf λi(Ki) ≥ 0, all i. (Hint:

For the ‘only if’, apply (12)Corollary to the sets K := {(x, . . . , x) ∈ Xn : x ∈ K0} and L := K1 × · · · × Kn in
the nls Xn (with continuous dual (Xn)∗ = (X∗)n).)

(14) Corollary. If, in addition, k is a ba to x from K (i.e., k ∈ K and d(x, K) = ‖x−k‖),
then ∃{λ||x − k} sup λK = λk.

Proof: Going through the proof of (13)Corollary a bit more carefully, we find that

λk ≤ sup λK ≤ λx − ‖λ‖r = λx − ‖λ‖‖x − k‖ ≤ λx − λ(x − k) = λk,

refinements c©2002 Carl de Boor



Application: Characterization of best approximation from a convex set 107

hence equality must hold throughout. In particular, ‖λ‖‖x− k‖ = λ(x − k), i.e., λ||x− k.

H.P.(14) Prove: A convex set in a nls is closed if and only if it is weakly closed.

H.P.(15) Draw K − L ⊂ R
2, for K = B−

2
(−2, 0), L = B1(1, 0).

Application: Characterization of best approximation from a convex set

(15) Characterization Theorem. X nls, K convex subset, x ∈ X\K−, k ∈ K. Then
k is a ba to x from K ⇐⇒ ∃{λ||x − k} sup λK ≤ λk.

Proof: ‘=⇒’ by (14)Corollary.
‘⇐=’: The assumption λ||x − k implies that, for any y with λy ≤ λk, ‖λ‖‖x − k‖ =

λ(x − k) ≤ λ(x − y) ≤ ‖λ‖‖x − y‖, i.e., that k is even a ba to x from the halfspace
{y ∈ X : λy ≤ λk} which, by assumption, contains K.

x
s

r

H(λ, supλK)

k

s = (λx − sup λK)/‖λ‖

r = d(x, K)

λy > sup λK

K

λy < sup λK

(16) Figure. Characterization of best approximation: If k ∈ K and λk =
sup λK, then s ≤ r, with equality iff k is a ba to x from K.

(16)Figure illustrates the

(17) Duality formula for distance from convex set. For x 6∈ K− for convex K,

d(x, K) = max
λ∈X∗

(λx − sup λK)/‖λ‖.

Indeed, for any λ ∈ X∗, λx− sup λK = inf λ(x−K) ≤ inf ‖λ‖‖x−K‖ = ‖λ‖d(x, K),
while, as in the proof for (13)Corollary of Separation Theorem, ∃{λ ∈ X∗\0} sup λK ≤
λx − ‖λ‖d(x, K).
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108 VI. Convexity

H.P.(16) Prove: If Z is a lss of the nls X, L a finite-dimensional lss of X∗ such that the linear map
L → Z∗ : λ → λ Z is bounded below, then, for every x ∈ X, d(x, Z ∩ (x + L⊥)) ≤ (1 + β)d(x, Z), with

β := supλ∈L ‖λ‖/‖λ Z‖ < ∞ . In other words, in the situation described, we wouldn’t spoil the approximation

error of z ∈ Z too much if we also imposed the interpolation constraints that z = x ‘on’ L. (Hint: you may take

for granted that (Z ∩ L⊥)⊥ = Z⊥ + L.)

** support fl **

The functional h : SX∗ → R : λ 7→ sup λK is called the support functional for the
convex set K. By the Separation Theorem, K− = ∩λ{y : λy ≤ h(λ)}, as you should verify.
This shows that every closed convex set is the intersection of half spaces.

A constructive instance of Hahn-Banach (of practical interest)

(18) HB Theorem for C(T). X = C(T ), T compact metric, Y lss of X, dimY =
n =⇒ ∀{λ ∈ Y ∗} ∃{U ⊆ T with #U ≤ n, a ∈ R

U} λ = (
∑

u a(u)δu) Y and ‖λ‖ = ‖a‖1.

In words: Every continuous linear functional on an n-dimensional lss of C(T ) has a
norm preserving extension to all of C(T ) that is also a linear combination of no more than
n point evaluations. This result is of practical interest since point values constitute the
most readily available information about a function.

Proof: It is sufficient to prove that

(19) B−
Y ∗ = conv E, with E := {±δY

t : t ∈ T}, λY := λ Y .

For, if we know this, then we know that ∀{λ ∈ Y ∗\0} λ/‖λ‖ ∈ SY ∗ = ∂B−
Y ∗ = ∂ conv E,

hence, by Caratheodory, λ/‖λ‖ is the convex combination of dim Y ∗ = n point evalua-
tions or their negative. This means that λ/‖λ‖ =

∑
U w(u)αuδY

u =
∑

U b(u)δY
u for some

U ⊆ T with #U ≤ n, αu = ±1, and some b ∈ R
U with ‖b‖1 = 1. Consequently,

λ = (
∑

U a(u)δu) Y with a := b‖λ‖, hence with ‖a‖1 = ‖λ‖.

It remains to prove (19), and here, only the inequality B−
Y ∗ ⊆ conv E needs proof (since

‖δY
t ‖ ≤ ‖δt‖ = 1, hence E is contained in the convex set B−

Y ∗ , hence so is conv E). For it,
let λ 6∈ conv E and assume for the moment that conv E is closed. Then, by (13)Corollary
to Separation Theorem, ∃{f ∈ Y ∗∗ = Y } λf > sup f(conv E) ≥ sup |f(T )| = ‖f‖, hence
‖λ‖ > 1, i.e., λ 6∈ B−

Y ∗ . This proves that B−
Y ∗ ⊆ conv E.

Thus, to finish the proof, we need to show that conv E is closed. We prove this
by showing that conv E is compact: Suppose (λr) is in conv E. By Caratheodory, λr =∑n+1

1 ar(i)δ
Y
ui,r

and
∑

|ar(i)| = 1. Since the sequences (ui,r)r are in the compact set T ,

and the sequence (ar) lies in the compact set B−
ℓ1(n+1), and there are just finitely many

sequences involved, AGTASMAT (:= after going to a subsequence may assume that)
lim ar = a, limui,r = ui, i = 1, . . . , n + 1. This implies that λ :=

∑
a(i)δY

ui
∈ conv E.

Further, λ is the pointwise limit of the (sub)sequence of (λr), hence the norm limit since
this pointwise convergence is necessarily uniform on the unit ball of the finite-dimensional
ls Y (cf. H.P.(V.3)).
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H.P.(17) How would the HB Theorem for C(T ) have to be changed to be valid in case F = C? (Hint: Any ls
X over C is also a ls over R, but, as a ls over R, its dimension doubles since now, e.g., [x, ix] is 1-1 for any x 6= 0.)

** application to quadrature **

(20) Proposition. X = C(T ), T compact in R
m, λ : f 7→

∫
T

f(t) dt, Y lss of X, n :=

dim Y < ∞. Then: 1 ∈ Y =⇒ ∃{U ⊆ T, w ∈ R
U
+} #U ≤ n and

λ Y = (
∑

u∈U

w(u)δu) Y .

In words: Regardless of what the finite dimensional linear space Y may be, if it
contains the constant function 1, then it is possible to construct a quadrature rule (based
on point values alone) that is exact on Y and uses only positive weights. This last fact is
important for stability and convergence of a sequence of such rules.

Proof: |λf | = |
∫
T

f(t) dt| ≤ ‖1‖1‖f‖ with equality if f = 1. Since 1 ∈ Y , we

have ‖1‖1 = ‖λ‖ = ‖λ Y ‖. By (18)HB for C(T ), ∃{U ⊆ T, w ∈ R
U} #U ≤ n and

λU :=
∑

U w(u)δu is a norm preserving extension of λ Y to all of X . Thus λU = λ on Y
and ‖w‖1 = ‖λU‖ = ‖λ Y ‖ = λ1 =

∑
U w(u), i.e.,

∑
|w(u)| =

∑
w(u), and this implies

that w(u) ≥ 0, all u ∈ U .

H.P.(18) Show the existence of such a quadrature rule (perhaps using as many as n + 1 points) even if Y
does not contain the function 1.

Remark. If Y contains a nontrivial positive function f , then one gets the existence
of U ⊆ T, w ∈ R

U
+ with #U ≤ n := dimY and

∑
U w(u)δu = λ :=

∫
· on Y as follows:

Let Z := ker λ Y . Then 0 ∈ conv{(δt) Z : t ∈ T} (since we could otherwise strictly
separate 0 from it, i.e., with Z∗∗ = Z, ∃{z ∈ Z\0} 0 = zt0 > sup zt(T ), hence

∫
z 6= 0,

a contradiction), hence, by Caratheodory, λ Z = 0 =
∑

U c(u)(δu) Z for some c, U with
c(u) > 0, #U ≤ dim Z +1 = n. Now choose the coefficient α so that α

∑
U c(u)δuf =

∫
f ;

then α > 0 since f ≥ 0.
Characterization of ba from a lss

If K is a linear subspace of X , then λk ≥ sup λK implies that λ ⊥ K (i.e., K ⊆ ker λ)
since λk′ 6= 0 for some k′ ∈ K implies that supλK ≥ sup{αλk′ : α ∈ R} = ∞. This gives
the

(21) Characterization Theorem. Y lss of nls X, x ∈ X\ Y −, y ∈ Y . Then y is a ba
to x from Y ⇐⇒ ∃{λ||x − y} λ ⊥ Y .

** special case **

One uses these characterization theorems in conjunction with representation theorems
for the elements of X∗ to milk the equality λ(x − y) = ‖λ‖‖x − y‖ for information useful
for constructing a ba.

The classical (and motivating) example is m-dimensional Euclidean space, X = ℓ2(m),
for which X∗ ≃ X , with each λ ∈ X∗ representable uniquely as scalar product x 7→ xλ

tx
with some element xλ of X . By Hölder’s inequality, λ||x − y implies that λ is a scalar
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multiple of x−y, hence the requirement λ ⊥ Y is, in effect, the requirement that the error
x − y be orthogonal to Y .

It is a testimony to the power of functional analysis that the seemingly quite different
characterization (in terms of alternations of the error) of a best approximation from some
finite dimensional lss of C(T ) also derives directly from (21)Theorem, as follows.

Consider X = C(T ), with T compact metric, and n := dim Y < ∞. A ba y to x ∈ X
is characterized by the fact that, for some λ ∈ X∗\0, λ||y−x while λ ⊥ Y . But, since X is
quite specific, we can be more specific about λ: The two requirements on λ depend only on
the action of λ on Y1 := ran[x] + Y . This means that any norm preserving extension µ of
λ Y1

to a lfl on all of X also satisfies µ||y−x and µ ⊥ Y . In particular, the extension of the
form

∑
U a(u)δu supplied by (18)HB for C(T ) must satisfy these conditions. Conclusion:

(22) Characterization of ba from n-dim.lss of C(T). Y lss of X := C(T ), T compact
metric, n := dim Y < ∞, x ∈ X\Y, y ∈ Y . Then y is ba to x from Y ⇐⇒ ∃{λ :=∑

U a(u)δu with U ⊆ T, #U ≤ n + 1, a ∈ R
U\0} λ||x − y and λ ⊥ Y .

One would make use of this characterization theorem in the following way: (See
H.P.(IV.6)) Since λ||x − y, we have

‖λ‖‖x−y‖ =
∑

a(u)(x−y)(u) ≤
∑

|a(u)||(x−y)(u)| ≤ ‖a‖1 max
u∈U

|(x−y)(u)| ≤ ‖λ‖‖x−y‖.

Hence, equality must hold throughout. Assuming that none of the u’s is wasting its (and
our) time here, i.e., assuming that ∀{u ∈ U} a(u) 6= 0, we conclude that

(23) (x − y)(u) = (signum a(u))‖x − y‖, all u.

This says that the points u must all be extreme points of the error function x − y, i.e.,
points at which the error x − y takes on its sup norm and that, moreover, u must be a
minimum (maximum) in case a(u) is negative (positive).

** special special case **

Consider the specific choice X = C([a . . b]), Y = Π<n := polynomials of degree < n.
Since the LIP(Π<n, ran[δu : u ∈ U ]) is correct for any n-set U , a nontrivial λ ∈ ran[δu :
u ∈ U ] ∩ Π⊥

<n requires that #U > n. Since (22)Theorem requires #U ≤ n + 1, we must
have #U = n + 1 and the λ is unique, up to multiplication by a scalar.

In fact, we even know an explicit form for λ. For, we know from Chapter I that, for
any x ∈ F

[a..b], the divided difference δUx of x at the points in U provides the coefficient of
()n in the power form of the unique polynomial Pnx ∈ Πn that agrees with x at U . Since,
by uniqueness, Pnx = x for any x ∈ Πn, it follows that δU ⊥ Π<n. Further, since we know
how to write Pnx in Lagrange form:

Pnx =
∑

u∈U

x(u)
∏

v 6=u

· − v

u − v
,

we know that δUx =
∑

u∈U x(u)/
∏

v 6=u(u − v). Hence, if u0 < · · · < un are the points in
U ordered, then

δU =

n∑

j=0

δuj
a(j)
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with a(j)a(j + 1) < 0 for all j. Thus, (22)Theorem in conjunction with (23), gives the
famous

(24) Chebyshev Alternation Theorem. y ∈ Π<n is a ba to x ∈ C([a . . b]) iff ∃{u0 <
· · · < un in [a . . b], σ ∈ {−1, 1}} s.t. (x − y)(uj) = (−)jσ‖x − y‖∞, j = 0, . . . , n.

H.P.(19) Why doesn’t the Alternation Theorem hold for an arbitrary n-dimensional lss of C([a . . b])?

H.P.(20) Prove Haar’s result: If the n-dimensional lss Y of C(T ) (with T compact metric) is not a Haar

space, i.e., has Y → R
n : f 7→ f U fail to be onto for some n-set U in T , then some f ∈ C(T ) has several ba’s

from Y . (Hint: Show that, for such a U, there is λ =
∑

u∈U
w(u)δu ⊥ Y of norm 1 and f ∈ C(T ) of norm

1 parallel to λ. Then show that, for any y ∈ Y of norm ≤ 1 and vanishing on U, λ ‖ (1 − |y|)f − αy for any
α ∈ [0 . . 1].)

These considerations also help in the construction of such a ba, by the Remez algo-
rithm, as follows. Suppose we have in hand an approximation y ∈ Π<n to x that, while
perhaps not a ba, at least has an error e := x− y that changes sign at least n times. This
means that we can find u0 < · · · < un so that e(uj)e(uj+1) < 0 for all j. Consequently,
(25)

‖δU‖d(x, Π<n) ≥ ‖δU‖d(x, ker δU ) = |δUx| = |δUe| =
∑

j

|e(uj)||a(j)| ≥ min
j

|e(uj)|‖δU‖,

hence

‖e‖∞ ≥ d(x, Π<n) ≥ min
j

|e(uj)|.

By choosing the uj to be the sites of local extrema for e, we can make the lower bound as
large as possible for the given e, and, by comparing it with the (computable) ‖e‖∞, can
gauge how good the error in our current approximation y is as compared with the best
possible error.

If we are not satisfied, we can guarantee strict improvement of the lower bound by
constructing a new approximation, z, as the ba to x from Π<n with respect to the norm

‖f‖U := maxu∈U |f(u)|. Indeed, on the space C(U), δU is, up to scalar multiples, the only
lfl perpendicular to Π<n, hence, by (22), any ba z to x with respect to this norm must take
on its maximum error (in absolute value) at every u ∈ U and with alternating sign. This
means that we can compute (the coefficients of) z and the number d = ±‖x − z‖U from
the linear system x(uj)−z(uj) = (−1)jd, j = 0, . . . , n. It also means that ‖δU‖‖x−z‖U =
‖δU‖dU (x, Π<n) = |δUx| =

∑
j |(x−y)(uj)||a(j)|, the last equality from (25), hence, for any

j, |(x− z)(uj)| = ‖x− z‖U ≥ minj |(x− y)(uj)| with equality only if |(x− y)(uj)| = const,
hence (by the uniqueness of polynomial interpolation) z = y. In particular, the absolutely
smallest of the (n + 1) local extrema in the error x − z ‘near’ those of x − y is guaranteed
to be at least ‖x − z‖U , hence strictly greater than that for x − y. This strict monotone
increase implies the convergence of the Remez algorithm.

Convex functionals

The fl f defined on some subset of the ls X is called convex in case

f((1 − α)x + αy) ≤ (1 − α)f(x) + αf(y), all α ∈ [0 . . 1], x, y ∈ dom f.
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For example, every sublinear fl is convex. In particular, if A ∈ bL(X, Y ), then x 7→ ‖Ax‖
is a convex fl. Note that the domain of a convex fl is necessarily convex, and that f is
convex iff its epigraph

epif := {(x, t) ∈ X × R : f(x) ≤ t}

is convex.

H.P.(21) An alternative but nonstandard definition would state that a fl is ‘convex’ if it carries convex sets
to convex sets. What is the relationship (if any) between being convex and being ‘convex’? Is the inverse of a
convex map ‘convex’?

(26) Proposition. If K = conv E for some finite set E, and f is convex, then

sup f(K) = max f(E).

Proof: The convexity of f implies that

f(
∑

E

a(e)e) ≤
∑

E

a(e)f(e) ≤
(∑

E

a(e)
)
max f(E) = max f(E)

in case a ∈ [0 . . 1]E with
∑

E a(e) = 1. Therefore, sup f(K) = sup{f
(∑

E a(e)e
)

: a ∈
[0 . . 1]E ,

∑
E a(e) = 1} ≤ max f(E) ≤ sup f(K).

The argument generalizes. If f is convex and K = conv E, then sup f(K) = sup f(E).
Thus, in maximizing a convex fl over a convex set K, it pays to come up with as small a
set E as possible for which conv E = K. How small can one make E? At the very least,
E must contain all extreme points of K. These are all the points x ∈ K for which K\x
is still convex, i.e., that are not proper convex combinations of other points in K. More
conventionally, x ∈ K is an extreme point of the convex set K iff

x ∈ [y . . z] ⊆ K =⇒ x ∈ {y, z}.

Note that an extreme point is necessarily a boundary point since any interior point sits in
the middle of some ball entirely contained in K, hence is the midpoint of many intervals
of positive length in K. A closed convex set for which the converse holds, i.e., for which
every boundary point is an extreme point is called strictly convex. Correspondingly, a
norm is called strictly convex if its closed unit ball is strictly convex.

H.P.(22) Prove: A nls X is strictly convex if and only if, for any x, y ∈ X, ‖x‖ = ‖(x + y)/2‖ = ‖y‖
implies x = y.

H.P.(23) Prove that, for 1 < p < ∞, the closed unit ball in ℓp is strictly convex, hence has infinitely many
extreme points. (Hint: Use equality in Hölder’s inequality.) Conclude that it is usually not possible to find the
(exact) norm of a lm on this space.

The closed unit ball in ℓ1(m) or ℓ∞(m) is not strictly convex since it is the convex
hull of finitely many points. Specifically, (as you should verify)

B−
X =

{
conv(±ei : i = 1, . . . , m) if X = ℓ1(m);
conv{

∑
i eiε(i) : ε ∈ {−1, 1}m} if X = ℓ∞(m).

Correspondingly, we can actually compute the norm of any lm on these spaces, since this
only involves maximization over the finite set of extreme points.
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H.P.(24) Use Hölder’s inequality and duality to verify this claim, i.e., to prove the formulas for ‖A‖1, ‖A‖∞

given in (III.12)Example.

An extreme example of a closed convex set that is not strictly convex is provided by
the closed unit ball in X := L1[0 . . 1], for it has no extreme points: If f ∈ B−\0, then

∃{t ∈ [0 . . 1]}
∫ t

0
|f(s)| ds = (1/2)‖f‖1. Choose

g(s) :=

{
2f(s), s < t
0, s > t

, h(s) :=

{
0, s < t
2f(s), s > t

.

Then g 6= f 6= h, yet f = (g + h)/2, i.e., f ∈ [g . . h] while ‖g‖ = ‖h‖ = ‖f‖ ≤ 1.

H.P.(25) Prove that the closed unit ball in c0 has no extreme points.

Remark. The closed unit ball of any dual space is compact in the topology of
pointwise convergence (by (IV.4) Alaoglu’s Theorem), hence has extreme points (by the
Krein-Milman Theorem below). The two examples prove that neither L1 nor c0 are (or,
more precisely, can be identified with) the dual of some nls.

** Krein-Milman **

(27) Krein-Milman Theorem. Any weakly compact non-empty set in the nls X is
contained in the closed convex hull of its extreme points.

Proof: Let K be a nonempty w-compact subset of X . The basic observation is
the following. If x, y ∈ X , λ ∈ X ′ and

(28) z ∈ (x . . y) = {(1 − α)x + αy : 0 < α < 1},

then λz ≤ max(λx, λy) with equality iff λx = λy. Hence, for any λ ∈ X∗\0, the set

E := Kλ := {z ∈ K : λz = supλ(K)}

has the following properties: it is w-closed (as the intersection of w-closed sets) and in
K, hence w-compact, and is an extreme set for K in the sense that {} 6= E ⊂ K and,
for all x, y ∈ K, (x . . y) ∩ E 6= {} implies that x, y ∈ E (since, if z ∈ (x . . y) ∩ E, then
sup λ(K) = λz ≤ max(λx, λy) ≤ sup λ(K), hence λx = λy = supλ(K)). This shows that
the collection E of all weakly compact extreme sets for K is not empty. More than that,
for any E ∈ E and any λ ∈ X∗\0, Eλ ∈ E since the same argument shows Eλ to be an
extreme set for E, hence also for K (since E is an extreme set for K).

It follows that every λ ∈ X∗ is necessarily constant on any minimal E ∈ E, hence any
minimal element of E consists of just one point, and that makes that sole point an extreme
point of K.

The next claim to prove is that every E ∈ E contains an extreme point of K. For
this, pick E ∈ E. Then {E′ ∈ E : E′ ⊆ E} is partially ordered by inclusion, hence contains
a maximal totally ordered subset, EE . Since EE is a collection of w-closed subsets of the
w-compact set E having the finite intersection property, its intersection, F , is nonempty,
hence in E (since all the other properties that characterize a set as belonging to E are
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closed under arbitrary intersections). On the other hand, by the maximality of EE , no
proper subset of F lies in E, i.e., F is minimal, hence consists of just one point, necessarily
an extreme point for K.

It follows that the collection extr(K) of extreme points of K intersects every extreme
set for K, hence so does C := conv(extr(K)). In particular, if there were k ∈ K\C−, then,
by (13)Corollary to Separation Theorem, we could find λ ∈ X∗ with supλ(C−) < λk ≤
sup λ(K) = λ(Kλ), and that would be a contradiction since K is in E, hence so is Kλ,
hence the latter has points in C.

Remark. The proof made use only of the following particulars. (i) X is a ls that is
also a ts with respect to a translation-invariant topology (i.e., ∀{x ∈ X} B(x) = B(0)+x).
(ii) The collection Xc of lfl’s on X continuous in this topology is rich enough to separate
points, i.e., to give Xc⊥ = {0}. Examples of such a setup include any nls in the norm
topology, but also (as used explicitly in the version of the theorem stated above) in the
weak topology (recall from H.P.(14) that any weakly closed convex set is norm-closed), and
even every continuous dual of a nls in the w∗-topology. It is this last setup that provides
proof of the earlier claim that the closed unit ball of any X∗ has extreme points; in fact,
it equals the closed convex hull of its extreme points.

Unfinished business: ranA∗ closed =⇒ ranA∗ = (kerA)⊥

(29) Proposition. X, Y nls, A ∈ bL(X, Y ). If ranA∗ is closed, then ranA∗ = (kerA)⊥.

Proof: We may assume that X, Y are complete, since we can always complete
them, and any bounded lm on X or Y (into some Bs) has a unique extension by continuity
to the completion. In particular, their duals are (essentially) unchanged.

With this assumption, it is sufficient to prove that

(30) ranA∗ closed =⇒ ranA closed

since then (V.17)Corollary does the rest.
To prove (30), we set Z := (ranA)−, and show that

C : X → Z : x 7→ Ax

is onto (hence ranA = ranC = Z = (ranA)−) by showing that C is open. For this,
since Y ∗ → Z∗ : λ 7→ λ Z is onto by HB, ranC∗ = ranA∗, i.e., ranC∗ is closed while
ker C∗ = (ranC)⊥ = {0} (since (ranC)− = Z), hence C∗ is bounded below, by H.P.(V.20),
i.e., r := inf ‖λC‖/‖λ‖ > 0. This implies that

(31) Br ⊆ (CB)−

since x 6∈ (CB)− implies by (13)Corollary that, for some λ ∈ Z∗,

r‖λ‖ ≤ ‖λC‖ = sup λ(CB) < λx ≤ ‖λ‖‖x‖,

i.e., x 6∈ B−
r . From (31) and (V.13)Lemma, we conclude that C is open, hence onto, i.e.,

ranA = ranC = Z = (ranA)−.
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