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These are classnotes for Math/CS 887, Spring ’03 by Carl de Boor
corrections are welcome!

Approximation Theory overview

One considers special instances of the following

Problem. Given some element g in a metric space X (with metric d), find a best approx-
imation (=:ba) m∗ to g from some given subset M of X , i.e., find

m∗ ∈M s.t. d(g,m∗) = inf
m∈M

d(g,m) =: dist (g,M).

Abbreviation:

m∗ ∈ PM (g).

Basic questions

• Existence: #PM (g) ≥ 1 ?
• Uniqueness: #PM (g) ≤ 1 ? More generally, #PM (g) =?
• Characterization: how would one recognize a ba (other than by comparing it with all

other candidates)? This is important for
• Construction:

The metric

The metric is almost always a norm metric, i.e., d(x, y) := ‖x− y‖, and the set M
is usually a finite-dimensional linear subspace. But, as the following problem, of approxi-
mating a curve, shows, there are important practical instances in which linearity plays no
role, hence there is no suitable norm in which to pose the problem.

curve approximation problem X is the set of ‘smooth’ closed curves, of finite
length, say, in R

2; it is a metric space with the Hausdorff metric

d(A,B) := max{dist (A,B), dist (B,A)},

with

dist (A,B) := sup
a∈A

inf
b∈B
‖a− b‖2.

M is the set of ellipses in R
2, say (or some other class of ‘simple’ curves).
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Specific choices for normed X

(T is an interval or a suitable subset of R
d)

• L2(T ), i.e., ‖x‖ := ‖x‖2 :=
( ∫

T
|x(t)|2 dt

)1/2
Least-squares.

More generally: inner product spaces.
• C(T ), i.e., ‖x‖ := ‖x‖∞ := supt∈T |x(t)| uniform (or, Chebyshev).
• L1(T ), i.e., ‖x‖ := ‖x‖1 :=

∫
T
|x(t)| dt Least-mean.

• Lp(T, w), i.e., ‖x‖ := ‖x‖p,w :=
( ∫

T
w(t)|x(t)|p dt

)1/p
weighted Lp

Specific choices for M

Usually, M is a finite-dimensional linear subspace, i.e., of the form

M = ran[f1, . . . , fn] := {[f1, . . . , fn]a :=

n∑

j=1

fj a(j) : a ∈ F
n}

with F either R or C.
• Πk := Π≤k := ran[()j : j = 0, . . . , k] (algebraic) polynomials of degree ≤ k. Here,

()j : t 7→ tj is the way I’ll indicate the power function until someone comes along with
a better notation. More generally,

Πk = Πk(Rd) := ran[()α : |α| ≤ k]

with
()α : R

d → F : x 7→ xα := x(1)α(1) · · ·x(d)α(d), α ∈ ZZd
+,

and |α| := ‖α‖1 =
∑

i α(i). Also, for α ∈ ZZd
+,

Πα := Π≤α := ran[()β : β ≤ α].

• Rk,ℓ := Πk/Πℓ := {p/q : p ∈ Πk, q ∈ Πℓ} rational functions of degrees k, ℓ.

• ◦Πk := ran[sin(ν·), cos(ν·) : ν = 0, . . . , k] trigonometric polynomials of degree k. The
natural domain for trigonometric polynomials is the circle, i.e., the interval [0 . . 2π]
or [−π . . π] with the endpoints identified. Customary notation for this set:

TT = TT1.

If also complex scalars are admitted, we get the simpler description

◦
Πk = ran[eij : |j| ≤ k],

with i :=
√
−1, and

eθ : x 7→ exp(θ·x)
the exponential with frequency θ, a definition which even makes sense for x ∈ F

d

with θ also in F
d and

θ·x :=
∑

i

θ(i)x(i)
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• ExpΘ := ran[eθ : θ ∈ Θ] exponentials with frequencies θ ∈ Θ. We already noted

that
◦
Πk(R) ⊆ Expi{−k,...,k}. Also, for any Θ ⊂ R, Πk = limh→0 ExphΘ whenever

#Θ = k + 1.
• Πρ

k,ξξξξξ := piecewise polynomials (=: pp) in C(ρ), of degree ≤ k, with break sequence
ξξξξξ = (· · · < ξj < ξj+1 < · · ·). (splines)
The first and third are linear. The second is nonlinear. The last two are linear or

nonlinear depending on whether the frequencies Θ (resp. the break sequence ξξξξξ) is fixed or
variable.

Degree of approximation

considers the behavior of h 7→ dist (g,Mh) as a function of the (discrete or continuous)
parameter h. E.g., k 7→ dist (g,Πk) as k → ∞, or h 7→ dist (g,Πρ

k,hξξξξξ
) as h → 0. Usually,

one considers only
dist (K,Mh) := sup

g∈K
dist (g,Mh)

with K a class of functions sharing with the particular g of interest certain characteristics
(e.g., all functions whose 14th derivatives are no bigger than 7 in absolute value). Only the
behavior in the limit, as h→ 0 or h→∞ or whatever, is usually considered. If nothing is
said, then h→ 0.

Jackson type theorems: g ∈ K =⇒ dist (g,Mh) = O(hα)
Bernstein type (or, inverse) theorems: dist (g,Mh) = O(hα) =⇒ g ∈ K.
Saturation theorems: dist (g,Mh) = o(hα) =⇒ g ∈ K0 (for some appropriate α

and with K0 some very ‘small’ set). E.g., dist (g,Π0
1,ξξξξξ

) = o(|ξξξξξ|2) =⇒ g ∈ Π1.

Typically, K := {f ∈ X : ‖f‖′ ≤ 1} for some stronger norm ‖·‖′. This leads to
consideration of the K-functional

Kf : t 7→ inf
q

(‖f − q‖+ t‖q‖′),

which plays a major role in the precise description of h 7→ dist (K,Mh) for such K.
Related question: Is M a good choice for approximating g, given that we know that

g ∈ K? Typical criterion involves the dimension of M , i.e., the degrees of freedom to be
used. If dimM = n, then one compares dist (K,M) with

dn(K) := inf
dim Y ≤n

dist (K, Y ),

the n-width of K (in the sense of Kolmogorov). While it is not easy to find optimal
subspaces, i.e., Y with ddim Y (Y ) = dist (K, Y ), one can often find a ‘ladder’ (Mn) for
which dist (K,Mn) ∼ dn(K) and dimMn ∼ n.

Here,
A(t) = O(B(t)) := lim sup t|A(t)/B(t)| <∞;

A(t) = o(B(t)) := lim t|A(t)/B(t)| = 0;

A(t) ∼ B(t) := A(t) = O(B(t)) and B(t) = O(A(t)),

23jan02 3 c©2003 Carl de Boor



notes(.tex) (as of 23jan02) TEX’ed at 16:24 on 21 November 2009

with the limiting value of t usually clear from the context. E.g., the order of A(n) or An

will always be considered as the natural number, n, goes to ∞, while the order of A(h) or
Ah will always be considered as the real positive number, h, goes to zero.

Good approximation

In practice, best approximation is rarely used. Instead, one looks for cheap, but
good, approximation schemes. E.g., if A is a linear map into M , then ‖(1 − A)|K‖ :=
supf∈K ‖f −Af‖ may well be close to dist (K,M).

Special case: a near-best A is one for which, for some const and for all f ,

‖f −Af‖ ≤ const dist (f,M).

Any such A is necessarily a projector (onto M). Conversely, if A is a bounded linear
projector onto M , then, for any f , and any m ∈ M , ‖f − Af‖ = ‖(1 − A)(f − m)‖ ≤
‖1− A‖‖f −m‖, therefore

(1) ‖f − Af‖ ≤ ‖1−A‖ dist (f,M).“nearbest

course

The intent is to give a quick reading of these basics of AT, illustrated with the help
of splines, thereby giving also a quick introduction to (univariate) splines.

Weierstraß, Korovkin, Lebesgue, Bernstein

Start off the course the way Lorentz starts off his book (the nicest book in classical
AT) and the way Tikhomirov starts off his survey of AT, namely with

(2) Weierstraß (1885). For any (finite) interval I = [a . . b], Π I is dense in C(I).“weierstrass

Since both Π and ‖ · ‖∞ are invariant under translation

f 7→ f(·+ t)

and dilation

f 7→ f(·/σ),

it is sufficient to consider just one nontrivial interval, e.g., the special case I = [0 . . 1].

I will give three proofs (at least). The first proof is Bernstein’s, but done with Ko-
rovkin’s theorem. The second is Lebesgue’s, done with broken lines. The third is Stone’s.
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(3) Korovkin (1957). F = R, T compact, (Un) in L(C(T )), Un positive, Un
pw−−−→ 1 on“korovkin

some finite set F 6⊆ {0}. If there exists (af : f ∈ F ) in C(T ) so that

p(t, s) :=
∑

f∈F

f(t)af(s) ≥ 0 with equality iff t = s,

then Un
pw−−−→ 1.

Explanations:
(i) With Un and U being maps from the same domain and into the same target,

Un
pw−−−→ U indicates that Un converges pointwise to U , i.e., ∀{x ∈ X} limn→∞ Unx =

Ux (in the topology of the common target of the Un and U). This is much weaker than
the more elusive uniform convergence, denoted Un

u−−→ U , which presupposes that the
common target is normed and means that

lim
n→∞

sup
x∈X
‖Unx− Ux‖ = 0.

(ii) It is assumed here that C(T ) is the set of real-valued continuous maps on T . For
those, there is a natural (partial) order, namely

f ≤ g :⇐⇒ ∀t ∈ T f(t) ≤ g(t).

U : C(T )→ C(T ) is called positive (or, more precisely, nonnegative) if

0 ≤ f =⇒ 0 ≤ Uf.

Observation: Assume that U is positive and linear. Then f ≤ g =⇒ Uf ≤ Ug.
Further, with |f | : T → R : t 7→ |f(t)|,

−|f | ≤ f ≤ |f | =⇒ −U(|f |) ≤ Uf ≤ U(|f |),

hence,
|U(f)| ≤ U(|f |).

Proof of Korovkin (3): By assumption, Un
pw−−−→ 1 on F , hence (Un being

linear), also on

ran[F ] := {
∑

f∈F

fc(f) : c ∈ R
F } =: spanF.

The latter is finite-dimensional, therefore Un → 1 uniformly on bounded subsets of ran[F ].
The rest is a very nice trick, in which the arbitrary g ∈ C(T ) to be approximated from

Π is locally related to some element of ran[F ], as follows. From the assumption, ran[F ]
contains (strictly) positive functions, e.g., the function t 7→ p(t, s) + p(t, s′) for any s 6= s′

in case #T > 1 and |f | for any f ∈ F\0 otherwise. Let p∗ be one such. For s ∈ T , set

g =:
g(s)

p∗(s)
p∗ + h(·, s).
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Then

(4) (Ung)(s) =
g(s)

p∗(s)
(Unp

∗)(s) + (Unh(·, s))(s),

and
Unp

∗ → p∗.

Since T is compact, ‖1/p∗‖∞ <∞, hence

g(s)

p∗(s)
(Unp

∗)(s)→ g(s)

p∗(s)
p∗(s) = g(s)

uniformly in s. Korovkin’s result therefore follows from the following claim.

Claim. Un(h(·, s))(s)→ 0 uniformly in s.

Proof: By the positivity of Un, |Unh(·, s)| ≤ Un(|h(·, s)|). Take any ε > 0. Then
|h| ≤ ε + a bound for |h| on the set ∆ε := {(t, s) : |h(t, s)| ≥ ε}. This set is closed
since h is continuous, hence compact; it also does not contain the zero-set of p, i.e., the
set {(t, t) : t ∈ T}, since h vanishes there. Therefore,

δ := inf p(∆ε) > 0,

hence, |h| ≤ (‖h‖∞/δ)p on ∆ε. So,

|h| ≤ ε+ (‖h‖∞/δ)p.

Consequently, for any s,

|Un(h(·, s))| ≤ Un(|h(·, s)|) ≤ εM + (‖h‖∞/δ)Un(p(·, s)),

with
M := sup

n
‖Un()0‖∞

finite since, by the strict positivity of p∗, there is some positive b so that ()0 ≤ bp∗, therefore

|Un()0| ≤ Un()0 ≤ bUn(p∗)→ bp∗.

Now, {p(·, s) : s ∈ T} is a bounded subset of the finite-dimensional linear space ran[F ],
hence, on it, Un converges to 1 uniformly. Since p(s, s) = 0, this means that, for large n,
Un(p(·, s))(s) is close to zero uniformly in s. Therefore, for all n ≥ nε,

|Un(h(·, s))(s)| ≤ ε(M + 1).

Since ε was arbitrary, this proves the Claim.
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From this, (2)Weierstraß for I = [0 . . 1] follows, with the choices F = {()0, ()1, ()2}
hence ran[F ] = Π2, p : (t, s) 7→ (t − s)2, and Un = Bn, n > 0, the Bernstein operator
(introduced by Bernstein in 1912 for a different proof of Weierstraß)

Bn : f 7→
n∑

j=0

βj,n−jf(
j

n
),

with

βr,s : t 7→
(
r + s

r

)
tr(1− t)s.

Indeed, Bn is linear, and is positive as a map on C(I). Further,

DBnf =
n∑

j=1

(
n

j

)
j()j−1(1− ·)n−jf(

j

n
)−

n−1∑

j=0

(
n

j

)
(n− j)()j(1− ·)n−j−1f(

j

n
),

therefore (and this is of independent interest)

(5) DBnf = n
n−1∑

j=0

(
n− 1

j

)
()j(1− ·)n−1−j∆f(

j

n
),

“diffbernstein

with

∆f := f(·+ 1

n
)− f,

using the facts that
(
n
j

)
j = n

(
n−1
j−1

)
and

(
n
j

)
(n−j) = n

(
n−1

j

)
. Now note that ∆(Πk) ⊆ Πk−1.

Therefore, ∆k+1 := ∆∆k vanishes identically on Πk, hence

Bn(Πk) ⊆ Πk

(for k ≤ n; it’s trivial for k > n). Since also

Bnf(t) = f(t), t = 0, 1,

it follows that Bn = 1 on Π1, therefore Bn()j → ()j for j = 0, 1 trivially, and we are
done once we show that Bnf → f for some f ∈ Π2\Π1, e.g., for f := β1,1 : t 7→ t(1− t).
This f vanishes at 0 and 1 and is quadratic, hence Bnf must have the same properties,
and therefore must equal αnf for some αn. It follows that DBnf(0) = αnDf(0) = αn,
while, by (5), DBnf(0) = n(f(1/n)− f(0)) = nf(1/n) = 1− 1

n . Therefore αn = n−1
n , i.e.,

Bnf = f − f/n −→ f as n→∞.

29jan03 7 c©2003 Carl de Boor



notes(.tex) (as of 29jan03) TEX’ed at 16:24 on 21 November 2009

(6) d-dim. Weierstraß. The restriction Π T of the polynomials in d arguments to any“ddimweierstrass

compact subset T of R
d is dense in C(T ).

Proof: It is sufficient to prove the theorem for the special case T = I := [0 . .
1]d since T is compact, hence contained in some axi-parallel box that, after translation
and dilation, we may assume to be I, and, by Tietze’s extension theorem, C(T ) can be
isometrically imbedded into C(I).

Remember: The Tietze extension of f ∈ C(T ) to an fI ∈ C(I) is given by the rule

fI : x 7→
{
f(x), x ∈ T ;
α+ inft∈T (f(t)− α) dist (x, t)/ dist (x, T ), x 6∈ T ,

with α := inf f(T ) − 1, say, i.e., so that f − α()0 is strictly positive. A proof is usually
given on the way to proving Urisohn’s Lemma.

Now choose Un as the tensor product Bn ⊗ · · · ⊗ Bn of d copies of the Bernstein
operator. This means that

Unf :=
∑

0≤j≤(n,...,n)

βjf(j/n),

with j ∈ Z
d and

βj : x 7→ βj(1),n−j(1)(x(1)) · · ·βj(d),n−j(d)(x(d)).

Evidently, Un is linear and positive. Moreover,

∀{(fi) ∈ (C([0 . . 1]))d} Un ⊗d
i=1 fi = ⊗iBnfi : x 7→

∏

i

(Bnfi)(x(i)).

From the univariate argument, Un
pw−−−→ 1 on Π2,...,2 since Un()α = ⊗d

i=1Bn()α(i), and a
suitable p is

p : (x, y) 7→
∑

i

(x(i)− y(i))2.

Korovkin also supplies a proof that the trigonometric polynomials are dense in C(TT),
the space of continuous functions on the circle. In this case, the role of p is played by

p : (t, s) 7→ 1− cos(t− s) = (e0 − (ei + e−i)/2)(t− s),

i.e., ran[F ] ⊂ ◦Π1, and the maps Un are the Fejér operators, i.e.,

σn : f 7→ 1

π

∫

TT

Fn(· − t)f(t) dt

with

Fn(θ) :=
1

2(n+ 1)

(
sin((n+ 1)θ/2)

sin(θ/2)

)2

.

29jan03 8 c©2003 Carl de Boor



notes(.tex) (as of 23jan03) TEX’ed at 16:24 on 21 November 2009

The Fejér operator associates with f the average of its truncated Fourier series of orders
0, 1, . . . , n, i.e.,

σnf =
1

n+ 1

n∑

j=0

sjf

with

sjf :=
∑

|µ|≤j

eiµ

∫

TT

e−iµtf(t) dt/(2π).

In particular, σn is a positive operator (which sn is not), and

σn(eik) =
(n− |k|+ 1)+

n+ 1
eik,

hence σn(eik) converges to eik for any k, in particular for |k| ≤ 1. On the other hand,
recall that ‖sj‖ ∼ ln j as j →∞, hence sj fails to converge to 1 on C(TT).

Lebesgue’s proof (1898) of (2)Weierstraß Let I := [a. .b]. For any f ∈ C(I) and
any finite sequence ξξξξξ := (a = ξ1 < ξ2 < · · · < ξℓ+1 = b), the broken-line interpolant to f is,
by definition, the unique element Pξξξξξf in Π0

1,ξξξξξ that agrees with f at ξξξξξ. For ξj ≤ t ≤ ξj+1,

f(t)− Pξξξξξf(t) = (f(t)− f(ξj))
ξj+1 − t
ξj+1 − ξj

+ (f(t)− f(ξj+1))
t− ξj

ξj+1 − ξj
,

hence
‖f − Pξξξξξf‖∞ ≤ ωf (|ξξξξξ|),

with ωf the (uniform) modulus of continuity of f and

|ξξξξξ| := max
j
|ξj+1 − ξj |.

Conclusion: The collection
Π0

1(I) :=
⋃

ξξξξξ in I

Π0
1,ξξξξξ

of continuous broken lines on I is dense in C(I).
Since each Π0

1,ξξξξξ is contained in Π1 + ran[ | · −ξj | : j = 2, . . . , ℓ], the following Claim
therefore finishes the proof.

(7) Claim. For finite [a . . b] and any s, dist∞(| · −s|,Π)[a . . b] = 0.“claimapproxabs

Proof: Only the case s ∈ (a. .b) needs proof. For such s, we may choose σ ∈ Π1\Π0

that carries [a . . b] into [−1 . . 1] in such a way that σ(s) = 0. Further, if p ∈ Π is close
to | · | on [−1 . . 1], then p ◦ σ is a polynomial that, on [a . . b], is that close to c| · −s|
for some nonzero c that depends only on σ. Hence it is sufficient to prove the Claim for
[a . . b] = [−1 . . 1] and s = 0. Since |t| = (t2)1/2, i.e.,

| · | = ()1/2 ◦ ()2,

and ()2([−1 . . 1]) = [0 . . 1], and Π ◦ ()2 ⊂ Π, the following Claim finishes the proof.
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(8) Claim. dist∞(()1/2,Π)[0 . . 1] = 0.

Proof: A standard proof uses the Taylor series expansion

(1− ·)1/2 = 1−
∑

n>0

()n
n∏

k=1

|3/2− k|/k

which converges uniformly on any compact subset of (−1 . . 1) (since the power coefficients
are all bounded by 1). I prefer the following proof, from Dieudonné’s Analysis.

Define the sequence (un : n = 0, 1, 2 · · ·) by the iteration

un+1 := un + (()1 − (un)2)/2, n = 0, 1, 2, . . .

with
u0 := 0.

Claim: for all n, un ∈ Π and

un ≤ ()1/2, on [0 . . 1].

Indeed, assuming this already to be true for n (as it is for n = 0), we observe that then
also un+1 ∈ Π and compute

()1/2 − un+1 = (()1/2 − un)(1− (()1/2 + un)/2) ≥ (()1/2 − un)(1− ()1/2) ≥ 0

on [0 . . 1].
It follows that ()1−u2

n ≥ 0 on [0 . . 1], hence un+1 = un +(()1− (un)2)/2 ≥ un. Thus,
(un) is monotone increasing, yet bounded on [0 . . 1], therefore pointwise convergent there,
and its limit is necessarily a fixed point of the iteration used to define it, hence its limit
is ()1/2. But since this limit function is continuous and [0 . . 1] is compact, un → ()1/2

uniformly (by Dini’s Theorem).

Stone-Weierstraß

For an arbitrary set T , the collection F
T of all scalar-valued maps (whether real or

complex) is not only closed under (pointwise) addition and multiplication by a scalar, but
also closed under (pointwise) multiplication of two elements, i.e., for f, g ∈ F

T , also

fg : T → F : t 7→ f(t)g(t)

is in F
T , and F

T is a ring wrto these two operations. In fact, it is a ring with identity
since it contains the multiplicative identity, i.e., the function 1 : t 7→ 1. Since also

f(αg) = (αf)g = α(fg), α ∈ F, f, g ∈ F
T ,
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F
T is an algebra with identity.

The Stone(-Weierstraß) theorem employs the following notion: A ⊂ F
T is said to

separate points if, for any two distinct points s, t ∈ T , there exists a ∈ A with a(s) 6= a(t).
If A is a linear subspace and also contains the identity, then this is equivalent to the
statement that the linear map

A→ F
2 : a 7→ (a(s), a(t))

is onto (since its range contains the vector (1, 1) as well as some vector (α, β) with α 6= β),
hence the map has right inverses. In particular, for any f ∈ F

T and any s, t ∈ T , there
exists af,s,t ∈ A that agrees with f at s and t. It is this conclusion that is needed.

(9) Stone(-Weierstraß) (1937). Let T be compact metric. The only closed subalgebra“stoneweierstrass

A, of real C(T ), that separates points and contains 1 is C(T ) itself.

Proof: The range a(T ) of any a ∈ A is a bounded subset of R (since T is compact),
hence, by Claim 7, | · | can be approximated, uniformly on a(T ), by polynomials p, and
A, being an algebra, contains p ◦ a : t 7→ p(a(t)) for any polynomial. This implies that A,
being closed, is closed under formation of absolute values; i.e.,

a ∈ A =⇒ |a| ∈ A.
Since

max{f, g} : T → R : t 7→ max{f(t), g(t)}
can also be written

max{f, g} = ((f + g) + |f − g|)/2,
A is also closed under formation of the maximum of finitely many functions. Since

min{f, g} = −max{−f,−g},
A is also closed under formation of minimum.

Take f ∈ C(T ), ε > 0. Let t ∈ T . For each s ∈ T , there is as,t ∈ A agreeing with
f at s and t, hence, there is some neighborhood Us of s on which f − ε < as,t. T being
compact, there exists a finite set S for which T = ∪s∈SUs. Hence, the function

at := max
s∈S

as,t

is in A and satisfies
f − ε < at on T, at(t) = f(t).

The latter implies that, on some neighborhood Vt of t, f + ε > at. Hence, with S a finite
set for which T = ∪t∈SVt, the function

a := min
t∈S

at

is in A and satisfies
f + ε > a

as well as f − ε < a. Consequently, ‖f −a‖∞ < ε. As ε is arbitrary and A is closed, f ∈ A
follows.
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From this, even the multivariate Weierstraß theorem, (6), follows since Π is an algebra
with identity that separates points.

Another consequence is the density of the even trigonometric polynomials, i.e., of
ran[cos(j·) : j = 0, 1, 2, . . .] in C([0 . . π] (the function cos alone is enough to separate
points). Note that this algebra fails to be dense in C([0 . . α]) for any α > π.

The restriction to real-valued functions is essential here. Not only does the proof of
Stone make explicit use of it (it relies on the total ordering of the reals), but the polynomials
fail to be dense in C({z ∈ C : |z| ≤ 1}) of all complex-valued continuous functions of one
complex argument on the unit disk (even though they continue to form there an algebra
with identity that separates points), since their closure consists of functions analytic in the
interior of the disk.

On the other hand, Stone’s theorem does have the following (weaker) immediate
consequence for complex-valued functions which relies on nothing more than the fact that
CC(T ) = CR(T ) + iCR(T ).

(10) complex Stone. Let T be compact metric. The only closed subalgebra A of complex“stoneweierstrass

C(T ) with identity which separates points and is closed under conjugation is C(T ) itself.

Here, being closed under conjugation means thatA contains, with f , also its conjugate,
f : T → C : t 7→ f(t).

In particular, Π D is dense in CC(D) for D = {x ∈ R
2 : ‖x‖2 ≤ 1}.

Existence

M ⊂ X is called an existence set in case ∀ {g ∈ X} PM (g) 6= ∅. Such a set is
necessarily closed, hence M is assumed to be closed from now on.

Having M closed does not ensure existence, even when M is a linear subspace and X
is a Banach space. A standard example is the kernel M := kerλ of any continuous linear
functional λ which does not take on its norm, i.e., for which there is no nontrivial
g ∈ X with |λg| = ‖λ‖‖g‖. For,

|λg| = ‖λ‖ dist (g, kerλ), ∀ g ∈ X, λ ∈ X∗.

Hence, if ‖g −m‖ = dist (g, kerλ) with m ∈ kerλ, then

‖λ‖ dist (g, kerλ) = |λg| = |λ(g −m)| ≤ ‖λ‖‖g −m‖ = ‖λ‖ dist (g, kerλ),

therefore, necessarily, |λ(g−m)| = ‖λ‖‖g−m‖. Hence, if λ fails to take on its norm, then
this can only happen if g = m, i.e., if g ∈M (in which case PM (g) = {g} trivially).

Specifically, take

X = ℓ1 := {a ∈ R
N : ‖a‖1 :=

∑

j

|a(j)| <∞}.

Take
λ : a 7→

∑

j

(1− 1/j)a(j).
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Then
|λa| ≤

∑

j

(1− 1/j)|a(j)| ≤
∑

j

|a(j)| = ‖a‖1,

and the last inequality is sharp since, for any j, λij = 1− 1/j j→∞−−−−→ 1 = ‖ij‖1. However,

|λa| = ‖a‖1 implies equality throughout and that’s not possible unless, for each j, |a(j)| =
0, i.e., a = 0.

In effect, in the example, the sequence (ij : j ∈ N) is a maximizing sequence for

‖λ‖ = sup
x∈X
|λx|/‖x‖,

but this sequence fails to have limit points, hence the sup is not taken on.
Put positively, existence of ba’s from M is usually proved by establishing that, in some

weak enough topology, closed and bounded subsets of M are compact while the topology
is still strong enough to have x 7→ ‖x‖ at least lower semicontinuous (i.e., xn → x =⇒
lim infn ‖xn‖ ≥ ‖x‖).
(11) Proposition. Any finite-dimensional linear subspace M of any nls X is an existence
set.

Proof: Since PM (g) necessarily lies in the intersection

Mg := M ∩B−
2 dist (g,M)(g)

of M with the closed ball around g with radius twice the distance of g from M , we have
Mg not empty and

PM (g) = PMg
(g).

M is closed (since it is finite-dimensional), therefore Mg is a closed and bounded subset of
a finite-dimensional ls, hence compact. In particular, the continuous function m 7→ ‖g−m‖
takes on its infimum on Mg.

The same proof supports the claim that any closed set M which is finite-dimensional
in the sense that its affine hull is finite-dimensional, is an existence set. More than that, if
M is merely finite-dimensional in the sense that it is the image of some closed subset of F

n

under a continuous map with continuous inverse (as a map to M), then M is an existence
set.

However, here is another example. Let X = Lp[0 . . 1], for some p ∈ [1 . .∞], and

M = Πk,l[0 . . 1]

the collection of all pp functions of degree ≤ k on [0. .1] with l pieces. For k = 0, this would
be the space of splines of order 1 with l − 1 free knots. This collection includes also
all pp functions of degree ≤ k with fewer than l breakpoints since the latter are obtained
from the former description when some adjacent polynomial pieces happen to come from
the same polynomial. This, however, indicates the technical difficulty to be overcome here:
M appears to be finite-dimensional in the sense that each of its elements is specified by
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finitely many parameters or degrees of freedom, namely the l − 1 (interior) breakpoints
and the (k + 1)l polynomial coefficients. However, this parametrization is badly flawed
since any element with fewer than l − 1 active breakpoints can be parametrized this way
in infinitely many different ways, as one can think of the inactive breakpoints as being
located anywhere. In effect, the natural parametrization describes this M as the image of

{ξ : 0 = ξ1 < · · · < ξl+1 = 1} ×R
(k+1)l,

with the map failing to be 1-1 on the boundary of this domain, yet no better parametriza-
tion is at hand.

Let (sn : n ∈ N) be a minimizing sequence from M = Πk,l for g, i.e., limn ‖g −
sn‖ = dist (g,M). Without loss, we assume that each sn consists of exactly l pieces and,
AGTASMAT (:= After Going To A Subsequence May Assume That) the corresponding

sequence (ξ(n) : n ∈ N) of breakpoint sequences ξ(n) := (0 = ξ
(n)
1 < · · · < ξ

(n)
l+1 = 1)

converges to some (l + 1)-vector ξ.
Assume first that ξ is strictly increasing. Let (pj,n : j = 1, . . . , l) be the sequence of

polynomial pieces which make up sn, with pj,n the piece corresponding to the interval

Ij,n := (ξ
(n)
j . . ξ

(n)
j+1).

Since sn is a minimizing sequence, it is, in particular, bounded, and this implies that,
for each j, the sequence (‖pj,n‖(Ij,n) : n ∈ N) is bounded. Here and below, and for any
domain-dependent norm ‖·‖ such as the Lp-norms on some domain T , and for any subset
U of that domain, ‖g‖(U) is the same norm, but for the domain U . Since the endpoints
of Ij,n converge to the endpoints of Ij := [ξj . . ξj+1], it follows that, for some slightly

smaller, but still nontrivial, interval Îj , the sequence (‖pj,n‖(Îj) : n large ) is bounded.

Since p 7→ ‖p‖(Îj) is a norm on Πk, and Πk is finite-dimensional, it follows AGTASMAT
that pj,n converges to some pj ∈ Πk, and since there are only finitely many j involved, we
can make this assumption for all j. The argument is finished by verifying that the pp s
with break sequence ξ and polynomial pieces (pj : j = 1, . . . , l) is, indeed, the norm limit
of (sn). This implies that

dist (g,M) ≤ ‖g − s‖ = lim
n
‖g − sn‖ = dist (g,M),

hence s ∈ PM (g).
This argument is not only a little bit shaky (since the verification mentioned two

sentences ago was not explicitly carried out), but runs into trouble in case there is coales-
cence, i.e., in case ξ is not strictly increasing. This implies that, for some j, Ij = limn Ij,n
has no interior, hence the boundedness of the sequence (‖pj,n‖(Ij,n) : n ∈ N) does not
force convergence of some subsequence of (pj,n : n). At the same time, the fact that Ij is
trivial would suggest that, somehow, we don’t care about this polynomial sequence. On
the other hand, we cannot simply ignore it. Or can we?

Here is a soft-analysis approach around this. A sequence (xn) in a nls X is said to
nearly converge to x ∈ X if

(12) ∀{y ∈ X} lim inf
n
‖xn − y‖ ≥ ‖x− y‖.“defnearconv
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Further, a subset Y of X is nearly compact in Z if every sequence in Y has a nearly
converging subsequence, with ‘near-limit’ in Z.

This is certainly a useful notion here. For:

(13) Proposition. If bounded subsets of M ⊂ X are nearly compact in M , then M is“propnearlyexist

an existence set.

Proof: Any minimizing sequence (mn) in M for g ∈ X is necessarily bounded,
hence, AGTASMAT, there exists m ∈M so that

dist (g,M) ≤ ‖g −m‖ ≤ lim inf
n
‖g −mn‖ = dist (g,M),

hence m ∈ PM (g).

(It would have sufficed here to work with the even weaker notion of demanding only
that

∀{y ∈ X} lim sup
n
‖xn − y‖ ≥ ‖x− y‖.

However, such a notion of “convergence” isn’t even preserved by going to subsequences.)
Here is a ready source for nearly convergent sequences.

(14) Proposition. Assume that Φ is a collection of seminorms on the nls X , and that“propseminearly

sup
ϕ∈Φ

ϕ(x) = ‖x‖, x ∈ X.

If (xn) Φ-converges to x, i.e.,

∀{ϕ ∈ Φ} lim
n
ϕ(x− xn) = 0,

then (xn) nearly converges to x.

Proof: Since seminorms provide a translation-invariant characterization of con-
vergence, it is sufficient to prove (12) for just y = 0. For this, since ϕ(xn) ≤ ‖xn‖, we have
ϕ(x) = limn ϕ(xn) ≤ lim infn ‖xn‖, hence

‖x‖ = sup
ϕ∈Φ

ϕ(x) ≤ lim inf
n
‖xn‖.

Returning to the example, choose Φ = {ϕε : ε > 0}, with

ϕε : x 7→ ‖x‖([0 . . 1]\Bε(ξ)).

For any p ∈ [1 . .∞], these are seminorms on X = Lp[0 . . 1] satisfying the assumptions of
Proposition 14, hence also its conclusion. The above selection process is sure to provide
a subsequence which, for some ε > 0, ϕε-converges to a certain element of Πk,l. Since Πk

is finite-dimensional, this implies that the subsequence ϕη-converges to that element for
every 0 < η ≤ ε, hence nearly converges to it, and the proof of Proposition 13 does the
rest.

Notice that the near-limit of that subsequence of (mn) only depends on the polyno-
mial pieces pj,n for which Ij is not trivial. Hence, if some Ij is trivial, we may change
the corresponding pj,n arbitrarily without changing the near-limit. In particular, we can
arrange such changes that mn will fail to converge in norm, thus providing an explicit
example of the fact that near-convergence is truly more general than convergence.
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The same arguments also settle existence questions when dealing with smooth piece-
wise polynomials. These are the elements in the space

Πρ
k,ξ,

consisting of all s ∈ Πk,ξ that are in C(ρi)(ξi), all i. If ρ is just an integer, it is taken to
stand for the corresponding constant sequence. In any event, each entry of ρ is restricted
to be no greater than k + 1 since ρi = k + 1 implies infinite smoothness at ξi.

To be precise, the above arguments guarantee that any minimizing sequence from

⋃

0=ξ1<···<ξl+1=1

Πρ
k,ξ,

leads to an element in some Πk,ξ, but not all elements of Πk,ξ can appear. For example,
if l = 2 and ρ = k − 1 > 0, then only elements of some Πρ

k,ξ can appear. It is useful to
discuss this question in the more general context of γ-polynomials.

γ-polynomials

Let γ : I → X be a curve in the nls X , i.e., a continuous map from some (finite or
infinite) interval I into X . We are interested in the approximating family

Mγ,l :=
⋃

ξ1<···<ξl

ran[γ(ξ1), . . . , γ(ξl)].

Our particular concern is the special case

γ : x 7→ (· − x)k
+,

with
()+ : R→ R : s 7→ (s+ |s|)/2

the truncation map, and with X a normed linear space of functions on I, such as Lp(I),
as this leads to splines. However, here are other very useful examples.
• exponentials, where

γ(t) := et;

• rationals, where
γ(t) := 1/(· − t).

• point functionals, where

γ : I → X∗ : t 7→ δt,

with X some space of functions on I.
The last example is dear to Numerical Analysts who like to approximate linear func-

tionals, like f 7→
∫

I
f , by linear combinations of values (and, perhaps, derivatives). It is
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prototypical, since, for all the others, there exists a space Y of functions on I and a pairing
〈·, ·〉 so that γ(t) is (up to a factor) the representer of evaluation at t, i.e., so that

y(t) = 〈y, γ(t)〉, y ∈ Y, t ∈ I.

For example, the truncated Taylor series with remainder

f =
∑

j<k

Djf(a)()j/j! +

∫ b

a

(· − t)k−1
+ /(k − 1)!Dkf(t) dt on [a . . b]

shows that k(τ − ·)k−1
+ represents δτ on Y := {f ∈ C(k)[a . . b] : f vanishes k-fold at 0}

with respect to the pairing (g, f) 7→
∫ b

a
g Dkf/k!.

In the context of existence, it becomes important to know whether Mγ,l is closed. More
precisely, it becomes important to know the possible near-limits of minimizing sequences
in Mγ,l. Since near convergence is a weaker concept than (norm) convergence, we may
have to go beyond the (norm-)closure of Mγ,l in order to get an existence set. However,
we need to know the norm-closure M−

γ,l of Mγ,l in any case.
If γ is a smooth curve, in the sense that the (norm-)limit

Dγ(x) := lim
y→x

(γ(x)− γ(y))/(x− y)

exists, then also Dγ(x), being a norm-limit of elements of Mγ,l, must be in M−
γ,l. If γ

is even smoother, in the sense that the ‘tangent’ curve Dγ is itself smooth, then also all
points on the second derived curve D2γ must be in M−

γ,l.
We may pick up this discussion later, after we have recalled well-known facts about

divided differences.

Uniqueness

The question of uniqueness is, more generally, the question of the nature of PM (g).
By definition,

PM (g) = M ∩ B−
dist (g,M)(g).

Hence, if M is convex, then so is PM (g), and may well contain nontrivial line segments if,
e.g., M is a linear subspace and the boundary ∂B of the unit ball, B, contains line segments,
i.e., the norm fails to be strictly convex. The latter is the case for ℓp(n) (which is F

n with
the ℓp-norm) iff p = 1,∞. It is also the case for Lp with p = 1,∞. In these spaces, we
expect nonuniqueness of best approximation even from finite-dimensional spaces. (E.g.,
X = L1[0 . . 1], M = Π0, g = χ

[1/2..1]
.) However, nonuniqueness is not guaranteed; it

depends on the attitude of M with respect to Bdist (g,M)(g). (In the example just given,
one gets uniqueness for any g = χ

[x..1]
except when x = 1/2.) Draw pictures in ℓp(2) for

p = 1, 2,∞.
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A set M that provides exactly one ba for every g ∈ X is called by some a Chebyshev
set. Any Chebyshev set M in a nls X induces a map PM , called the metric projector
for M , by the rule

(15) PM (g) =: {PMg}, g ∈ X.“defmetricP

Any finite-dimensional Chebyshev subspace M of C[a . . b] (e.g., M = Πk) provides not
only a unique best approximation, but something called strong uniqueness. This means
that, for every g ∈ C[a . . b], there exists a positive constant c so that, for all m ∈M ,

‖g −m‖ ≥ ‖g − PMg‖+ c‖m− PMg‖.

This reflects the geometric fact that the unit ball in C has corners.

(16) Proposition. The metric projector of any finite-dimensional Chebyshev subspace
M of any nls X is continuous.

Proof: Assume that gn → g. We are to prove that PMgn → PMg. For this, it is
sufficient to prove that PMg is the unique limit point of (PMgn). For this, observe that
‖PMg‖ ≤ ‖g‖ for any g, hence the convergence of (gn) implies that (PMgn) is bounded,
hence has limit points, as a bounded subset of a finite-dimensional ls. However, any such
limit point necessarily equals PMg, by the following Lemma.

(17) Lemma. If X is ms, and (gn) is a sequence in X with limit g, and (mn) is a
corresponding sequence with mn ∈ PM (gn) that converges to some m, then m ∈ PM (g).

Proof: By an earlier assumption, M is closed, hence m ∈ M . Therefore, if not
m ∈ PM (g), then there would exist m′ ∈M with d(g,m′) < d(g,m). We use the triangle
inequality to conclude that

d(m′, gn)− d(gn, g) ≤ d(m′, g) < d(m, g) ≤ d(m,mn) + d(mn, gn) + d(gn, g).

Since d(gn, g), d(m,mn), and d(gn, g) all go to zero as n→∞, this would imply that, for
sufficiently large n,

d(m′, gn) < d(mn, gn),

contradicting the fact that mn ∈ PM (gn).

Note that, even when M is a linear subspace, the metric projector is usually non-
linear hence not all that easy to construct or apply. Inner product spaces (or, equivalently,
least-squares approximation) are so popular precisely because the resulting metric projector
is linear. (In fact, one of the simpler characterizations of inner product spaces describes
them as the normed linear spaces in which the metric projector for every three-dimensional
linear subspace is linear.)

Much paper has been used in attacking the metric selection problem, which is the
problem of understanding in what circumstances an existence set permits the construction
of a continuous map PM satisfying (15). Since the resulting constructions are often not
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practical, it is, from a practical point of view, much more interesting to construct near-best
projectors.

If M is a nonconvex existence set in the nls X , then nonuniqueness is guaranteed,
particularly if g is ‘very far’ from M . Draw the picture. More than that, there are
perfectly reasonable M that have ‘corners’ in the sense that #PM (g) > 1 for certain g
arbitrarily close to M . Here is one example.

(18) Example Consider M := Π0,2 in L2[−1 . . 1], say, and take g = α()2. Since
M is closed under multiplication by scalars, we have PM (α()2) = |α|PM (()2), hence it is
sufficient to consider g = ()2. Let m ∈ PM (g), and let ζ be its sole breakpoint. Since g
is even, also m′ : t 7→ m(−t) is in PM (g). Hence, uniqueness would imply that m = m′,
therefore, m ∈ Π0. This would imply that, for any ζ ∈ [−1 . . 1], m + ran[mζ ] ⊂ M ,
with mζ := χ

[ζ..1]
, hence, necessarily, g −m must be orthogonal to mζ for every such ζ.

However, ran[mζ : −1 < ζ < 1] is dense in L2[−1 . . 1], therefore g = m would follow,
contradicting the fact that g 6∈ Π0.

The same argument shows that, in any L2-best approximation by splines with l simple
(free or variable) knots, all l knots are active (though coalescence is, of course, possible).

Note that γ : [a . . b] → L2([a . . b]) : t 7→ χ
[t..b]

is a continuous curve which, at every

point γ(s), ‘turns 90◦’ in the sense that, for all r < s < t, the secant directions γ(s)− γ(r)
and γ(t)− γ(s) are perpendicular to each other. It is this counter-intuitive example that
led to the concept of γ-polynomials.

Characterization

The standard characterization theorems for ba’s are in terms of linear functionals
(which is not too surprising since the derivative of the scalar-valued map m 7→ ‖f −m‖ at
some m 6= f is necessarily a linear functional if it exists).

The action of a continuous linear functional λ on a nls X over the real scalars is very
simple: The kernel of λ cuts X into two halfspaces, on one λ is positive, on the other it is
negative. Further, λ is constant on hyperplanes parallel to the kernel, i.e., on

H(λ, α) := {x ∈ X : λx = α} = xα + kerλ

for any xα ∈ H(λ, α).
Let M be a closed subset of X , let g 6∈M , hence

r := dist (g,M) > 0

and inf ‖M −Br(g)‖ = 0, therefore

(19) supλ(M) ≥ inf λ(Br(g)), ∀λ ∈ X∗.“supgeinf
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Now suppose that, in fact, we have equality here, i.e., suppose that

(20) λ ∈ X∗\0 s.t. α := sup λ(M) = inf λ(Br(g)).“condgl

Then the hyperplane H(λ, α) has M on its negative side and Br(g) on its positive side.
For that reason, such λ is called a separating linear functional for M and Br(g). More
than that, H(λ, α) is a supporting hyperplane for both sets, meaning that each set is
on one side of it, but with 0 distance.

Finally, suppose that m ∈ PM (g). Then

λm ≤ sup λ(M) = inf λ(Br(g)) = λg − supλ(Br)

= λg − ‖λ‖ ‖g −m‖
≤ λg − λ(g −m) ≤ λm,

hence there must be equality throughout. In particular, then

(21) λm = sup λ(M), λ(g −m) = ‖λ‖ ‖g −m‖.“condba

One says that λ is parallel to g −m, in symbols

λ‖g −m,

if both λ and g−m are nonzero and satisfy the second condition in (21). This language is
derived from the special situation in a Hilbert space, since then λ is necessarily of the form
〈·, y〉 for some y ∈ X and now λ‖g −m implies that y and g −m are positive multiples
of each other. Whether or not X is a Hilbert space, the condition λ‖g −m also says that
g −m is an extremal for λ, meaning that it is a nonzero vector at which λ takes on its
norm.

Either way, (21) provides very useful necessary conditions for m ∈M to be in PM (g).
Moreover, these conditions must hold, not only for every m ∈ PM (g) but also for every λ
satisfying (20), i.e., separating M and Bdist (g,M)(g).

More than that, if m ∈M satisfies (21) for any such λ, then, for any m′ ∈M ,

‖λ‖‖g −m‖ = λg − λm ≤ λg − λm′ ≤ ‖λ‖‖g −m′‖,

hence (since λ 6= 0 by assumption), m ∈ PM (g).
This proves

(22) Proposition. Let M be a closed subset of the nls X , g ∈ X\M , hence r :=“propcharsep

dist (g,M) > 0, and let m ∈ M . If λ separates M and Br(g) (i.e., satisfies (20)), then
m ∈ PM (g) iff m satisfies (21).

In general there may be no separating linear functionals. However, if we know, in
addition, that M is convex, then the Separation Theorem assures us, for each g ∈ X\M ,
of the existence of λ satisfying (20) and, with that, we have proved
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(23) Characterization Theorem for ba from convex set. Let M be closed, convex“thmcharbafromconvex

in the real nls X , let g ∈ X\M and m ∈M . Then, m ∈ PM (g) iff there is some λ‖(g−m)
with sup λ(M) ≤ λm.

Since dist (g,M) = r = (λg − inf λ(Br(g))/‖λ‖, while, by (19), for any µ ∈ X∗,
µg − ‖µ‖r = inf λ(Br(g)) ≤ sup λ(M) with equality possible, it follows that

(24) dist (g,M) = max
µ6=0

(µg − supµ(M))/‖µ‖,
“dualdistance

which provides a useful and sharp lower bound for the distance of g from the convex set
M .

The theorem applies, in particular, to best approximation from a closed linear subspace
M of a nls X . However, for any λ ∈ X∗\0, supλ(M) on a lss M can only take on the
values 0 and ∞. For the λ in our theorem, this leaves only the value 0 (since supλ(M)
must equal λm). Thus the condition supλ(M) = λm is replaced by the condition

λ ⊥M := kerλ ⊃M.

(25) Characterization Theorem for ba from lss. Let M be a linear subspace of the“thmcharbaM

nls X , let g ∈ X and m ∈M . Then, m ∈ PM (g) iff there is some λ‖(g −m) with λ ⊥M .

Since sup λ(M) ∈ {0,∞} in caseM is a linear subspace, the lower bound (24) simplifies
in that case to

(26) dist (g,M) = max
λ⊥M

λg/‖λ‖.
“eqlowerboundls

Construction of ba

Characterization theorems are used in the construction of ba’s.
In the best of circumstances, the norm in question is smooth at the point (g−m)/‖g−

m‖, meaning that the condition λ‖(g − m) determines λ uniquely, up to nonnegative
multiples. On the other hand, the condition λ ⊥ M holds iff it hold for any nontrivial
scalar multiple, hence one may without loss restrict λ in the characterization theorem to
be of norm 1. Hence, in smooth norms (i.e., norms that are smooth every boundary point
of B, and for a finite-dimensional M , the characterizing conditions

M ⊥ λ ‖ (g −m)

constitute finitely many equations in the coefficients of the sought-for ba, m, with respect
to some convenient basis for M , i.e., in as many unknowns as there are equations.

The classical example (from which the entire geometric language used here derives) is
least-squares approximation, i.e., best approximation in an inner product space (such
as ℓ2 or L2), with inner product 〈·, ·〉. In such a space, the statement

(27) 0 < λg = ‖λ‖ ‖g‖“eqextremal

implies that λ = c〈·, g〉 for some positive constant c. The characterization theorem there-
fore specializes to the familiar
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(28) Proposition. The element m of the closed linear subspace M of the inner product
space X is a ba to a given g ∈ X iff g −m ⊥M .

The condition g−m ⊥M , when expressed in terms of a basis V = [v1, . . . , vn] for M ,
becomes the so-called normal equations,

∑

j

〈vj , vi〉a(j) = 〈g, vi〉, i = 1, . . . , n,

a linear system in the coefficient vector a for the ba m = V a with respect to that basis. A
careless choice of the basis V may lead to numerical disaster (as would be the case if, e.g.,
X = L2[100 . . 101], M = Πk, and one were to choose the power basis, [()j : j = 0, . . . , k]).
However, if M is a spline space, then it is usually acceptable to choose for V the B-spline
basis for that space.

If V is chosen to be orthogonal, i.e., 〈vj , vi〉 = 0 iff i 6= j, then the normal system
becomes diagonal, and the best approximation is given by

m =
∑

j

vj
〈g, vj〉
〈vj , vj〉

.

In Lp for p 6= 2 but 1 < p <∞, the statement (27) still determines a unique λ of norm
1, given in the form 〈·, gλ〉 for some gλ in the dual space, Lp∗ , i.e., with 1/p + 1/p∗ = 1.
But gλ depends nonlinearly on g, and this makes the resulting ‘normal equations’ harder
to solve. One successful technique consists in converting the problem into a weighted
L2-problem, with the weight determined iteratively. Specifically, if X = Lp[0 . . 1], then

‖g −m‖pp =

∫ 1

0

|g −m|2wg,m,

with the weight function wg,m := |g −m|p−2.
Such techniques even work for p =∞ if one uses the Pólya Algorithm, which obtains

a ba in L∞ as the limit of Lp-approximations as p → ∞. Since ba’s in L∞ need not be
unique, this procedure is also a way to select a particular ba from among the possibly
many.

In L∞, not only are ba’s in general not unique, also (27) may have many (linearly
independent) solutions, and this makes the application of the characterization theorem a
bit harder. On the other hand, if M is finite-dimensional and X = C(T ), then it is possible
to restrict considerably the set of linear functionals λ to be considered, namely to those
which are linear combinations of no more than (dimM) + 1 point evaluations. This, and
its pleasant consequences, are detailed in the next section.

The following consequence, of an observation during the proof of Proposition 22, is
of use when the Characterization Theorem 25 is used in a nls with a non-smooth and/or
non-strictly convex norm (such as L∞), in which case there may be many linear functionals
of norm 1 parallel to the error and/or many ba’s.
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(29) Lemma. X nls, M lss, g ∈ X , m ∈M . If M ⊥ λ‖(g−m), then, for any m′ ∈ PM (g),“lembasmustagree

also λ‖(g −m′).

In short, any characterizing linear functional, i.e., any linear functional perpendic-
ular to the approximating space and parallel to the error in some ba to the given g, must
also be parallel to the error in any other ba to that g. At times, this leads to a proof of
uniqueness of the ba.

Best approximation in C(T )

The tool here is the following representation theorem for linear functionals on finite-
dimensional linear subspaces of C(T ).

(30) Theorem. If λ is a linear functional on a lss Y , of dimension n, of the real nls C(T ),“thmextendtoCT

with T compact Hausdorff, then there exist U ⊂ T with #U = n and w ∈ R
U so that

λ =
∑

u∈U w(u)δu Y and ‖λ‖ = ‖w‖1.
In other words, every linear functional on an n-dimensional subspace of the real C(T )

has a norm-preserving extension to all of C(T ) in the form

λU,w :=
∑

u∈U

w(u)δu

of a linear combination of no more than n point evaluations.
This representation theorem is germane because our characterization of the elements

m of PM (g) involves linear functionals only as they act on Y := M + ran[g]. Indeed, all
the characterization demands is that M ⊥ λ‖(g − m). Hence, whatever λ ∈ C(T )∗ the
characterization theorem might have dragged in here, we may replace it by the extension
of λ Y to C(T ) guaranteed by Theorem 30. Since the original λ took on its norm on
g −m ∈ Y , therefore ‖λ Y ‖ = ‖λ‖, hence the replacement functional has the same norm
as the original one. This gives the following.

(31) Characterization Theorem for ba in C(T ). Let X = C(T ) with F = R and T“thmcharbaonCT

compact Hausdorff, let M be an n-dimensional lss of X , let g ∈ X and m ∈ M . Then,
m ∈ PM (g) iff there exists U ⊂ T with #U ≤ n+1 and w ∈ R

U so that M ⊥ λU,w ‖ g−m.

Before exploiting this theorem for the construction of such ba’s, here is a useful aspect
of such linear functionals λU,w.

(32) de LaVallée-Poissin lower bound. If 0 6= λU,w ⊥ M and m ∈ M with (g −“deLaValleePoissin

m)(u)w(u) ≥ 0, all u ∈ U , then

min |(g −m)(U)| ≤ dist (g,M) ≤ ‖g −m‖.
Proof: Set λ := λU,w and recall, e.g. from (26), that λ ⊥ M implies |λg| ≤

‖λ‖ dist (g,M), and certainly also λ(g) = λ(g −m). Hence, with e := g −m, we have

min
u∈U
|e(u)|‖λ‖ ≤

∑

u

|e(u)||w(u)| = |λe| = |λg| ≤ ‖λ‖ dist (g,M),

and division by ‖λ‖ = ‖w‖1 does the rest.
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This lower bound is the more effective, of course, the closer min |(g − m)(U)| is to
‖g−m‖. The process of constructing such U for given m and, further, such m for given U
is formalized in the Remes Algorithm below. For it, we now discuss related consequences
of the characterization theorem 31.

The fact that the linear functional λ := λU,w in the theorem is to take on its norm on
the error, e := g −m, forces equality in the following string of inequalities:

λe =
∑

u

w(u)e(u) ≤
∑

u

|w(u)e(u)| ≤ ‖w‖1 max
u∈U
|e(u)| ≤ ‖λ‖ ‖e‖.

In particular, assuming as we may WLOG that none of the w(u) is zero, this implies that

(33) e(u) = ‖e‖ signumw(u), u ∈ U.“parconds

This says that the error must take on its norm at every point in U , with the sign determined
by the signature of the corresponding weight. On the other hand, these weights are not
arbitrary. Rather, they are determined by the condition that M ⊥ λ. Since M is n-
dimensional, the statementM ⊥ λ is, in effect, a homogeneous linear system of n equations,
namely the linear system

(34) w ∗QUV = 0,“eqMperp

with
QU : f 7→ f U

and
V := [v1, . . . , vn]

any basis for M , and with the weight vector w the solution sought. In particular, there
are nontrivial solutions for any choice of U with #U = n+1 (since then this homogeneous
system has more unknowns than equations).

The theorem suggests the following numerical procedure (associated with the name
Remes).

Remes Algorithm
(i) Pick any (n+ 1)-set U in T .

Usually, one picks U as the set at which some approximation m ∈ M to the given g has
its absolutely largest local extrema.
(ii) Compute a best approximation mU to g from M in the discrete norm

‖·‖U : g 7→ max |g(U)|.

Suppose that (a, r) ∈ R
n × R solves the linear system

(35) QUV a+ rσ = QUg.“eqbaonU
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Then |r| = ‖g − V a‖U , and λ(g − V a) = r‖w‖1, hence, by Theorem 31 applied to C(U),
mU := V a is then a ba to g wrto the norm ‖·‖U , with ‖g −mU‖U = |r|. (If r happens to
be negative, simply replace w by −w, as that won’t change the fact that it is a solution of
(35) but will change r to |r|.)
(iii) Update U , making it the set of n+1 points at which g−mU has its absolutely largest

local extrema, and go to (ii).

The algorithm is quite attractive since, at the end of step (iii), we know (as in (32))
that

|r| ≤ dist (g,M) ≤ ‖g −mU‖,
hence can gauge whether or not it is worth our while to continue. Indeed, the second
inequality is obvious; the first follows from the fact that |r| is the error in the ba to g from
M when we only consider the maximum absolute error on the subset U of T .

The only fly in the ointment is uncertainty about the solvability of (35).

The Haar condition

Since (35) is a square system, its solvability is equivalent to its unique solvability.
Hence, as g is arbitrary, we are asking that the pointset U be total for M , i.e. QU be
1-1 on M . But we are asking more, we are asking for the solvability of (35), i.e., for the
invertibility of the matrix [QUV, σ] and this is the same as its being 1-1 since it is square.

(36) Proposition. If the n+ 1-set U ⊂ T is total for the n-dimensional lss M of C(T ),
then (35) has exactly one solution (for every g ∈ C(T )).

Proof: Let w be a nontrivial solution of the homogeneous linear system (34), set
σ = signum(w), and let [QUV, σ](a, r) = 0, with a an n-vector and r a scalar. Then
V a = −rσ on U , hence 0 = λV a = λQUV a = −r‖w‖1, which is only possible if r = 0.
However, now QUV a = 0 follows which, by the assumption that U is total for M , implies
that V a = 0, therefore a = 0 (since V is a basis).

Since QU maps into the (#U)-dimensional space R
U , it cannot be 1-1 unless #U ≥

n = dimM . Further, if U contains exactly n points, then QU also maps M onto R
U . This

says that M contains, for each g defined at least on U , exactly one m that interpolates
g at U , i.e., that agrees with g on U .

(37) Definition. The n-dimensional linear space M of functions on some domain T is a
Haar space :⇐⇒ every n-set U in T is total for M .

(38) Theorem (Haar). If M is a finite-dimensional lss of C(T ) (with T compact Haus-
dorff), then M is Haar iff M is Chebyshev.

Proof: ‘=⇒’: Let g ∈ C(T ), and let m ∈ PM (g) (such m exists since M is a
finite-dimensional lss). By the Characterization Theorem 31, there exists U ⊂ T with
#U ≤ n+ 1 and w ∈ R

U , with w(u) 6= 0 for all u ∈ U , so that

M ⊥ λU,w‖(g −m).
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Moreover, by Lemma 29, every m ∈ PM (g) must satisfy this condition, hence must satisfy

QUm+ dist (g,M)σ = QUg.

In particular, if alsom′ ∈ PM (g), then QUm = QUm
′. Now, since M is Haar, the condition

0 6= λU,w ⊥M cannot hold unless #U > n (see Lemma 39 below). But, since M is Haar,
this implies that U is total for M , therefore m = m′.

‘⇐=’: If M fails to be Haar, then there exists an n-set U in T and some m ∈ M
with ‖m‖ = 1 that vanishes on U . Further, there exists w ∈ R

U\0 with ‖w‖1 = 1 so that
λ := λU,w ⊥M .

It follows that, by the characterization theorem, any f in

G := {g ∈ C(T ) : ‖g‖ ≤ 1, QUg = σ := signum(w)}

has 0 as a best approximation from M , and, by the Tietze Extension Theorem, there is at
one such f . In fact, for any such f , also g := (1− |m|)g ∈ G, since ‖m‖ = 1 and m U = 0.
More than that, for any α ∈ [−1 . . 1], g − αm ∈ G since (i) it agrees with g on U , hence
on λU,w, and (ii)

|g(t)− αm(t)| ≤ |g(t)|+ |α||m(t)| ≤ 1− |m(t)| + |m(t)|,

hence ‖g − αm‖ ≤ 1. In particular, 0 is a ba to g − αm from M , therefore αm ∈ PM (g).
Thus, [−1 . . 1]m ⊂ PM (g).

Note that Πk(R) is Haar, hence we now know that it is also Chebyshev.

The proof took for granted the following

(39) Lemma. If the n-dimensional linear subspace M of the C(T ) is Haar, then 0 6=“cornpone

λU,w ⊥M implies #U > n.

Proof: If #U < n + 1, then QUV would have full row rank since we could then
extend U to an n-set U ′ making QUV a submatrix of the matrix QU ′V which is invertible
since M is Haar and, with that, w ∗QUV = 0 would imply w = 0.

Since the characterizing λU,w can be chosen with #U ≤ dimM +1, it follows that, for
a Chebyshev space M , #U must be equal to dimM +1, meaning in particular that all the
n+1 entries of the weight vector w must be nonzero. Further, once we know this, we don’t
really care about the weight vector itself anymore, all we need for checking a proposed ba
m ∈ M is the sign vector, σ := signum(w), since, as we saw earlier, the characterizing
condition merely demands that the error, e := g −m, satisfy

(40) e(u)ε = ‖e‖σ(u), u ∈ U,“eqcharact

with ε some fixed (nontrivial) sign. We now investigate the possible sign vectors σ.
For this, we now think of U as a sequence, i.e., order the points in U somehow:

U = (u1, . . . , un+1) and write, correspondingly, wj := w(uj). Then, for the specific nor-
malization wn+1 = −1, the n-vector (wj : j = 1, . . . , n) is the unique solution of the linear
system

? ∗Qu1,...,un
V = Qun+1

V.
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By Cramer’s rule, this implies that

wj = det(Qu1,...,uj−1,un+1,uj+1,...,un
V )/ det(Qu1,...,un

V ),

or, using column interchanges to restore order here,

(41) wj = (−1)n−j det(Qu1,...,uj−1,uj+1,...,un+1
V )/ det(Qu1,...,un

V ).“eqwoscil

If now T is an interval or, more generally, ‘interval-like’, i.e., a connected totally ordered
set, then it makes sense to choose the ordering of the points in U accordingly, i.e., to choose
u1 < · · · < un+1. Moreover, each of the ordered sequences

(u1, . . . , uj−1, uj+1, . . . , un+1)

can be connected to the sequence (u1, . . . , un) by a continuous transformation [0 . .1] : t 7→
τ(t) := (τ1(t) < · · · < τn(t)), with τ(1) the former and τ(0) the latter. It follows that the
corresponding determinants det(Qτ(t)V ) depend continuously on t and none can be zero
since M is Haar. Hence, if the vj are all real, then all the determinants in (41) have the
same (positive or negative) sign. In particular, in this case wjwj+1 < 0, all j. This gives

(42) Chebyshev’s Alternation Theorem. If M is an n-dimensional Chebyshev sub-“thmChebyshev

space of the real C([a . . b]), then m ∈ PM (g) iff the error, g −m, alternates at least n
times, i.e., iff there are points u1 < · · · < un+1 in [a . . b] and an ε ∈ {−1, 1} so that

(g −m)(uj)ε = (−1)j‖g −m‖, j = 1, . . . , n+ 1.

The argument leading up to this classical theorem brings with it a somber consequence,
called by some frivolous people the ‘Loss of Haar’. As soon as T ‘contains a fork’, i.e.,
contains three open arcs which have exactly one point in common, then no linear subspace
of dimension > 1 can be Haar. For, in such a setting, we can arrange the continuous map
[0 . . 1]t 7→ (τ1(t), . . . , τn(t)), from the unit interval to n-sequences with n distinct entries
in T , in such a way that

τ(0) = (r, s, u3, . . . , un), τ(1) = (s, r, u3, . . . , un).

This implies that the determinant corresponding to τ(0) is the negative of the determinant
corresponding to τ(1). Hence, if the vj are real, then the determinant must be zero for
some τ(t), and the corresponding n-set fails to be total for M . We have proved

(43) Loss of Haar. If M is a finite-dimensional real linear subspace of dimension > 1 of
C(T ) (with T compact Hausdorff), and T ‘contains a fork’, then M cannot be Chebyshev
(since it cannot be Haar).

In particular, no polynomial space of dimension > 1 in more than one variable can be
Haar. This has made the construction of uniform best approximations to functions of sev-
eral arguments, even by polynomials of low degree, something of an art. Correspondingly,
it has encouraged the development of near-best methods of approximation.
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(44) Theorem (Newman-Shapiro). Best approximation from a finite-dimensional lin-“thmstrongunique

ear subspace M of the real X := C(T ) is strongly unique. Explicitly, for every g ∈ X ,
there exists γ > 0 so that

(45) ∀ f ∈M ‖f − g‖ ≥ ‖f − PMg‖+ γ‖f − PMg‖.“eqwanted

Proof: For g ∈ M , γ = 1 will do. For g ∈ X\M , let M ⊥ λ‖g − PMg, with
λ = λU,w for some U ⊂ T with #U ≤ n+ 1. Set σ := signum(w). For any f ∈M and any
u ∈ U ,

‖g − f‖ ≥ σ(u)(g − f)(u) = σ(u)(g − PMg)(u) + σ(u)(PMg − f)(u),

hence
‖g − f‖ ≥ ‖g − PMg‖+Kσ(PMg − f),

with
Kσ(f) := max

u∈U
σ(u)f(u).

Since Kσ is positive homogeneous, (45) follows with

γ := inf{Kσ(m) : m ∈M, ‖m‖ = 1}.

It remains to show that γ > 0. Since Kσ is continuous and M is finite-dimensional,
can find f ∈ M with ‖f‖ = 1 and γ = Kσ(f). Since 0 = λU,wf =

∑
u∈U w(u)f(u) =∑

u∈U |w(u)|σ(u)f(u), Kσ(f) = 0 would imply f(u) = 0 for all u ∈ U . However, M is
Chebyshev, hence Haar, hence, by Corollary 39, U is total for M , and now f = 0 would
follow, contradicting the assumption that ‖f‖ = 1.

Complex C(T )

We pointed out earlier that the general characterization theorem for ba’s involves
linear functionals parallel to the error e := g−m because they provide the gradient of the
norm at the point e. Kolmogorov’s characterization theorem is more explicitly based on
this idea of a directional derivative of the map f 7→ ‖e − f‖. The criterion is of interest
because it is also valid when F = C. It formalizes the following idea: if, in the max-norm,
we want ‖e+ f‖ < ‖e‖, then, at all points t at which e takes on its norm, e(t)+ f(t) needs
to be less than |e(t)| in absolute value. Hence, if e and f are complex-valued, we need that
Re e(t)f(t) < 0. Moreover, this must be so uniformly over the set

extr(e) := {t ∈ T : |e(t)| = ‖e‖} = argmax |e(T )|.

(46) Lemma. Let X = C(T ) with T compact Hausdorff, and F = R or C, and e, f ∈ X\0.“lemdirectderiv

Then, ‖e+ αf‖ < ‖e‖ for some positive α iff

Ke(f) := max
t∈extr(e)

Re(e(t)f(t)) < 0.
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Proof: ‖e+ f‖2 ≥ ‖e+ f‖2(extr(e)) ≥ ‖e‖2 + 2Ke(f), hence, as Ke is real homo-
geneous, ‖e+ αf‖ < ‖f‖ for some α > 0 implies Ke(f) < 0.

Conversely, if Ke(f) < 0, then

G := {t ∈ T : Re(e(t)f(t)) < Ke(f)/2}

is open and contains extr(e) since, for t ∈ extr(e), we even have Re(e(t)f(t)) ≤ Ke(f).
Therefore, ‖e‖(T\G) < ‖e‖, and this implies that

‖e+ αf‖(T\G) ≤ ‖e‖(T\G) + |α|‖f‖(T\G)

is less than ‖e‖ for all α close to 0. But, by the strict negativity of Ke(f), also

‖e+ αf‖2(G) ≤ ‖e‖2 + 2αKe(f)/2 + |α|2‖f‖2

is less than ‖e‖2 for all positive α close to 0. So, altogether, ‖e+αf‖ < ‖e‖ for all positive
α near 0.

Since ‖g − (m − f)‖ = ‖(g − m) + f‖, this lemma has the following very useful
consequence.

(47) Kolmogorov Criterion. Let X = C(T ) with T compact Hausdorff and F = R or“thmKolmogorov

C, and let M be a lss of X , let g ∈ X and m ∈ M . Then, m ∈ PM (g) if and only if
∀f ∈M , Kg−m(f) ≥ 0.

Here is Alper’s example: T = {z ∈ C : |z| ≤ 1} is the unit disc in the complex plane;
we take M = Πk, and g = 1/(· − α), with α ∈ C\T . Consider the function

m : z 7→ 1

z − α − cz
k αz − 1

z − α =
1− czk (αz − 1)

z − α .

This is a polynomial (in z) iff the numerator of the last expression vanishes at z = α, i.e.,
iff c = α−k/(|α|2 − 1). With that choice, m ∈ Πk, and

e := g −m = zkαz − 1

z − α ,

hence extr e = {z : |z| = 1}. Let f ∈ Πk and consider Ke(f). Having it nonnegative
requires that

Arg(e(z)f(z)) = Arg(e(z))−Arg(f(z)) ∈ [−π/2 . . π/2]

for some |z| = 1. Now, Arg(e(z)) = const+kArg(z)+Arg(z−α−1)−Arg(z−α), and this
increases by 2π(k + 1) as we circumnavigate the unit disc. On the other hand, f , being a
polynomial of degree ≤ k, can have at most k zeros in the unit disc, hence Arg(f(z)) can
increase by at most 2πk. And that does it.
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L1

The continuous linear functionals on X := L1(T ;µ) are of the form f 7→
∫

T
hf , with

h ∈ L∞(T ). Further, ∫

T

hf ≤ ‖h‖∞‖f‖1,

with equality iff h = ‖h‖∞ signum(f) off the set

Zf := {t ∈ T : f(t) = 0}.

(In particular, ‘most’ continuous linear functionals on L1(T ) do not take on their norm,
and, even on ℓ1, some don’t (cf. p.11).) In general, the zero-set Zf is only determined
up to sets of measure 0 since it depends, of course, on the particular representer of f ’s
equivalence class used for its determination.

(48) Characterization Theorem. Let M be a linear subspace of the nls X = L1(T ;µ),“thmcharbaLone

with µ a non-atomic measure, let g ∈ X and m ∈ M . Then, m ∈ PM (g) iff there exists a
h ∈ L∞(T ) with ‖h‖∞ = 1 that is perpendicular to M and agrees with signum(g −m) off
Zg−m.

In particular, if Zg−m has measure zero, then m ∈ PM (g) iff signum(g −m) ⊥M .

The theorem suggests a quick try at constructing ba’s from an n-dimensional lss of
X = L1([a . . b]): Assuming that Zg−m has measure zero, we look for a sign function,
i.e., a real function h with |h| = 1, the simpler the better, i.e., the fewer breakpoints the
better. The condition h ⊥ M is, in effect, a system of equations for the breakpoints of h,
hence, in general, we would not expect to succeed with fewer than n (interior) breakpoints.
Now suppose we have succeeded, and now have in hand such a sign function with exactly
n interior breakpoints, a < ξ1 < · · · < ξn < b say. If g and the elements of M are
continuous (or, at least piecewise continuous), then we can now hope to interpolate to g at
ξ by elements of M . Let m be the resulting interpolant. Then, ‘usually’, the error, g−m,
changes sign at the points of interpolation, hence ‘usually’, signum(g − m) = h, and we
have found a ba to g from M .

The fact that, for every n-dimensional lss M of L1([a . .b]), there exists a sign function
orthogonal to it with ≤ n breakpoints is called the Hobby-Rice Theorem. Its original proof
was quite involved. While a postdoc here in Madison, Allan Pinkus pointed out that it is
a ready consequence of Borsuk’s Theorem. Since the latter has played a major role in the
discussion of n-width, here is its statement.

(49) Borsuk’s Theorem. Let f be a continuous map from the unit sphere Sn in R
n+1

“borsuk

to R
n. If f is odd, i.e., f(−x) = −f(x), all x ∈ Sn, then 0 ∈ f(Sn).

(50) Hobby-Rice Theorem. For every n-dimensional lss M of X = L1([a . . b]), there“hobbyrice

exists a sign function orthogonal to it with ≤ n breakpoints.

Proof: Assume WLOG that [a . . b] = [0 . . 1], and, for s in

Sn := {(s0, . . . , sn) ∈ R
n+1 :

∑

j

s2j = 1},
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define the linear functional λs on X as follows: With ξj(s) :=
∑

i<j s
2
i ,

λsf :=

n∑

j=0

signum(sj)

∫ ξj+1(s)

ξj(s)

f .

Then λsf =
∫ 1

0
hsf , with hs a sign function with at most n breakpoints (since we may

ignore ξj(s) if sj−1sj ≥ 0). Further, λ−s = −λs and, for fixed f , the map Sn → R : s 7→
λsf is continuous, since, for any f ∈ L1[0 . . 1], the map [0 . . 1]2 → F : (u, v) 7→

∫ v

u
f is

continuous. Hence, with V = [v1, . . . , vn] any basis for M , the map

f : Sn → R
n : s 7→ (λsvj : j = 1, . . . , n)

is continuous and odd, therefore Borsuk tells us that f(s) = 0 for some s ∈ Sn. The
corresponding sign function, hs, provides what we are looking for.

(51) Corollary (Krein). No (nontrivial) finite-dimensional lss M of X = L1([a . . b]) is
a Chebyshev space.

Proof: Let h be a sign function orthogonal to M . Take any f ∈ M\0 and set
g := h|f |. Then, for any α ∈ [0 . . 1],

h(g − αf) = |f | − αhf ≥ (1− α)|f | ≥ 0,

showing that M ⊥
∫
h · ‖ (g − αf), hence [0 . . 1]g ⊂ PM (g).

Of course, this does not imply that every g ∈ X\M has many ba’s from M . E.g.,
g := χ

[α..1]
has exactly one ba from M := Π0, – except when α = 1/2 in which case

[0 . . 1]()0 ⊂ PM (g).

near-best approximation

While the questions concerning best approximations raised in the first lecture (such
as existence, uniqueness and characterization) occupy a good part of a standard course in
Approximation Theory, best approximations are hardly ever calculated because they can
usually only be obtained as the limit of a sequence of approximations, and because of the
easy availability of near-best approximations. To recall, the bounded linear map A on the
nls X provides near-best approximations from the subset M if

‖g − Ag‖ ≤ const dist (g,M), g ∈ X.

Such A is, necessarily, a linear projector onto M , i.e., ranA = M and A2 = A, i.e.,
A M = 1. In particular, M is a linear subspace.

Conversely, if A is a bounded linear projector on X with range M , then g − Ag =
(1− A)g = (1−A)(g −m) for all m ∈M , hence

(1) dist (g,M) ≤ ‖g − Ag‖ ≤ ‖1− A‖ dist (g,M), g ∈ X.
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This is Lebesgue’s inequality.
This raises (at least) two questions:

(i) How small can one make ‖1−A‖ by proper choice of A?
(ii) What can be said about dist (g,M) in terms of some information we might have about

g?

Example: broken line interpolation With X = C[a . .b] for some finite interval
[a . . b], recall the broken line interpolant A = Pξξξξξg for given ξξξξξ = (a = ξ1 < · · · < ξl+1 = b).
Its range is the space

M = Π0
1,ξξξξξ

of broken lines with break sequence ξξξξξ. Since ‖Pξξξξξ‖ = 1, and always ‖1−A‖ ≤ 1 + ‖A‖, we
get in this case

dist (g,Π0
1,ξξξξξ) ≤ ‖g − Pξξξξξg‖∞ ≤ 2 dist (g,Π0

1,ξξξξξ).

In particular, the construction of a ba from Π0
1,ξξξξξ will, at best, cut the maximum error in

half.
Incidentally, the bound used here, ‖1 − Pξξξξξ‖ ≤ 1 + ‖Pξξξξξ‖, is sharp as can be seen by

looking at an g that is the broken line with breakpoints ξ1, . . . , ξl+1 at which it has the
value 1 and one additional breakpoint at which it has the value −1.

In particular, we can get a good estimate for dist (g,Π0
1,ξξξξξ) by looking at ‖g − Pξξξξξg‖∞.

In Lebesgue’s proof of Weierstraß, we already observed that

‖g − Pξξξξξg‖∞ ≤ ωg(|ξξξξξ|).

In particular, if g ∈ L(1)
∞ [a . . b], i.e., g is absolutely continuous with essentially bounded

first derivative, then ωg(h) ≤ h‖Dg‖∞, hence

‖g − Pξξξξξg‖∞ ≤ |ξξξξξ|‖Dg‖∞, g ∈ L(1)
∞ [a . . b].

Further, since Pξξξξξ reproduces all elements of Π0
1,ξξξξξ, we can replace here g by an arbitrary

element of Π0
1,ξξξξξ and so obtain, more precisely,

‖g − Pξξξξξg‖∞ ≤ |ξξξξξ| dist (Dg,Π0,ξξξξξ), g ∈ L(1)
∞ [a . . b].

Since dist (g,Π0,ξξξξξ) ≤ ωg(|ξξξξξ|), we therefore obtain

‖g − Pξξξξξg‖∞ ≤ |ξξξξξ|ωDg(|ξξξξξ|), g ∈ C(1)[a . . b],

and, so, finally,
‖g − Pξξξξξg‖∞ ≤ |ξξξξξ|2‖D2g‖∞, g ∈ L(2)

∞ [a . . b].

Actually, since, for ξj ≤ t ≤ ξj+1, g(t)− Pξξξξξg(t) = (t− ξj)(t− ξj+1)[ξj, ξj+1, t]g (with
[α, . . . , ω]g the divided difference of g at the point sequence (α, . . . , ω)), we have the sharper
estimate

‖g − Pξξξξξg‖∞ ≤ |ξξξξξ|2‖D2g‖∞/8, g ∈ L(2)
∞ [a . . b].
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You see how, as a function of the mesh size, |ξξξξξ|, these estimates improve, i.e., go to
zero faster as |ξξξξξ| → 0, when we restrict g to smoother and smoother function classes.
However, further more restrictive smoothness assumptions will not lead to an increase in
the rate at which the interpolation error goes to zero with |ξξξξξ|. E.g., if ‖g − Pξξξξξg‖ = o(|ξξξξξ|2)
for arbitrary ξξξξξ (or even just for ξξξξξN = (a, a + h, · · · , b − h, b) with h := (b − a)/N and
N ∈ N) as |ξξξξξ| → 0, then g ∈ Π1. Proof idea: for any collection Ξ of ‘quasi-uniform’ ξξξξξ,
i.e., supξξξξξ supi,j ∆ξi/∆ξj < ∞, must have [ξj, t, ξj+1]g → 0 uniformly for t ∈ (ξj . . ξj+1)
and j as |ξξξξξ| → 0 while, for any refinement s of the sequence (a, t, b), the second divided
difference [a, t, b]g can be written as a convex combination of the [si, si+1, si+2]g, hence
must be zero.

This is a simple illustration of our next topic, degree of approximation.
If there is time, I may come back to item (i), i.e., the question of how small one can

make ‖A‖ or ‖1 − A‖ for given M by appropriate choice of the linear projector A onto
M . To whet your appetite, I mention that every linear projector on C[a . . b] onto Πn has
norm no smaller than ∼ lnn. This is related to the fact that the projector sn providing
the truncated Fourier series (mentioned earlier) is the unique projector of minimal norm

on C(TT) onto
◦
Πn, and ‖sn‖ ∼ (2/π) lnn+ const.

Remark I am getting tired of adapting earlier notes by making sure that the given
element of X to be approximated is denoted by g. So, from now on, the given element to
be approximated will be denoted by f . Life is short.

Degree of Approximation

Given a sequence (Mn) = (Mn : n ∈ N) of approximating sets in the nls X and f ∈ X ,
one is interested in

n 7→ En(f) := dist (f,Mn)

as n→∞.
In this generality, nothing can be said. The following general model (from Chapter

7 of DeVore and Lorentz) covers most situations of practical, and even most situations of
theoretical, interest.
(i) M1 = {0}, and (Mn) is increasing, i.e., (Mn) is a ladder.
This guarantees that En(f) is nonincreasing, with E1(f) = ‖f‖.
(ii) ∪nMn is dense in X .
This is equivalent to having limnEn(f) = 0 for all f ∈ X .

In view of approximation by rationals, or exponentials with free frequencies, or splines
with free knots, it would be too much to assume that the Mn are linear subspaces. But it
is ok to assume

(iii) FMn := {αm : α ∈ F, m ∈Mn} ⊆Mn.
(iv) ∃{c}∀{n}Mn +Mn ⊂Mcn.

Finally, although clearly not essential, the following assumption will avoid a certain
amount of epsilontics.
(v) Each Mn is an existence set.
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In particular, each Mn is closed.

To be sure, Assumption (iv) is somewhat restrictive and precludes some practically
important ladders such as the following: for some T ⊂ R

2,

Mn := Πk,n T

consists of all piecewise polynomial functions, on T , of some degree k and involving no
more than n polynomial pieces. In other words, for each f ∈ Πk,n there is a partition
of T into at most n subsets and, on each such subset, f agrees with some polynomial
of degree ≤ k. For this example, we have only Mn + Mn ⊂ Mn2 . Finding the degree
of approximation from this ladder (Πk,n : n ∈ N) is one of the outstanding problems
in nonlinear approximation. (Strictly speaking, this particular example lacks that trivial
initial space, {0}, which is really only used in the general theory to simplify notation. For
that, we might have to set here Mn = Πk,n−1. Such a switch, from n to n ± 1, does not
change the orders n−r of interest here. Also, its ‘subladder’ (Πk,2n : n ∈ N) does satisfy
(i)-(v).)

Even with these assumptions in place, the best we can say about En(f) for given
f has already been said: En(f) converges monotonely to 0. The question of interest is
just how ‘fast’ or ‘slow’ this convergence is. As with all measuring, these terms are made
precise by comparing En(f) with certain standard sequences. The most popular of these
are the sequences (n−α : n ∈ N) for some real α. Thus we are looking for conditions on f
that guarantee that

En(f) = O(n−r),

i.e., lim supnEn(f)nr <∞, or, perhaps, even

En(f) = o(n−r),

i.e., limnEn(f)nr = 0, or ∑

n

nrEn(f) <∞.

Such conditions may single out a rather ‘small’ subset of X in case X is complete but not
equal to any of the Mn. This is certainly so if the constant in (iv) is c = 1, i.e., in case the
Mn are linear subspaces.

(52) Proposition (H. S. Shapiro). If (Mn) is a sequence of proper closed linear sub-
spaces (i.e., only (iii) as is, (i) is weakened to ‘proper’, and (v) is weakened to ‘closed’, but
(iv) with c = 1), then, for any real sequence (αn) converging monotonely to 0, the set

Aα := {f ∈ X : En(f) = O(αn)}

is ‘thin’ in the sense that it is of first category, i.e., the countable union of nowhere dense
sets. In particular, it cannot equal X in case X is complete.

Proof: Aα = ∪
n0,N∈N ∩n≥n0

B−
Nαn

(Mn), with

B−
Nr(Mn) := {f ∈ X : dist (f,Mn) ≤ Nr} = NB−

r (Mn)
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since FMn ⊂ Mn. If now, for some r > 0 and some x, Br(x) ⊂ Bαn
(Mn), then Br(0) ⊆

(Br(x) + Br(−x))/2 ⊂ (Bαn
(Mn) + Bαn

(−Mn))/2 and, even if we only knew (iv), we
could now conclude that Br(0) ⊂ Bαn

(Mcn) and if, as we actually assume, the Mn are
proper closed linear subspaces, this implies (by Riesz’ Lemma) that r ≤ αn, hence Br(x) ⊂
∩n≥n0

B−
αn

(Mn) implies r ≤ limn→∞ αn = 0, hence Aα is of first category. However, if the
Mn are not linear spaces, then no such conclusion can be drawn.

Example Here is a nice example, provided by Olga Holtz, to show that properties
(i)-(v) by themselves are not strong enough to imply this proposition’s conclusion. Let
X := ℓ∞. For any closed V ⊂ F := R, let

FV := {f ∈ X : ran f ⊂ V }.

Then, for any f ∈ X , dist (f, FV ) = ‖f − fV ‖, with fV : n 7→ argminv∈V |f(n) − v|.
Therefore, for any closed W ,

dist (f, FV ) ≤ dist (f, FW ) + dist (W,V ).

Let now
Fk := ∪#V ≤kFV ,

and let (fm) be a minimizing sequence in Fk for ‖f − ·‖. Then (ran fm) is a bounded se-
quence of subsets in R of cardinality ≤ k, hence, AGTASMAT (:= After Going To A Subse-
quence May Assume That) there is some V ⊂ R with #V ≤ k for which limm→∞ dist (ran fm, V ) =
0. Therefore

dist (f, Fk) ≤ dist (f, FV ) ≤ dist (f, Fran fm
) + dist (ran fm, V )

m→∞
−−−−−→ dist (f, Fk),

showing fV to be a ba to f from Fk, hence showing Fk to be an existence set. Also, with
Vk := {1− (2j − 1)/k : j = 1, . . . , k}, we have

(53) dist (f, Fk) ≤ dist (f, F‖f‖Vk
) ≤ ‖f‖/k,“eqolga

and, since also Fk is homogeneous, and is increasing with k, the sequence (Fk) satisfies
conditions (i)-(v), except that, at best, Fk + Fk ⊂ Fk2 . But (iv) is satisfied (with c = 2)
by its subsequence Mn := F2n , n = 1, 2, . . ., (with M0 = {0}, of course), along with the
other conditions in (i)-(v), yet, by (53),

{f ∈ X : dist (f,Mn) = O(2−n)} = X,

and this is not of first category since X is a Bs.
Put positively, this example also shows the power of nonlinear approximation, i.e.,

approximation from nonlinear Mn.
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Degree of Approximation quantified

As is customary in mathematics, we express suitable conditions on f as membership in
some set Y . A typical choice for Y is a semi-normed ls whose semi-norm we denote by ‖·‖Y
that is continuously imbedded in X . The standard example has Mn =

◦
Πn ⊂ X := Xp,

with

Xp :=

{
Lp(TT), p <∞;
C(TT), p =∞,

and
Y = X(ρ)

p := {f ∈ Xp : ‖f‖Y := ‖Dρf‖p <∞},
with ρ some positive integer.

One hopes to choose Y and r in such a way that, simultaneously,

(54) ∃{CJ}∀{n ∈ N, f ∈ Y } En(f) ≤ CJ n
−r‖f‖Y“jackson

and

(55) ∃{CB}∀{n ∈ N, g ∈Mn} ‖g‖Y ≤ CB n
r‖g‖.“bernstein

For historical reasons, the former is called a Jackson, or direct, inequality or estimate,
the latter a Bernstein, or inverse, inequality or estimate. The Jackson inequality gives
a lower bound on the speed with which En(f) goes to zero, and, as we shall see, the
(historically earlier!) Bernstein inequality provides an upper bound, at least indirectly. The
most natural bridge between Jackson and Bernstein inequalities turns out to be Peetre’s
K-functional:

K(f, t) := K(f, t;X, Y ) := inf
g∈Y

(‖f − g‖+ t‖g‖Y ).

This functional measures how ‘smooth’ f is in the sense that it tells us how closely we
can approximate f by ‘smooth’ elements. The larger t, the more stress we lay on the
smoothness of g. As a function of t, K(f, t) is the infimum of a collection of straight lines,
all with nonnegative slope, henceK(f, .) is also weakly increasing (i.e., nondecreasing), and,
further, is concave (as would be the infimum of any collection of straight lines, increasing
or not). This implies that t 7→ K(f, t)/t is (weakly) decreasing (i.e., nonincreasing).

(56) Peetre’s Theorem.“thmpeetre

(i) Jackson (54) implies supnEn(f)/K(f, n−r) <∞.
(ii) Bernstein (55) implies

(57) K(f, n−r) ≤ constr n
−r‖(Ek(f) : k ≤ n)‖(r).“peetrebernstein

Here, we use the following somewhat complicated weighted sequence norm

‖a‖(r) :=
n∑

k=1

|kra(k)|/k, a ∈ F
n.
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This norm is monotone, meaning that |a| ≤ |b| implies ‖a‖(r) ≤ ‖b‖(r). Further, for the
following ‘standard’ null-sequence a = (ak = k−(r−1+α) : k ≤ n), one computes

(58) ‖(k−(r−1+α) : k ≤ n)‖(r) =
n∑

k=1

k−α ∼ n1−α for 0 ≤ α < 1,
“standard

with the convenient abbreviation

bn ∼ cn :⇐⇒ bn = O(cn) and cn = O(bn).

(In fact, this suggests the nonstandard abbreviation:

bn ∼< cn :⇐⇒ bn = O(cn),

which I will use occasionally, e.g., right now.) Here is a proof of (58):

n1−α ∼<
∫ n+1

1

()−α ≤
n∑

k=1

k−α ≤
∫ n

0

()−α ∼< n1−α.

Here is a quick comment concerning the fact that, in the description of ‖a‖(r), I did not
combine the two powers of k appearing there. The reason is the following. The argument
to follow remains valid even when ‖·‖ and/or ‖·‖Y are only quasi-norms, meaning, in
effect, that, instead of the triangle inequality, we only have

‖x+ y‖µ ≤ ‖x‖µ + ‖y‖µ

for some µ and all x and y. In such a case, one considers, more generally, the weighted
sequence norm

‖a‖(r)µ :=

(
n∑

k=1

|krak|µ/k
)1/µ

.

With these notations now fully explained, we read off from Peetre’s theorem that, for
α ∈ [0 . . 1), En(f) ∼< n−(r−1+α) if and only if K(f, n−r) ∼< n−(r−1+α). In the standard

situation, the latter can be shown to be equivalent to having f ∈ C(r−1) with Dr−1f in
Lipα.

Proof: (i): For any g ∈ Y , En(f) ≤ ‖f − g‖+ En(g) ≤ C(‖f − g‖+ n−r‖g‖Y ),
with C := max{1, CJ}, and taking the inf over g ∈ Y does it.

(ii): The trick here is the use of a telescoping series. (The proof in DeVore and Lorentz
is a touch terse.) With fk ∈ PMk(f), all k, we choose a sequence

1 = m0 < m1 < · · · < mν = n

and consider
hµ := fmµ

− fmµ−1
∈Mcmµ

.
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Then
‖hµ‖ ≤ ‖f − fmµ

‖+ ‖f − fmµ−1
‖ ≤ 2Emµ−1

(f),

while fn =
∑ν

µ=1 hµ. Therefore,

K(f, n−r) ≤ ‖f − fn‖+ n−r‖fn‖Y

≤ En(f) + n−r
ν∑

µ=1

‖hµ‖Y

≤ n−r
(
nrEn(f) + CB c

r 2
ν∑

µ=1

mr
µEmµ−1

(f)
)

≤ n−rconstr

ν∑

µ=0

mr
µEmµ

(f),

with constr := 2CBc
r maxµ(mµ/mµ−1)

r a constant depending only on r (and the constants
CB and c) if we restrict attention to sequences (mµ) for which maxµmµ/mµ−1 ≤ const.

Now, for any positive nonincreasing sequence (ak) (such as ak = Ek(f)),

aJ

∑

j<k≤J

kr−1 ≤
∑

j<k≤J

kr−1ak ≤ aj+1

∑

j<k≤J

kr−1,

while
∑

j<k≤J

kr−1 ∼
∫ J

j

()r−1 = Jr 1− (j/J)r

r
= jr (J/j)r − 1

r
.

Hence, applying this with j = mµ, J = mµ+1, all µ, we get

ν−1∑

µ=0

mr
µEmµ

(f) ∼ constr

n∑

k=1

kr−1Ek(f)

provided we also insist that minµ(mµ/mµ+1) ≤ const < 1, i.e., the ratiomµ/mµ−1 required
earlier to be bounded must, on the other hand, be bounded away from 1. Choosing the
sequence (mµ : µ = 1, . . . , ν) to be roughly dyadic, i.e., mµ ∼ 2µ−1, all µ, will do for both
requirements. With this, we get (57), with const depending on CB and r only.

For later use, I record the following just proved.

(59) Lemma. If a : N→ R+ is nonincreasing, then, for any r ≥ 1,“tightestimate

2n∑

k=1

kr−1ak ∼
n∑

µ=1

2µra2µ ,

with constants that only depend on r.

We will make use of (59) in a moment, in Bernstein’s proof that only smooth functions
can be approximated well by trigonometric polynomials.
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Bernstein estimates for trig.pols.

The argument just given is very free and easy with constants. Its only purpose is to
establish statements about the degree of convergence, such as the assertion that o(n−r) 6=
En(f) = O(n−r). Rather different arguments are used to establish statements of the sort
that

En(f) ≤ constn−r‖f‖Y , f ∈ Y,

with const the smallest possible constant independent of f and n.
The first such theorem was proved by Bernstein, using

Bernstein Inequality. For any f ∈ ◦Πn ⊂ C(TT),

‖Df‖ ≤ n‖f‖.

Proof: Here is a version of v.Golitschek’s proof of Szegö’s stronger inequality

(60) (Df)2 + (nf)2 ≤ (n‖f‖)2, f ∈ ◦Πn.“szegoineq

Since
◦
Πn is translation-invariant and differentiation commutes with translation, it is suffi-

cient to prove that

(61) (Df(0))2 + (nf(0))2 ≤ (n‖f‖)2, f ∈ ◦Πn.“szegoineqatzero

As the inequality is homogeneous in f , we may assume that Df(0) ≥ 0. Now let r > ‖f‖,
let α be the unique point in (−π . . π)/(2n) at which r sinnα = f(0), and consider the
trig.pol.

s := f − r sinn(·+ α).

Since ‖f‖ < r, s alternates in sign at the extrema of sinn(·+α) and, as there are 2n such,
s has exactly one zero between any two adjacent extrema of sinn(· + α). In particular,
one of these zeros must be the point 0 since we chose α to make it so. If now Df(0) >
D(r sinn(·+α))(0), then f would rise above r sinn(·+α) as we move to the right from 0,
yet is certain to be below it again by the time we reach the first extremum of sinn(·+ α)
and this would imply an impossible second zero of s between the two extrema that bracket
0. Consequently,

0 ≤ D(r sinn(·+ α))(0) = Df(0) ≤ rn cosnα = rn
√

1− (f(0)/r)2,

using the fact that, by our choice of α, sinnα = f(0)/r. Squaring and reordering terms
gives

(Df(0))2 + (nf(0))2 ≤ (rn)2,

and, since r > ‖f‖ is arbitrary here, (61) follows.
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We are ready to prove a sample inverse theorem.

(62) Theorem. Let Mn =
◦
Πn, as a subset of C(TT). Let f ∈ C(TT) and assume that, for“thmbernstein

some r,

(63) ‖(En(f) : n ∈ N)‖(r) <∞“boundednormr

(as would be the case in case En(f) = O(n−r−ε) for some positive ε). Then f ∈ C(r)(TT).

Proof: Since differentiation is a closed operator, it is sufficient to show that f
is the uniform limit of a sequence that is Cauchy in C(r)(TT). With pn ∈ PMn

(f), all
n, we have f = limn pn; however, we have no way of knowing that the whole sequence
(pn : n ∈ N) is Cauchy in C(r). The sequence (p2n : n ∈ N), on the other hand, is seen to
be Cauchy, as follows.

‖Dr(p2J − p2j )‖ ≤
J∑

k=j+1

‖Dr(p2k − p2k−1)‖

≤
J∑

k=j+1

(2k)r‖p2k − p2k−1‖

≤
J∑

k=j+1

(2k)r2E2k−1(f)

≤ 2constr

2J∑

k=2j

kr−1Ek(f),

the last inequality by (59). By assumption, this last sum goes to zero as j, J →∞.

This theorem is quite remarkable since it says that even if f is very smooth except on
a small subinterval of TT, it will be hard to approximate f well by trig.pols.

There are similar results for approximation by algebraic polynomials on [a . . b], except
for the following hitch. In contrast to TT, the points in [a . . b] are not all equal. Taking for
simplicity the max-norm on [a . . b], one has the Jackson inequality (see below)

(64) dist ∞(f,Πn) =: En(f)∞ ≤ constn−1‖Df‖∞.“algebJackson

However, the best inequality relating ‖f‖ and ‖Df‖ for f ∈ Πn ∈ C([a. .b]) is the Markov
Inequality

(65) ‖Df‖∞ ≤
2

|b− a| n
2‖f‖∞,

“markovineq

(note that, because of the possibility of dilating, the interval length must figure in exactly
the position at which it appears, hence the inequality is sharp since it becomes equality
for [a . . b] = [−1 . . 1] and f : t 7→ cos(n cos−1 t) the Chebyshev polynomial of degree n)
and these two inequalities do not at all match in the sense of Theorem 56. It is possible,
though, to prove that f ∈ C([a . . b]) must be in C(r)(I) for all closed subintervals I of
(a . . b) in case En(f)∞ = O(n−r−ε) for some positive ε.
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Jackson estimates for trig.pols.

Because
◦
Πn is translation-invariant, it is easier to prove Jackson inequalities for Mn =◦

Πn ⊂ C(TT) than for Πn ⊂ C([a . . b]) (Πn is translation-invariant only on R or C). The
standard argument uses integral operators of convolution type. With Ln functions still
to be specified, one considers the approximation

Ln∗f : t 7→
∫

TT

Ln(t− s)f(s) ds =

∫

TT

f(t− s)Ln(s) ds.

One makes the following assumptions:

(i) Ln ∈
◦
Πn.

Then,
◦
Πn being translation-invariant, i.e., ∀{p ∈ ◦Πn, s ∈ TT} p(· − s) ∈ ◦Πn, we neces-

sarily have

Ln(t− s) =
∑

j

ϕj(t)ψj(s),

with [ϕj : −n ≤ j ≤ n] any basis for
◦
Πn. Therefore

Ln∗f =
∑

j

ϕj

∫

TT

ψjf ∈ ◦Πn.

(ii) λn :=
∫
TT
Ln 6= 0, hence wlog (i.e., after replacing Ln by Ln/λn,

∫
TT
Ln = 1, therefore

Ln∗()0 = ()0.
It follows that

(f − Ln∗f)(t) =

∫

TT

(
f(t)− f(t− s)

)
Ln(s) ds =

∫

TT

(∇sf)(t)Ln(s) ds,

with
∇hf := f − f(· − h) =: ∆hf(· − h).

Note that
‖∇sf‖ ≤ sup

0≤h<|s|

‖∆hf‖ =: ω(f, |s|),

with ω(f, ·) the (uniform) modulus of continuity of f . One could now try to get an
error estimate involving ω(f, 1/n) by making use of the fact that

ω(f, |s|) = ω(f, n|s|·1/n) ≤ (1 + n|s|)ω(f, 1/n)

(using that ω(f, ·) is nondecreasing and subadditive, hence ω(f, |s|) = ω(f, (n|s|)/n) ≤
ω(f, ⌈n|s|⌉/n) ≤ ⌈n|s|⌉ω(f, 1/n) ≤ (1 + n|s|)ω(f, 1/n)), hoping that

sup
n

∫

TT

(1 + n|s|)|Ln(s)| ds <∞.
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However, the Ln usually employed satisfy the following additional assumption:
(iii) Ln even.
and, with this, we even have

f(t)− Ln∗f(t) =

∫ π

0

(
f(t)− f(t+ s) + f(t)− f(t− s)

)
Ln(s) ds

=

∫ π

0

(−∆s∇sf)(t)Ln(s) ds,

with
∆h∇hf = ∆2f(· − h),

and
‖∆2

sf‖ ≤ sup
h<|s|

‖∆2
hf‖ =: ω2(f, |s|),

and ω2(f, ·) called the second (uniform) modulus of smoothness of f . In this lan-
guage, ω(f, ·) is called the first (uniform) modulus of smoothness of f . It is clear
how one would define the rth modulus of smoothness, for any natural r, as are the bounds

ωr(f, h) := sup
k<h
‖∆r

kf‖ ≤ 2rω(f, h)

and
ωr(f, |s|) ≤ (1 + n|s|)rωr(f, 1/n),

with the latter using the fact that ∆mhf =
∑m−1

j=0 ∆hf(·+ jh), hence

∆r
mhf =

m−1∑

j1=0

· · ·
m−1∑

jr=1

∆r
hf(·+ (j1 + · · ·+ jr)h).

Since, in particular, ω2(f, h) = ω2(f, (nh)/n) ≤ (1 + nh)2ω2(f, 1/n), a natural as-
sumption now is the following moment condition:
(iv) supn

∫ π

0
(ns)k |Ln(s)| ds < ∞, i.e.,

∫ π

0
()k|Ln| = O(n−k), for k = 0, 1, 2.

and with it, we get the typical Jackson inequality

‖f − Ln∗f‖ ≤ cω2(f ; 1/n).

It remains to find suitable Ln.
The simplest choice is Ln = Dn/

∫
TT
Dn with

Dn(t) :=
∑

|j|≤n

eij/2 =
sin((n+ 1/2)t)

2 sin(t/2)

Dirichlet’s kernel. For it, Ln ∈
◦
Πn, Dn∗()0 = π, and Ln even. However, Ln decays

too slowly away from 0 to satisfy (iv); in fact, already k = 0 gives trouble since ‖Dn‖ ∼
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∫
TT
|Dn| ∼

∫ π

1/n
()−1 ∼ lnn, hence, as already mentioned earlier, Ln∗ cannot converge to 1

pointwise on C(TT), hence a more sophisticated analysis wouldn’t help here, either.
The next choice is Ln = Fn/

∫
TT
Fn, with

Fn(t) :=
1

2(n+ 1)

(
sin((n+ 1)t/2)

sin(t/2)

)2

Fejér’s kernel. One checks that

Fn =

n∑

0

Dk/(n+ 1),

hence Fn ∈
◦
Πn, and Fn∗()0 = π. Also, Fn ≥ 0, hence we only need

∫ π

0

(1 + ns)2Fn(s) ds = O(1).

However this, unfortunately, is not true. Thus, while, by Korovkin, Fn∗f converges to f
uniformly for every f ∈ C(TT), we don’t, offhand, get a Jackson estimate from it since (iv)
does not hold for it.

Jackson’s choice is the Jackson kernel

Jn(t) :=

(
sin(mt/2)

sin(t/2)

)4

/λn, m := ⌊n/2⌋+ 1,

normalized to have
∫
TT
Jn = 1. It is a special case of the generalized Jackson kernels:

Jn,r(t) :=

(
sin(mt/2)

sin(t/2)

)2r

/λn,r, m := ⌊n/r⌋+ 1.

Since

(
sin(mt/2)

sin(t/2)

)2

/m = 1 + 2
m−1∑

k=1

(1− k/m) cos kt =
∑

k

B2((k/m) + 1)eik(t)

(as one verifies, with B2 the ‘cardinal B-spline of order 2’, a fact to be explored later), it
follows that Jn,r is an even, nonnegative, trig.pol. of degree ≤ n. In particular Jn,r∗()0 > 0,
hence the 0th moment condition is trivially satisfied. For the others, one may prove that
Jn,r satisfies the moment conditions

sup
n

∫ π

0

(nt)kJn,r(t) dt <∞, k = 0, 1, . . . , 2r − 2,

as follows.
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Since t/π ≤ sin(t/2) ≤ t/2 on [0 . . π],

∫ π

0

tk
( sin(mt/2)

sin(t/2)

)2r
dt ∼

∫ π

0

tk
( sin(mt/2)

t

)2r
dt

=
( 2

m

)k−2r+1
∫ mπ/2

0

uk
( sinu
u

)2r
du

∼ n2r−1−k

∫ ∞

0

uk
( sinu
u

)2r
du

∼ n2r−1−k

as long as k − 2r < −1, hence, in particular, λn,r ∼ n2r−1 and so

∫ π

0

(ns)kJn,r(s) ds ∼ nkn2r−1−k/n2r−1 ∼ 1,

for k = 0, . . . , 2r − 2.

Thus, for r ≥ 2, the sequence Ln = Jn,r satisfies all four conditions (i)–(iv) above.

For r = 2, Jackson got in this way the Jackson Inequality. For r > 2, the additional
moment conditions provide the inequalities (due to Stechkin):

En(f) ≤ ‖f − Jn,r∗f‖p ≤ Crω2r−2(f, 1/n)p,

for any f ∈ Lp(TT) and any 1 ≤ p ≤ ∞.

The constant in the resulting estimate En(f) ≤ const2r−2‖D2r−2f‖p/n2r−2 is far from

sharp. Favard showed that, with S the unit ball of the semi-normed lss Y := L
(r)
p (TT) of

Xp(TT), with semi-norm

‖f‖Y := ‖Drf‖p,

sup
f∈S

En−1(f) = En−1(B
r
p) ≤ Kr/n

r,

with this inequality exact for p = 1,∞, and the numbers Kr, the so-called Favard con-
stants, given as the value of a fast converging series whose value, for large r, is indistin-
guishable from π/4.

The extremal function, Br
p, is a Bernoulli spline, of which, perhaps, more anon.

We now know that (54)Jackson and (55)Bernstein hold for Mn =
◦
Πn and Y =

C(r)(TT) ⊂ C(TT) = X . Hence, (56) Peetre’s Theorem now tells us that

K(f, n−r;C(TT), C(r)(TT)) ∼ En(f) ∼ ‖Drf‖∞/nr, f ∈ C(r)(TT).
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Jackson estimates for alg.pols.

It is standard to prove Jackson’s theorem for algebraic polynomials from the one for
trigonometric polynomials. For this, one first translates and dilates [a . . b] into the interval
[−1 . . 1]. Then one considers the map

F : C[−1 . . 1]→ C(TT) : f 7→ Ff : θ 7→ f(cos(θ)).

(Draw the picture.) This is a linear map that carries C[−1 . . 1] isometrically into

C(TT)e := {g ∈ C(TT) : g(−·) = g},

the space of all even 2π-periodic functions. In particular, F maps Πn onto

◦
Πn,e :=

◦
Πn ∩ C(TT)e.

Also,

ω(Ff, ·) ≤ ω(f, ·)

since the map [−1 . .1]→ [0 . .π] : t 7→ cos−1(t) has slope ≥ 1 in absolute value everywhere.
Hence

dist (Ff,
◦
Πn) ≤ const ω(Ff, 1/n) ≤ const ω(f, 1/n).

Therefore, with m ∈ P◦
Πn

(Ff),

(66) dist (f,Πn) ≤ ‖f − F−1m‖ = dist (Ff,
◦
Πn) ≤ const ω(f, 1/n),“jacksonforalgpols

provided F−1m is defined and in Πn. For this, observe that the map

C(TT)→ C(TT)e : g 7→ ge := (g + g(− ·))/2

is norm-reducing since g 7→ g(− ·) is an isometry. Hence, if g ∈ C(TT) and even (as is

the case for g = Ff) and m ∈ P◦
Πn

(g), then me is an even trig.pol. in
◦
Πn and ‖Ff −

me‖ = ‖ge − me‖ ≤ ‖g − m‖ = dist (g,
◦
Πn), hence also me ∈ P◦

Πn
(g), i.e., we may take

m ∈ P◦
Πn

(Ff) to be even, hence in F (Πn). In fact, Πn is Haar, hence we have just proved

that the ba from
◦
Πn to an even function is even.

Note, though, that we cannot bound ω(f, ·) in terms of ω(Ff, ·), and this is another in-
dication that we cannot expect the same kind of paired direct/inverse theorems concerning
the degree of approximation by algebraic polynomials.

Instead, one has theorems of the following kind.
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(67) Theorem (Nikol’skii, Timan). For some const and for all f ∈ C[−1 . . 1] and all
n, there exists pn ∈ Πn so that

|f(t)− pn(t)| ≤ const ω(f,∆n(t)),

with

∆n : t 7→ max{ 1

n2
,

√
1− t2
n

}.

If one is not too worried about the constants involved, then Jackson’s theorem provides
the right order of the degree of approximation by polynomials to smooth functions, as
follows: Starting with Jackson’s theorem,

dist (f,Πn) ≤ const ω(f, 1/n),

and adding to it the fact that, for f ∈ C(1)[a . . b],

ω(f, h) ≤ h‖Df‖,

we get, for any p ∈ Πn,

dist (f,Πn) = En(f − p,Πn) ≤ const (1/n) ‖D(f − p)‖,

hence
dist (f,Πn) ≤ const (1/n) dist (Df,Πn−1).

Thus, by induction, for n≫ r,

dist (f,Πn) ≤ constr (1/n)rω(Drf, 1/n).

Finally, here is a standard result relating a specific K-functional to the modulus of
smoothness of a certain order.

(68) Theorem (Johnen). If T is a closed interval (finite, infinite or all of R) or TT, and“thmKeqomega

r ∈ N, then there exist positive constants c and C such that, for all p ∈ [1 . .∞] and all
f ∈ Lp(T ),

(69) cωr(f, t)p ≤ K(f, tr;Lp,W
(r)
p ) ≤ Cωr(f, t)p, t > 0.

Here, to recall,
ωr(f, t)p := sup

h≤t
‖∆r

hf‖p,

with

∆r
hf :=

r∑

k=0

(
r

k

)
(−1)r−kf(·+ kh).

If T has an endpoint, then ∆r
hf may, offhand, only be defined on some proper subset of

T ; it is taken to be zero wherever it is not defined.
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Good approximation, especially by splines

As we have seen, a process of near-best approximation, from some subset M of the
nls X , is necessarily a projector (i.e., idempotent). It is particularly easy to construct and
use if M is a finite-dimensional linear subspace of X in which case the projector can even
be chosen to be linear.

Linear projectors onto finite-dimensional linear subspaces arise naturally when con-
sidering the information that is readily available in the representation of m ∈ M with
respect to a particular basis for M , i.e., any particular 1-1 linear map

V : F
n → X : a 7→

∑

j

a(j)vj =: [v1, . . . , vn]a

with ranV = M .
Given such V , the abstract equation V ? = m for the coefficients V −1m of m ∈ M

wrto V , is turned into an equivalent numerical equation Λ′V ? = Λ′m by any linear map
Λ′ : X → F

n that is 1-1 on M . For, with that assumption, Λ′M maps F
n linearly and 1-1

into itself, hence is an invertible matrix, and this gives the solution

V −1m = (Λ′V )−1Λ′m.

Now notice that we may assume, in addition, that Λ′V = 1. For, if our initial choice of
Λ′ does not satisfy this, simply replace it by (Λ′V )−1Λ′. With this additional assumption,
m = V Λ′m for any m ∈M , i.e., Λ′m is the desired coordinate vector. But any linear map
Λ′ : X → F

n is necessarily of the form

Λ′f =: (λif : i = 1, . . . , n) =: [λ1, . . . , λn]′f

for certain linear functionals λi. Hence, we conclude that, for m = V a, the coefficient a(j)
gives us the value λjm of the linear functional λj at m.

Of course, if M is a proper subspace of X , then there is nothing unique about these
λj . Each choice of Λ′ with Λ′V = 1 corresponds to a particular extension of the coordi-
nate functionals for the basis V . In that sense, a(j) = (V −1m)(j) gives us all kinds of
information about m.

Assuming merely that Λ′ is 1-1 on M , it follows that, for any f ∈ X ,

m = Pf := V (Λ′V )−1Λ′f

is the unique element of M that agrees with f on Λ′ in the sense that

Λ′m = Λ′f.

In particular, P is a linear projector, onto M , and every linear projector onto M arises in
this way.
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An example: polynomial interpolation and divided differences

Consider the map

Wc : F
N

0 → Π : a 7→
∞∑

j=1

a(j)wj,

with

(70) wj : t 7→
∏

i<j

(t− ci), j = 1, 2, . . . ,
“newtonpols

the Newton polynomials for the (arbitrary) sequence c : N→ F, and

F
T
0 := {a ∈ F

T : # supp(a) <∞}.

Since any a ∈ F
N

0 has only finitely many nonzero entries, Wca is, indeed, well-defined for
any such a. Also, since degwj = j − 1 for all j, Wc is necessarily 1-1. It is also onto since
its range contains all the wj and, for each n, (w1, . . . , wn) is linearly independent and in
the n-dimensional space Π<n, hence a basis for it.

Thus, each p ∈ Π can be uniquely written as Wca, and this particular representation
for p is called its Newton form with (respect to) centers c.

The question now is: what is W−1
c p for given p ∈ Π? Related to this is the question:

What information about p = Wca is readily provided by the coefficient a(n)?
To answer these questions, observe that

p = Wca =: pn + wn+1qn,

with

pn :=
∑

j≤n

a(j)wj,

and with qn some polynomial. It follows that pn is the remainder after division of p by
wn+1, i.e., pn ∈ Π<n and wn+1 divides p − pn. But this uniquely pins down pn: Indeed,
if also r ∈ Π<n and also wn+1 divides p − r, then wn+1 also divides pn − r. But since
deg(pn − r) < n = degwn+1, this implies that pn = r.

Using once more the fact that degwj = j − 1 for all j, it follows that a(n) is the
leading coefficient, i.e., the coefficient of ()n−1, in the power expansion

pn = a(n)()n−1 + l.o.t. =: Pc1,...,cn
p

of the unique polynomial pn ∈ Π<n that agrees with p at c1, . . . , cn in the sense that
p − pn vanishes at that sequence, counting multiplicities. Note that pn agrees with p at
c1, . . . , cn exactly when

(71) Dρ(p− pn)(z) = 0, 0 ≤ ρ < #{1 ≤ i ≤ n : z = ci}, z ∈ F.“interpatc
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We now know that a(n) only depends on p ‘at’ c1, . . . , cn, hence a notation like a(n) =
a(p; c1, . . . , cn) would be appropriate. In fact, here are three notations,

(72) a(n) = p[c1, . . . , cn] = [c1, . . . , cn]p = ∆(c1, . . . , cn)p,“defdivdif

the first two quite standard. The last, due to V. Kahan, will be adopted here, since
[c1, . . . , cn] is otherwise occupied.

The view of ∆(c1, . . . , cn)p as the leading coefficient in the power form for the in-
terpolating polynomial Pc1,...,cn

p often is the fastest way to specific results concerning
divided differences. For example, if c1 < · · · < cn, then, by Rolle’s Theorem and for
j = 1:n − 1, D(p − Pc1,...,cn

p) must vanish at some ζj ∈ (cj . . cj+1). It then follows that
DPc1,...,cn

p = Pζ1,...,ζn−1
Dp and so, in particular,

(n− 1)∆(c1, . . . , cn)p = ∆(ζ1, . . . , ζn−1)Dp.

By induction, this gives that if the cj are real, then there is ξ in the smallest interval
containing c1, . . . , cn so that

(73) (n− 1)!∆(c1, . . . , cn)p = Dn−1p(ξ).“eqmeanvalue

Consider now the computation of specific divided differences. If c is a constant se-
quence, c = (ζ, ζ, . . .) say, then, by (71) or (73),

∆(ζ, . . . , ζ︸ ︷︷ ︸
n terms

)p = Dn−1p(ζ)/(n− 1)!.

For general c, the answer is a little bit more subtle. However, we already observe the
very important fact that Wca is a continuous, in fact an infinitely differentiable, function
of c, hence so is ∆(c1, . . . , cn)p for each n. Indeed we get, on differentiating the identity
WcW

−1
c = 1 as a function of c and rearranging, that

D(W−1
c ) = −W−1

c D(Wc)W
−1
c

is continuous and smooth.
Further, ∆(c1, . . . , cn)p is linear in p and symmetric in c1, . . . , cn.
The efficient way to construct ∆(c1, . . . , cn)p is obtained as a byproduct of the efficient

evaluation of the polynomial p = Wca from its Newton coefficients a which, in turn, is
based on writing the Newton form in a nested way, using the fact that each wj is a factor
of each wk for k > j:

p(z) = a(1) + (z − c1)(a(2) + (z − c2)(· · ·+ (z − cn−2)(a(n− 1) + (z − cn−1)a(n)) · · ·))

in case p ∈ Π<n. Evaluation of this expression from the inside out results in the following
algorithm.
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Nested Multiplication aka Horner’s Method. Input: The sequence a ∈ F
n of (essen-

tial) coefficients in the Newton form Wca for some p ∈ Π<n, the relevant center sequence
c = (ci : i = 1, . . . , n− 1), and some scalar z.

b(n) := a(n)
for j = n− 1, n− 2, . . . , 1

b(j) := a(j) + (z − cj)b(j + 1)
endfor

Output: The number b(1) = p(z).

The algorithm provides the value of p at z, at a cost of only 3n flops. More than
that, the entire sequence b generated by this algorithm is valuable since it provides the
(essential) coefficients in the Newton form for p centered at (z, c) = (z, c1, c2, . . .), i.e.,

(74) p = W(z,c)b.“newnewtonform

This says, in particular, that

p = b(1) + (· − z)
∑

j>1

wj−1b(j),

illustrating the fact that Horner’s method can be viewed as a means for dividing p by the
linear polynomial (· − z). Now, to prove (74), observe that, directly from the algorithm,

(75) a(j) = b(j) +

{
0 j = n;
(cj − z)b(j + 1) j < n.“basicfact

On substituting these expressions for the a(j) into p = Wca, we find

p = wnb(n) + wn−1 〈b(n− 1) + (cn−1 − z)b(n)〉 + wn−2 〈· · ·〉+ · · ·
= wn−1 〈(· − cn−1) + (cn−1 − z)〉b(n) + wn−1b(n− 1) + wn−2 〈· · ·〉+ · · ·
= wn−1 (· − z)b(n) + wn−1b(n− 1) + wn−2 〈· · ·〉+ · · · ,

with terms 2 and 3 in the last line looking exactly like terms 1 and 2 in the first line,
except that n is replaced by n − 1, hence continuation of the process eventually leads to
(74). In particular, with c0 := z, we have b(j) = ∆(c0 . . . , cj−1)p, all j, hence (75) can be
rewritten

∆(c1, . . . , cj)p = ∆(c0 . . . , cj−1)p+ (cj − c0)∆(c0, . . . , cj)p.

For cj 6= c0, this gives the recurrence relation

(76)
∆(c1, . . . , cj)p− ∆(c0, . . . , cj−1)p

cj − c0
= ∆(c0, . . . , cj)p

“ddrecurrence

which holds for arbitrary c0, . . . , cj (as long as c0 6= cj) and is the reason why ∆(ci, . . . , cj)p
is called the divided difference of p at ci, . . . , cj.
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This recurrence relation is also the simple tool for the calculation, in a divided
difference table, of the coefficients

(77) a(j) = ∆(c1, . . . , cj)p, j = 1, . . . , n,“newtoncoeffs

needed for the Newton form Wca for p ∈ Π<n, starting with the numbers

(78) ∆(ζ, . . . , ζ︸ ︷︷ ︸
ρ terms

)p = Dρ−1p(ζ)/(ρ− 1)!, 0 < ρ ≤ #{1 ≤ i ≤ n : ζ = ci}.
“allequal

The table is triangular and contains eventually all the numbers

t(i, j) := ∆(ci, . . . , cj)p, 1 ≤ i ≤ j ≤ n.

Assuming for simplicity that

(79) ci = cj =⇒ ci = ci+1 = · · · = cj ,“goodfortable

each such entry t(i, j) = ∆(ci, . . . , cj)p either has ci = cj , and in that case

t(i, j) = Dj−ip(ci)/(j − i)!,

i.e., one of the numbers we started with, or else ci 6= cj , in which case

t(i, j) =
t(i+ 1, j)− t(i, j − 1)

cj − ci
,

hence computable from entries t(r, s) with s− r < j − i.
Having generated this table in the manner described (and assuming still for simplicity

that (79) holds), we obtain from the table the coefficients of the Newton form p = Wca of
the polynomial p for which the values

(80) yj = Dρp(cj)/ρ!, ρ = max{j − i : ci = cj}, j = 1, . . . , n,“interpconds

are as entered into the table. But this means that, by entering arbitrary numbers yj at
these places in the table, and then completing the table via the recurrence, we obtain the
unique polynomial p in Π<n that satisfies (80). In other words, we have completely solved
the problem of polynomial interpolation, including osculatory (or Hermite) interpolation.
If the yj are computed from some (sufficiently smooth) function f (polynomial or not),
then the table entries are denoted by

t(i, j) =: ∆(ci, . . . , cj)f

and called divided differences of the function f . Thus the
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(81) Definition. The divided difference of f at ci, . . . , cj, denoted by“defdivdiff

∆(ci, . . . , cj)f,

is defined for any sufficiently smooth function f as the leading coefficient of the unique
polynomial of degree ≤ j − i that agrees with f at the sequence (ci, . . . , cj).

(82) Theorem. For any sufficiently smooth function f , and any sequence (c1, . . . , cn),“thmpolint

p :=
n∑

j=1

∆(c1, . . . , cj)f

j−1∏

i=1

(· − ci)

is the unique polynomial of degree < n that agrees with f at the sequence (c1, . . . , cn).

Of the many wonderful properties that divided differences possess, I mention here only
one, as this one served as the portal through which we first glanced a theory of multivariate
splines, and since, strangely, there is only one Numerical Analysis text (Isaacson-Keller)
that actually provides it. Also, it makes many other properties of the divided differences
quite evident.

(83) Genocchi-Hermite formula. For every c = (c0, . . . , ck) and every p ∈ Π,“genocchi

∆(c0, . . . , ck)p =

∫

(c0,...,ck)

Dkp,

which uses the Genocchi functional

f 7→
∫

(c0,...,ck)

f :=

∫

Σk

f(c0 +
k∑

i=1

si∇ci) ds

in which integration is done over the standard k-simplex, Σk := {s ∈ R
k : 1 ≥ s1 ≥ · · · ≥

sk ≥ 0}.
Proof: The proof, like many that involve divided differences, is done by induction

on k. To be sure, since
∫
(c0,...,ck)

1 = vol(Σk) = 1/k!, hence

∫

Σk

f(c0 +

k∑

i=1

si∇ci) ds = f(ξ)/k!

for some ξ ∈ conv{c0, . . . , ck}, the Genocchi formula is immediate for the special case
c0 = · · · = ck, and so, in particular, for k = 0. Assume that ck−1 6= ck. Then, for any t,

∫ sk−1

0

Dkg(t+ sk(ck − ck−1)) dsk =
Dk−1g(t+ sk−1(ck − ck−1))−Dk−1g(t)

ck − ck−1
.
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Hence, with
t := c0 + s1∇c1 + · · ·+ sk−1∇ck−1,

we compute

∫

Σk

Dkg(c0 +
k∑

i=1

si∇ci) ds =

∫ 1

0

· · ·
∫ sk−1

0

Dkg(t+ sk∇ck) dsk · · · ds1

=

∫ 1

0

· · ·
∫ sk−2

0

Dk−1g(t+ sk−1∇ck)−Dk−1g(t)

ck − ck−1
dsk−1· · ·ds1

=
∆(c0, . . . , ck−2, ck)− ∆(c0, . . . , ck−1)

ck − ck−1
g = ∆(c0, . . . , ck)g,

the second last equality by induction hypothesis and since

t+ sk−1∇ck = c0 + · · ·+ sk−2∇ck−2 + sk−1(ck − ck−2).

To be sure, any conclusion derived from the Genocchi formula (including the for-
mula itself) can be extended to any function g for which it makes sense and that can be
approximated suitably by polynomials, e.g., to all g ∈ C(k)(T ) for a suitable T .
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Univariate B-splines

Here is a very swift introduction to B-splines, and thereby to splines aka smooth
piecewise polynomials. (A picturesque version of this material is available, by anonymous
ftp, from the site /ftp.cs.wisc.edu in the subdirectory Approx as the postscript file
bsplbasic.ps.)

Let t := · · · ≤ ti−1 ≤ ti ≤ ti+1 ≤ · · · be a nondecreasing sequence. This sequence may
be finite, infinite, or even bi-infinite. Two important (and extreme) special cases are
(i) t = Z, leading to cardinal splines;
(i) t = IB := (· · · , 0, 0, 0, 1, 1, 1, . . .), leading to the Bernstein-Bézier form (or, BB-form)

for polynomials (restricted to [0 . . 1]).
The associated (normalized) B-splines of order k for the knot sequence t are, by

definition, the functions

(84) Bj := Bj,k := Bj,k,t : x 7→ ∆(tj , . . . , tj+k)(· − x)k−1
+ (tj+k − tj),“defBj

with ∆(T ) the divided difference functional introduced in the preceding section. The
normalization ensures that the Bj form a (nonnegative) partition of unity (see (98)
below). The B-spline Bj was originally denoted by Nj = Nj,k,t in order to distinguish it
from the differently normalized B-spline

Mj = Mj,k,t :=
k

tj+k − tj
Bj,k,t,

for which ∫
Mj = 1.

The latter normalization arises naturally when applying the divided difference to both
sides of the Taylor identity:

f =
∑

r<k

Drf(a)(· − a)r/r! +

∫ b

a

k(· − s)k−1
+ Dkf(s) ds/k!

to obtain (under the assumption that tj , . . . , tj+k ∈ [a . . b])

(85) ∆(tj , . . . , tj+k)f =

∫

R

Mj,k,tD
kf/k!,

“peano

showing that Mj,k,t is the Peano kernel for the divided difference ∆(tj , . . . , tj+k).
By using Leibniz’ Rule

∆(τ0, . . . , τk)(fg) =
k∑

i=0

∆(τ0, . . . , τi)f ∆(τi, . . . , τk)g
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for the divided difference of a product, applied to the particular product (· − x)k−1
+ =

(· − x)(· − x)k−2
+ , one readily obtains the recurrence relations

(86a) Bi,k = ωi,kBi,k−1 + (1− ωi+1,k)Bi+1,k−1“bsplrec

with

(86b) Bi,1 := χ
[ti..ti+1)

, ωi,k(x) :=
x− ti

ti+k−1 − ti
.

However, once one knows these recurrence relations, it is most efficient for the devel-
opment of the B-spline theory to take (86) as the starting point, i.e., to define B-splines
by (86). Equivalently, the development about to be given will make no use of divided
differences, but will rely entirely on (86).

It follows at once that Bi,k can be written in the form

(87) Bi,k =

i+k−1∑

j=i

bj,kχ[tj ..tj+1)
,

with each bj,k a polynomial of degree < k since it is the sum of products of k − 1 linear
polynomials. Therefore,

Bi,k ∈ Π<k,(ti,...,ti+k) on [ti . . ti+k],

while

(88) Bi,k = 0 off [ti . . ti+k].“bsplsupport

Further, Bi,k depends only on the knots ti, . . . , ti+k. For this reason, the alternative
notation

(89) Bi,k =: B(·|ti, . . . , ti+k)“defBjalter

is also customary. The actual smoothness of Bi,k depends on the multiplicity with which
each of the knots tj , i ≤ j ≤ i + k, appears in its knot sequence (ti, . . . , ti+k), as we will
see in a moment.

Since both ωi,k and 1 − ωi+1,k are positive on (ti . . ti+k), it follows from (88) by
induction on k that Bi,k is positive on (ti . . ti+k).

Since at most k of the Bi,k are nonzero at any one point x ∈ R, the definition

∑
aiBi,k : R→ R : x 7→

∑
aiBi,k(x)

of
∑

i aiBi,k as a pointwise sum makes sense for arbitrary a even when the sum has infinitely
many terms. We call any such function a spline of order k with knot sequence t and
denote the collection of all such functions by

Sk,t.
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We deduce from the recurrence relation that

(90)
∑

aiBi,k =
∑(

aiωi,k + ai−1(1− ωi,k)
)
Bi,k−1,“recureval

showing that the coefficients on the right are affine combinations of neighboring coefficients
on the left.

Before proceeding with this, note the following technical difficulty. If t has a first
knot, e.g., t = (t1, . . .), then the sum on the left in (90) starts with i = 1, while the sum
on the right can only start at i = 2 since the coefficient ai−1 appears in it. To avoid such
difficulty, we agree in this case (and the corresponding case when t has a last entry) to
extend t in any way whatsoever to a bi-infinite knot sequence, denoting the extension again
by t. However, this increases the number of available B-splines, hence also increases the
spline space. Since we are still interested only in our original spline space, we further agree
to make use of results obtained from the extended situation only to the extent that they
don’t explicitly involve any of the additional knots. We can be sure none of the additional
knots matters if we restrict attention to the largest interval not intersected by the interior
of the support of any of the additional B-splines. We call this the basic interval for Sk,t

and denote it by
Ik,t := (t− . . t+)

with

t− :=

{
tk, if t = (t1, . . .);
infi ti, otherwise,

t+ :=

{
tn+1, if t = (· · · , tn+k);
supi ti, otherwise,

In practice, the knot sequence is finite, having both a first and a last knot. In that case,
one chooses Ik,t to be closed, and this is fine for the left endpoint, since the definition of
B-splines makes them all continuous from the right. For this to work properly at the right
endpoint, one modifies the above definition of B-splines to make them continuous from the
left at the right endpoint of Ik,t.

In summary, even if the given knot sequence is not biinfinite, we may always assume
it to be biinfinite as long as we apply the results so obtained only to functions on the basic
interval Ik,t determined by the given knot sequence.

With this, consider the special sequence

ai := ψi,k(τ) := (ti+1 − τ) · · · (ti+k−1 − τ)
(with τ ∈ IR). We find for Bi,k−1 6= 0, i.e., for ti < ti+k−1, that

aiωi,k + ai−1(1− ωi,k) = ψi,k−1(τ)
(
(ti+k−1 − τ)ωi,k + (ti − τ)(1− ωi,k)

)

= ψi,k−1(τ)(· − τ)
since f(ti+k−1)ωi.k + f(ti)(1 − ωi,k) is the straight line that agrees with f at ti+k−1 and
ti. This shows that

(91)
∑

ψi,k(τ)Bi,k = (· − τ)
∑

ψi,k−1(τ)Bi,k−1,“inductionstep

hence, by induction, that

(92)
∑

ψi,k(τ)Bi,k = (· − τ)k−1
∑

ψi,1(τ)Bi,1.

This proves the following identity.
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(93) Marsden’s Identity. For any τ ∈ IR,

(94) (· − τ)k−1 =
∑

i

ψi,k(τ)Bi,k
“marsden

on Ik,t, with ψi,k(τ) := (ti+1 − τ) · · · (ti+k−1 − τ).
Since τ in (94) is arbitrary, it follows that Sk,t contains all polynomials of degree

< k (restricted to Ik,t). More than that, we can even give an explicit expression for the
required coefficients, as follows.

By differentiating (94) with respect to τ , we obtain the identities

(95)
(· − τ)k−ν

(k − ν)! =
∑

i

(−D)ν−1ψi,k(τ)

(k − 1)!
Bi,k, ν > 0.

“difmarsden

On using these identities in the Taylor formula

p =
k∑

ν=1

(· − τ)k−ν

(k − ν)! Dk−νp(τ)

for a polynomial p of degree < k, we conclude that any such polynomial can be written in
the form

(96) p =
∑

i

λi,kp Bi,k,
“polrepro

with λi,k given by the rule

(97) λi,kf := λi,k,tf :=
k∑

ν=1

(−D)ν−1ψi,k(τ)

(k − 1)!
Dk−νf(τ).

“dualfunct

Here are two special cases of particular interest. For p = 1, we get

(98) 1 =
∑

i

Bi,k
“eqpartition

since Dk−1ψi,k = (−1)k−1(k−1)!, and this shows that the Bi,k form a partition of unity.
Further, anticipating that λjkp is independent of τ in case p ∈ Π<k, since Dk−2ψi,k is a
linear polynomial that vanishes at

t∗i,k := (ti+1 + · · ·+ ti+k−1)/(k − 1),

(99) ℓ =
∑

i

ℓ(t∗i,k)Bi,k, ℓ ∈ Π1.
“exactforlinear
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The identity (95) also gives us various piecewise polynomials contained in Sk,t: Since
ti < tj < ti+k implies that Dν−1ψi,k(tj) = 0 in case ν ≤ #tj := #{s : ts = tj}, the choice
τ = tj in (95) leaves only terms with support either entirely to the left or else entirely to
the right of tj. This implies that

(100)
(· − tj)k−ν

+

(k − ν)! =
∑

i≥j

(−D)ν−1ψi,k(tj)

(k − 1)!
Bi,k, 0 < ν ≤ #tj .

“difmarsdenplus

Consequently,

(101) (· − tj)k−ν
+ ∈ Sk,t for 1 ≤ ν ≤ #tj ,“eqtrunc

(on Ik,t).

(102) Theorem. If ti < ti+k for all i, then the B-spline sequence (Bi,k : i) is linearly
independent and the space Sk,t coincides with the space S := Πρ

<k,t of all piecewise poly-
nomials of degree < k with breakpoints ti that are ρ(i) := k − 1−#ti times continuously
differentiable at ti, all i. In particular, each f ∈ Sk,t is in C(ρ(i)) near ti, all i.

Proof: It is sufficient to prove that, for any finite interval I := [a . . b], the re-
striction S|I of the space S to the interval I coincides with the restriction of Sk,t to that
interval. The latter space is spanned by all the B-splines having some support in I, i.e.,
all Bi,k with (ti . . ti+k) ∩ I 6= ∅. The space S|I has a basis consisting of the functions

(103) (· − a)k−ν , ν = 1, · · · , k; (· − ti)k−ν
+ , ν = 1, · · · ,#ti, for a < ti < b.“eqjunk

This follows from the observations that (i) the sequence of functions in (103) is linearly
independent; and (ii) a piecewise polynomial function f with a breakpoint at ti that is
k − 1−#ti times continuously differentiable there can be written uniquely as

f = p+

#ti∑

ν=1

aν(· − ti)k−ν
+ ,

with p a suitable polynomial of degree < k and suitable coefficients aν . Since each of the
functions in (103) lies in Sk,t, by (95) and (101), we conclude that

(104) S|I ⊂ (Sk,t)|I .

On the other hand, the dimension of S|I , i.e., the number of functions in (103), equals the
number of B-splines with some support in I (since it equals k + #{i : a < ti < b}), hence
is an upper bound on the dimension of (Sk,t)|I . This implies that equality must hold in
(104), and that the set of B-splines having some support in I must be linearly independent
over I.
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(105) Corollary. The sequence (Bj,k : Bj,k I 6= 0) of B-splines having some support in“corone

a given (proper) interval I is linearly independent over that interval.

(106) Corollary. For all p ∈ Π<k, Dτλj,kp = 0.“corconst

Indeed, since the B-spline sequence is linearly independent, the coefficients λi,kp ap-
pearing in (96) are uniquely determined, hence cannot change with τ . When convenient
later on, we will choose τ in (97) in dependence on i, i.e., as τi.

(107) Corollary. If t̂ is a refinement of the knot sequence t, then Sk,t ⊂ Sk,t̂.

(108) Corollary. The derivative of a spline in Sk,t is a spline of degree < k − 1 with“corderiv

respect to the same knot sequence, i.e., DSk,t ⊆ Sk−1,t.

(109) Remark The word ‘derivative’ is used here in the pp sense: The ‘derivative’
of a pp f is, by definition, the pp with the same breakpoint sequence whose polynomial
pieces are the first derivative of the corresponding polynomial pieces of f . This makes it
possible in (108) to ignore the possibility that ti = ti+k−1 for some i, hence the elements
of Sk,t will, in general, fail to be differentiable at such a ti.

More generally, here and elsewhere, we do not exclude the possibility that some of the
Bi,k are trivial, i.e., that ti = ti+k for some i. However, if we were to interpret Bi,k,t as
distributions, we would have to proceed with more caution. For, by (85) and (73),

(110) lim
ti,...,ti+k→τ

M(·|ti, . . . , ti+k) = δτ = ∆(τ)
“pointmass

as a distribution, and that limit is quite different from 0.

The identity (96) can be extended to all spline functions. For this, we agree, consistent
with (86b), that all derivatives in (97) are to be taken as limits from the right in case τ
coincides with a knot.

(111) Theorem. If τ = τi in definition (97) of λi,k is chosen in the interval [ti . . ti+k),“thmdualfunct

then, with the understanding that Dνf(τ) := Dνf(τ+) for any ν and any pp f ,

(112) λi,k

(∑

j

ajBj,k

)
= ai.

“duality

It is remarkable that τ can be chosen arbitrarily in the interval [ti . . ti+k). The reason
behind this is Corollary (106).

Proof: Assume that τ ∈ [ti . . ti+k), hence τ ∈ [tl . . tl+1) ⊂ [ti . . ti+k) for some l,
and let pj be the polynomial that agrees with Bj,k on (tl . . tl+1). Then

λi,kBj,k = λi,kpj .

On the other hand,

pj =
l∑

m=l+1−k

λm,kpj pm,

since this holds by (96) on [tl . . tl+1), while, by Corollary (105) or directly from (96),
(pl+1−k, · · · , pl) is linearly independent. Therefore necessarily λi,kBj,k = λi,kpj equals 1 if
i = j and 0 otherwise.
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use of the dual functionals: differentiation; dependence on knots

Because of (112), the functionals λi,k are called the dual functionals for the B-
splines. Strictly speaking, there are many such functionals (of which more anon), but
these particular ones have turned out to be quite useful in various contexts. Here are
several examples.

Compare

(113) λi,kf =
k∑

ν=1

(−D)ν−1ψi,k(τ)

(k − 1)!
Dk−νf(τ)

with

λi,k−1Df =
k−1∑

ν=1

(−D)ν−1ψi,k−1(τ)

(k − 2)!
Dk−1−νDf(τ).

Since (ti − ·)ψi,k−1 = ψi−1,k and (ti+k−1 − ·)ψi,k−1 = ψi,k, subtraction of the latter from
the former gives

(ti+k−1 − ti)ψi,k−1 = ψi,k − ψi−1,k.

Hence

(114) λi,k−1D =
λi,k − λi−1,k

(ti+k−1 − ti)/(k − 1)
.

“dualdiff

Consequently, we get the differentiation formula

(115) D
∑

i

aiBi,k =
∑

i

ai − ai−1

(ti+k−1 − ti)/(k − 1)
Bi,k−1.

“splinediff

We now consider how λi,k depends on the knot sequence t. Perhaps surprisingly,
although Bi,k involves the knots ti, · · · , ti+k, λi,k only depends on the ‘interior’ knots,
ti+1, . . . , ti+k−1. Further, since λi,k depends linearly on ψi,k, it depends affinely and sym-
metrically on the points ti+1, · · · , ti+k−1. Indeed, for any α, x, y,

((αx+ (1− α)y)− ·) = α (x− ·) + (1− α)(y − ·).

Hence, with
λk : R

k−1 → (C(k−1))′ : t 7→ λ0,k,

we have

λk(αx+ (1− α)y, s2, . . . , sk−1) = αλk(x, s2, . . . , sk−1) + (1− α)λk(y, s2, . . . , sk−1)

as well as
λk(s) = λk(s ◦ σ)

for any permutation σ of order k − 1.
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Consider, in particular, t1 = · · · = tk−1 = x. Then ψ0,k = (x− ·)k−1, hence

(−D)ν−1ψ0,k(τ)/(k − 1)! = (x− τ)k−ν/(k − ν)!

and therefore

λk(x, . . . , x) =

k∑

ν=1

(x− τ)k−ν

(k − ν)! [τ ]Dk−ν .

In particular
λk(x, . . . , x)p = p(x), p ∈ Π<k.

This meshes entirely with the fact that, if x = ti+1 = · · · = ti+k−1, then Bi,k is the only
Bj,k that is nonzero at x, hence Bi,k(x) must be 1 (since the Bj,k form a partition of
unity), and therefore ∑

j

ajBj,k(x) = ai

in this case.

side issue: blossoms

It is worthwhile to point out that, associated with each p ∈ Πr, there is a unique
symmetric r-affine form called its polar form (in Algebra) or its blossom (in CAGD),
denoted therefore here by

ω
p,

for which
∀{x ∈ R} p(x) =

ω
p (x, . . . , x).

E.g., the blossom of (· − τ)r ∈ Πr is s 7→ (s1 − τ) · · · (sr − τ). If p =
∑

j()
jcj ∈ Πr, then

ω
p (s1, . . . , sr) :=

∑

j

cj
∑
{
∏

i∈I

si : I ∈
({1, . . . , r}

j

)
}/
(
r

j

)
,

with
(
M
j

)
:= {K ⊂M : #K = j}. We deduce from the above that

ω
p (t1, . . . , tk−1) = λk(t1, . . . , tk−1) p, p ∈ Π<k.

In particular, the ith B-spline coefficient of a kth order spline with knot sequence t is
the value at (ti+1, . . . , ti+k−1) of the blossom of any of the k polynomial pieces associated
with the intervals [tj . . tj+1), j = i, . . . , i+ k− 1. This observation was made, in language
incomprehensible to the uninitiated, by de Casteljau in the sixties. It was discovered
independently and made plain (and given the nice name of ‘blossom’) by Lyle Ramshaw
in the early eighties.
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knot insertion

This has led to the evaluation of a spline by knot sequence refinement. Such a refine-
ment can always be reached adding one knot at a time. So, suppose that the knot sequence
t̂ has been obtained from the knot sequence t by the insertion of just one additional term,
the point x say. Thus, for some j,

t̂i =

{ ti, for i ≤ j;
x, for i = j + 1;
ti−1, for i > j + 1.

We saw already that, with
x = αti+k−1 + (1− α)ti,

i.e., with
α = ω(x) := ωi,k(x),

we have

λk(x, ti+1, . . . , ti+k−2) = αλk(ti+1, . . . , ti+k−1) + (1− α)λk(ti, . . . , ti+k−2).

While this is true for arbitrary i, it matters here only when i < j + 1 < i+ k. Altogether,
we find that

λ̂i,k = (1− ω̃i,k(x))λi−1,k + ω̃i,k(x)λi,k, all i,

with

(116) ω̃i,k(x) := max{0,min{1, ωi,k(x)}}.“defgot

Correspondingly,

(117)
∑

i

aiBi,k =
∑

i

âiB̂i,k,
“recurinsert

with
âi = (1− ω̃i,k(x))ai−1 + ω̃i,k(x)ai, all i.

Note that this is exactly the way we computed coefficients by recurrence in (90). This
intimate connection between the recurrence relation and knot insertion was first observed
by Wolfgang Boehm. Note further that k − 1-fold insertion of the knot x produces even-
tually a knot sequence t̃, in which all the interior knots for B̃j,k are equal to x, hence,
correspondingly,

ãj = (
∑

i

aiBi,k)(x).

In CAGD, one thinks of a spline f =
∑

j ajBj,k in terms of the curve x 7→ (x, f(x))
that is its graph. Since x =

∑
j t

∗
j,kBj,k(x) by (99), we can represent this spline curve as

the vector-valued spline
∑

j PjBj,k with coefficients

Pj := (t∗j,k, aj),

called its control points. The broken line with vertex sequence (Pj) is called its control
polygon; I’ll denote it by

Ck,tf,

to stress its dependence on t.
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(118) Proposition. If t̂ is obtained from t by the insertion of one additional knot, then,
for any f ∈ Sk,t, Ck,t̂f interpolates, at its breakpoints, to Ck,tf , specifically,

P̂j = (1− ω̃j,k(x))Pj−1 + ω̃j,k(x)Pj,

(and is thereby uniquely determined).

Here are two figures, to illustrate this geometric interpretation of knot insertion which,
ultimately led to an entirely new and quite different way to generate curves and surfaces,
namely subdivision.

tj+1

x

tj−2

tj−1 x tj+2

tj

x

tj+3

Pj−1

P̂j

(119) Figure. Insertion of x = 2 into the knot sequence
t = (0,0,0,0,1,3,5,5,5,5), with k = 4.“figknotinsert

(120) Figure. Three-fold insertion of the same point.
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(121) Figure. A cubic spline, its control polygon, and various straight lines
intersecting them. The control polygon exaggerates the shape
of the spline. The spline crossings are bracketed by the control
polygon crossings.

It follows that the map a 7→ fa :=
∑

i aiBi,k is variation-diminishing, meaning that
fa has no more variations in sign than does the sequence a, in a sense to be made precise
next.

variation diminution

For a real sequence a without any zero entries,

S(a) := #{i : a(i)a(i+ 1) < 0}
denotes the number of sign changes in it. It is less clear what this number should be in
case a has some zero entries. The maximum number of sign changes obtainable in such
a sequence by an appropriate choice in the sign of any zero entry is called the number of
weak sign changes in it, denoted

S+(a).

The minimum number so obtainable is denoted by

S−(a)

and called the number of strong sign changes (an example of the Bauhaus maxim “less
is more”?). It equals the number of sign changes when we ignore the zeros. The number
of strong (weak) sign changes can only increase (decrease) under small perturbations.
Precisely,

S−(a) ≤ lim inf
b→a

S−(b) ≤ lim sup
b→a

S+(b) ≤ S+(a).

The following Lemma is immediate (from the geometric picture of knot insertion).
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(122) Lemma (Lane, Riesenfeld). If ã is the B-spline coefficient sequence obtained“lemlaneriesenfeld

from the sequence a by the insertion of (zero or more) knots, then

S−(ã) ≤ S−(a).

If f is a function on an interval (including the interval R), one defines

S−(f) := sup
x1<···<xr

S−(f(x1), . . . , f(xr)).

(123) Proposition. S−(
∑

j ajBj) ≤ S−(a).“propsignreduce

Proof: Insert into t each of the entries in a given increasing sequence (xi) enough
times to have them appear in the resulting knot sequence t̃ at least k − 1 times. Then
(f(x1), . . . , f(xr)) is a subsequence of the resulting B-spline coefficient sequence ã, hence

S−(f(x1), . . . , f(xr)) ≤ S−(ã) ≤ S−(a).

(124) Definition. Schoenberg’s (spline) operator is, by definition, the linear map
V = Vk,t given by the rule

V g :=
∑

j

g(t∗j,k)Bj,k.

It is usually defined only when #ti < k, all i.

(125) Proposition. Schoenberg’s spline operator is variation-diminishing. Precisely,
for any g and any ℓ ∈ Π1,

(126) S−(V g − ℓ) ≤ S−(g − ℓ).“nomorecuts

Even more precisely,

(127) Drg ≥ 0 =⇒ DrV g ≥ 0, r = 0, 1, 2,“preservesgn

and this holds even ‘locally’.

Proof: By (99), V ℓ = ℓ (on Ik,t) for all ℓ ∈ Π1, hence V (f − ℓ) = V f − ℓ,
therefore, by Proposition (123), and by the strict increase in the sequence t∗i : i = 1, . . . , n
S−(V f − ℓ) ≤ S−((f − ℓ)(t∗i ) : i) ≤ S−(f − ℓ).

However, (126) by itself fails to imply the more precise statement (127), which follows
from the nonnegativity of the B-splines along with the observation that

DV g =
∑

j

∆(t∗j−1, t
∗
j )g Bj,k−1,

hence

D2V g =
∑

j

∆(t∗j−1, t
∗
j )g − ∆(t∗j−2, t

∗
j−1)g

(tj+k−2 − tj)/(k − 2)
Bj,k−2.
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zeros of a spline, counting multiplicities

There is a complete theory that provides an upper bound on the number of zeros of a
spline, even counting multiplicity, in terms of the number of sign changes (strong and/or
weak) in its B-spline coefficients, with multiplicity of a zero defined as the maximal
number of distinct nearby zeros in a nearby spline (from the same spline space).

For the theory to give useful information, one has to assign a finite multiplicity to
zero intervals, and this adds a further complication.

Multiplicity considerations are important when one wishes to consider osculatory
spline interpolation, i.e., interpolation at possibly repeated points. Since I will not get
to that topic in this course, I am content to state and prove only the following very useful
proposition.

(128) Proposition. If f =
∑

j ajBj,k,t vanishes at x1 < · · · < xr, while f t :=
∑

j |aj|Bj,k,t“propzerocount

does not, then S−(a) ≥ r.
Proof: Since f t(xi) > 0, while f(xi) = 0, the sequence (ajBj(xi) : Bj(xi) 6= 0)

must have at least one strong sign change, hence, so must the sequence (aj : Bj(xi) 6= 0),
by the nonnegativity of the B-splines. This gives altogether r strong sign changes in
a, provided we can be sure that different xi generate different sign changes. Off-hand,
this may not be so, but can be guaranteed by inserting each of the points (xi + xi+1)/2,
i = 1, . . . , r − 1, into the knot sequence k times. If t̃ and ã are the resulting knot and
coefficient sequences, respectively, then still f t̃ > 0 = f on the xi (since, from f t(xi) > 0,
we know that xi is an isolated zero of f), while now {j : B̃j(xi) 6= 0}∩{j : B̃j(xh) 6= 0} = ∅
for i 6= h, hence

S−(a) ≥ S−(ã) ≥ r.

spline interpolation

We consider spline collocation, i.e., interpolation from Sk,t at the increasing se-
quence x = (xi) of points. We consider this under the assumption that t = (ti : i =
1, . . . , n+ k), with #ti < k, all i, hence Sk,t ⊂ C(R). This simplifying assumption avoids
discussion otherwise needed in case some xj agrees with a knot of multiplicity ≥ k, in
which case one would have to specify, in addition, whether it is xj− or xj+ one wants.
With the assumption, none of the B-splines Bi,k is trivial, hence dimSk,t = n. For this
reason, we assume, more precisely, that

x = (x1 < · · · < xn).

Hence, for given g, we are seeking f ∈ Sk,t with f = g on x. Equivalently, we are seeking
a solution to the linear system A? = g x, with

A := (Bj,k(xi) : i, j = 1, . . . , n)

the so-called collocation matrix. There is exactly one interpolant to a given g iff A is
invertible iff A is 1-1.
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(129) Proposition. If A = (Bj,k(xi)) is invertible, then

ti < xi < ti+k, ∀i.

Proof: If, for some i, ti+k ≤ xi, then the first i columns of A have nonzero entries
only in the first i− 1 rows, hence A cannot be invertible. Again, if xi ≤ ti, then columns
i, . . . , n of A have nonzero entries only in rows i+ 1, . . . , n, hence A cannot be invertible.

Note that the argument used nothing more than the fact that both the sequence x
and the sequence of the supports of the B-splines are increasing. In particular, we have
proved

(130) Corollary. If (Bmj,k(si) : i, j = 1, . . . , r) is invertible, with both (mj) and (si)
increasing, then Bmi

(si) 6= 0, all i.

In other words, such a matrix is invertible only if its diagonal entries are nonzero. As
it turns out, the converse also holds. The converse of the Proposition is

(131) Schoenberg-Whitney Theorem. Let t = (t1, . . . , tn+k) with Bj,k 6= 0, all j, and“schoenbergwhitney

let x := (x1 < · · · < xn). Then, Ax := (Bj,k(xi)) is invertible iff ti < xi < ti+k, all i.

Proof: We only need to prove the ‘if’. Since Ax is square, it is sufficient to prove
that Axa = 0 implies a = 0. Consider f =

∑
j ajBj,k with Axa = 0. If a 6= 0, then, by

Corollary (105), f 6= 0. Let I = (α . . β) be a maximal open interval in

supp
∑

j

|aj |Bj,k =
⋃
{(tj . . tj+k) : aj 6= 0}.

It follows that I = (tν . . tµ+k) for some 1 ≤ ν ≤ µ ≤ n, and that

f = fI :=

µ∑

j=ν

ajBj,k on I.

In particular, fI has the distinct zeros xν , . . . , xµ, therefore, by Proposition (128),

S−(aν , . . . , aµ) ≥ µ+ 1− ν,

which is nonsense.

The Schoenberg-Whitney Theorem has been generalized in at least two directions: (i)
permission of coincidences in the sequence (xi) correspondingly to osculatory interpolation;
and (ii) consideration of a subsequence (Bmj

: j = 1, . . . , n) instead of the whole sequence
(for a suitably longer knot sequence).

Any x = (x1 < · · · < xn) satisfying the Schoenberg-Whitney conditions for Sk,t gives
rise to the corresponding projector Px that associates g ∈ C with the unique f = Pxg ∈ Sk,t

that agrees with g at x. Since Px is a linear projector, we have

dist (g, Sk,t) ≤ ‖g − Pxg‖ ≤ (1 + ‖Px‖) dist (g, Sk,t),
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hence Px s a candidate for a “good” approximation scheme from Sk,t to the extent that
‖Px‖ is “small”, i.e., not much larger than 1. We pursue this question in the context of
the uniform norm, i.e., in the space

X = C[t1 . . tn+k].

Since Pxg =
∑

j ajBj with a = A−1
x (g x), while (Bj) is a positive partition of unity,

‖Pxg‖∞ ≤ ‖A−1
x (g x)‖∞ ≤ ‖A−1

x ‖∞‖(g x)‖∞ ≤ ‖A−1
x ‖∞‖g‖∞,

with ‖A−1
x ‖∞ = maxi

∑ |A−1
x (i, j)|. Hence

‖Px‖ ≤ ‖A−1
x ‖∞.

While this bound is not sharp (in general), it is the only bound readily available. Hence,
in search for a good approximation scheme from Sk,t, we now look for x so that ‖A−1

x ‖∞
is as small as possible, and this will lead us to a particularly good choice for x, namely
the Chebyshev-Demko sites x∗, easily computable for given t, and, for these, ‖Px∗‖ ≤
‖A−1

x∗ ‖∞ ≤ k2k. This bound is quite small for modest k and, surprisingly, is independent
of the knot sequence t. In other words, interpolation at the Chebyshev-Demko sites is near-
best independent of the knot sequence. This makes it possible to use such interpolation
profitably even when one has chosen the knot sequence quite non-uniform in order to adjust
to the varied behavior of the function being approximated.

The search for x that minimizes ‖A−1
x ‖∞ is aided by the knowledge that our collocation

matrix Ax is totally positive, to be established next.

total positivity

We recall that an (m,n)-matrix C is totally positive if, for any strictly increasing
(index) sequences i = (i1 < · · · < ir) in {1, . . . , m} and j = (j1 < · · · < jr) in {1, . . . , n},
the determinant detC(i, j) of the (r, r)-submatrix

C(i, j) :=
(
C(ip, jq) : p, q = 1, . . . , r

)

is nonnegative. The most immediately important fact concerning total positivity is the
following.

(132) Fact. If C is invertible and totally positive, then its inverse is checkerboard,
meaning that C−1(i, j)(−1)i−j ≥ 0, all i, j.

Proof: By Cramer’s rule,

C−1(i, j) = (−1)i−j detC(\j, \i)/ detC.
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(133) Theorem (Karlin). For any x := (x1 < · · · < xn), any k ∈ N, and any knot“thmtp

sequence t = (ti : i = 1, . . . , n+ k), the collocation matrix

A :=
(
Bj(xi) : i, j = 1, . . . , n

)

is totally positive.

Proof: If t̂ is obtained from t by the insertion of just one knot, and B̂j := Bj,k,t̂,
all j, then, by (117),

Bj = (1− αj+1)B̂j+1 + αjB̂j,

with all αj ∈ [0 . . 1]. Since the determinant of a matrix is a linear function of the columns
of that matrix, we have, e.g.,

det[· · · , Bj(x), . . .] = (1− αj+1) det[· · · , B̂j+1(x), . . .] + αj det[· · · , B̂j(x), . . .],

with · · · unchanged in their respective places. It follows that, for any i, j,

detA(i, j) =
∑

h

γh det Â(i,h),

with all the γh ≥ 0, and the sum, offhand, over certain nondecreasing sequences, since
only neighboring columns of Â participate in a column of A. However, we may omit all
h that are not strictly increasing, since the corresponding determinant is trivially zero.
Therefore,

detA(i, j) =
∑

h

γh det Â(i,h),

with the γh ≥ 0 and all h strictly increasing.

Now insert each of the xi enough times so that the resulting refined knot sequence t̃
contains each xi exactly k − 1 times. By induction, we have

detA(i, j) =
∑

h

γh det Ã(i,h),

with the γh ≥ 0 and all h strictly increasing. However, in each row of Ã, there is exactly
one nonzero entry, namely the entry belonging to B̃mi

with t̃mi
< xi = t̃mi+1, and that

entry equals 1. In other words, Ã has all its entries zero except that the submatrix Ã(:,m)
is the identity matrix. Thus det Ã(i,h) = δh,m◦i, hence detA(i, j) = γm◦i ≥ 0.
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spline interpolation (cont.)

We continue with the spline interpolation setup introduced earlier, considering inter-
polation at x = (x1 < · · · < xn) from Sk,t with t = (t1 ≤ · · · ≤ tn+k) and #ti < k, all
i.

The fact that the collocation matrix

Ax := (Bj(xi))

is totally positive implies that

‖A−1
x ‖∞ = max

i

∑

j

|A−1
x (i, j)| = max

i

∑

j

A−1
x (i, j)(−1)i−j = max

i
(−1)i−naxi ,

with ax the unique solution to the equation Ax? = ((−1)n−j : j = 1, . . . , n), hence

‖Px‖∞ ≤ ‖A−1
x ‖∞ = ‖ax‖∞,

with
fx :=

∑

j

axjBj

the unique element of Sk,t satisfying

fx(xi) = (−1)n−i, i = 1, . . . , n.

Our search for argmin ‖A−1
x ‖∞ therefore is the search for the x that minimizes ‖ax‖∞. For

this, we use, in effect, Remez’ (second) algorithm for the construction of a ba from Πk.
First we note that

(−1)n−iaxi > 0, all i,

since axi =
∑

j A
−1
x (i, j)(−1)n−j = (−1)n−i

∑
j |A−1

x (i, j)| with the sum necessarily posi-
tive. Further, since fx strictly alternates in sign at the n points x1, . . . , xn and vanishes
outside (t1 . . tn+k), it follows that fx has n distinct local extrema y1 < · · · < yn with

(−1)n−ifx(yi) ≥ 1, ∀i.
This implies that ti < yi < ti+k. all i. Indeed, if, e.g., yi ≤ ti for some i, then

Bµ(yν) = 0 for all ν ≤ i ≤ µ, showing that, on y1, . . . , yi, fx agrees with
∑

j<i a
x
jBj. In

particular, i− 2 ≥ S−(ax1 , . . . , a
x
i−1) ≥ S−(

∑
j<i a

x
jBj) = i− 1, a contradiction.

Consequently, there is exactly one fy =:
∑

j a
y
jBj with fy(yi) = (−1)n−i, all i. For

any γ < 1, the difference, fx − γfy, strictly alternates in sign on y1 < · · · < yn, hence we
must have S−(ax − γay) = n− 1, and therefore (−1)n−iaxi ≥ (−1)n−iayi ≥ 0, all i.

In this way, we obtain a sequence fm :=
∑

j a
m
j Bj , m = 1, 2, . . ., whose coefficients

converge monotonely to some sequence a∗. Its corresponding sequences ym
1 < · · · < ym

n

of extrema of fm therefore also converge, necessarily to a strictly increasing sequence
x∗1 < · · · < x∗n since fm strictly alternates in sign on ym

1 < · · · < ym
n . Let f∗ :=

∑
j a

∗
jBj .

Then,

(134) 1 = (−1)n−if∗(x
∗
i ) = ‖f∗‖∞, i = 1, . . . , n,“maxoscil

since 1 = (−1)n−ifm(ym−1
i ), while ‖fm‖ = maxi |fm(ym

i )| and f∗ is the uniform limit of
(fm : m).
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(135) Lemma. Let f∗ =
∑

j a
∗
jBj,k,t satisfy (134) for some (strictly) increasing x∗. Then“chebspl

(−1)n−ia∗i = 1/ dist (Bi, span(Bj : j 6= i)), i = 1, . . . , n.

In particular, f∗ is independent of x∗ (hence of the initial x in the above iteration).

Proof: Let A∗ := (Bj(x
∗
i )) and set

λi : Sk,t → R : f 7→
∑

j

A−1
∗ (i, j)f(x∗j).

Then λiBj = δij , hence

(−1)n−ia∗i = (−1)n−iλif∗ =
∑

j

(−1)n−iA−1
∗ (i, j)(−1)n−j =

∑

j

|A−1
∗ (i, j)| = ‖λi‖,

the last equality by the fact that
∑

j |A∗(i, j)| is obviously an upper bound for ‖λi‖, yet
it equals |λif∗| with ‖f∗‖∞ = 1, hence is also a lower bound for ‖λi‖. Now, for any linear
functional λ on any nls X and for any f ∈ X ,

|λf | = ‖λ‖ dist (f, kerλ).

Hence, 1 = dist (f∗, kerλi), while kerλi = span(Bj : j 6= i) and so |a∗i | dist (Bi, kerλi) =
dist (f∗, kerλi) = 1.

The function f∗ is, by definition, the Chebyshev spline for Sk,t, i.e., the unique
(up to scalar multiples) element that maximally equioscillates, i.e., satisfies (134). From
Lemma (135), we can write it as

Tk−1,t :=
∑

j

(−1)n−jBj/ dist (Bj, span(Bi : i 6= j)).

To be sure, any f ∈ Sk,t can have at most n − 1 sign changes, hence n is indeed the
maximal number of equioscillations possible for f ∈ Sk,t.

(136) Proposition (S. Demko). x 7→ ‖ax‖∞ is uniquely minimized when x is the
extreme-point sequence for the Chebyshev spline.

Proof: We just saw that, starting with any x, we reach the Chebyshev spline in
the limit in a process during which the B-spline coefficients decrease in absolute value.
Hence ‖a∗‖∞ ≤ ‖ax‖∞ for any x.
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The terminology Chebyshev spline, though apt in view of the fact that, for t1 = · · · =
tk = −1, tk+1 = · · · = t2k = 1 it is the Chebyshev polynomial of degree k−1, unfortunately
clashes with the standard term ‘Tschebyscheffian’ spline, meaning a piecewise function
whose pieces all come from the same Haar space. The notation Tk−1,t is meant as a
legitimate extension of the notation Tr for the Chebyshev polynomial of degree r. Although
whole books have been written on the special case k = n, in which case Tk−1,t on Ik,t agrees
with the (suitably scaled and translated) Chebyshev polynomial Tk−1 of degree k− 1, the
Chebyshev spline is largely unexplored territory (except for K. Mørken’s Ph.D. Thesis).

(137) Corollary. For x = (x1 < · · · < xn) with ti < xi < ti+k, all i, let fx =
∑

j a
x
jBj be“corchebspl

the unique element in Sk,t satisfying f(xi) = (−1)n−i, all i. Then argminx ‖ax‖∞ equals
the extreme-point sequence of Tk−1,t.

Offhand, some of the extreme points of Tk−1,t may lie outside the basic interval
Ik,t = [tk . . tn+1]. However, if we restrict attention to this interval, then we would choose
t1 = tk and tn+1 = tn+k. This violates the assumption that #ti < k, all i. However, assume
first that, e.g., t1 < t2 = tk. Then fx is strictly monotone on [t1 . . t2], hence necessarily
t2 ≤ y1. By the same reasoning, yn ≤ tn+k−1 in case tn+k−1 < tn+k. This implies
that nothing in the above arguments changes if we use the interval [t2 . . tn+k−1] instead.
That choice made, the location of t1 and tn+k becomes irrelevant to Sk,t as restricted to
[t2 . . tn+k−1] (and not even the B-spline coefficients will change as we vary t1 and tn+k).
In particular, we may choose t1 = tk and tn+k = tn+1, hence have [t1 . . tn+k] = Ik,t.

Since, for all i, λi,k =
∑

j A
−1
∗ (i, j)∆(x∗j ) on Sk,t, and the latter linear functional, as

we have just seen, takes on its norm on Tk−1,t, it follows that the map

Sk,t → R :
∑

j

ajBj 7→ ‖a‖∞/‖
∑

j

ajBj‖

takes on its maximum at Tk−1,t, and that maximum is ‖a∗‖∞. This maximum determines
the condition of the B-spline basis, to be discussed next.

The condition of the B-spline basis

The condition
κ(V ) := ‖V ‖‖V −1‖

of a basis V (i.e., an invertible linear map from some F
n to the normed linear space ranV )

measures the extent to which the relative changes in the coordinates a of an element V a
may be close to the resulting relative change in V a itself. The closer κ(V ) to 1, the more
closely do these two relative sizes correspond.

For the B-spline basis, using the max-norm both in R
n and in Sk,t, we have

κ∞([Bj : j]) = sup
a

‖a‖∞
‖∑j ajBj‖∞

since the Bj form a partition of unity, hence trivially supa

‖
∑

j
ajBj‖∞

‖a‖∞

= 1.

Further,
κ∞([Bj : j]) = max

i
‖λi,k‖.

Hence the following lemma is of interest.
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(138) Lemma. The number“lemdk

dk := sup
t

sup
i

sup
f∈Sk,t

|λi,k,tf |/‖f‖∞

is finite.

Proof: Let f ∈ Sk,t, hence

λi,kf =

k∑

ν=1

(−D)ν−1ψi(τi)/(k − 1)! Dk−νf(τi),

and let I := [tℓ . . tℓ+1] be any knot interval in [ti . . ti+k], and choose, as we may, τi ∈ I.
Then, as both ψi and f are polynomials of degree < k on I, Markov’s inequality (65)
implies that

|(−D)ν−1ψi(τi)||Dk−νf(τi)| ≤ constk,ν‖ψi‖∞(I)/|I|ν−1 ‖f‖∞(I)/|I|k−ν.

On the other hand, by choosing, as we may, I to be a largest such knot interval, we can
ensure that

|tj − τi| ≤ k|I|, j = i, . . . , i+ k,

therefore ‖ψi‖∞(I) ≤ constk|I|k−1. Therefore, altogether, |λi,kf | ≤ const′k‖f‖∞(I), which
is even stronger than the claim to be proved.

A more careful quantitative analysis shows that dk = O(9k). Better results can be
obtained with the aid of the following

(139) Claim. dk = sups ‖λk−1,k Sk,s
‖([−1. .1]), with ‖λ‖(I) := supf∈dom λ |λf |/‖f‖∞(I),

and s any knot sequence of the type

s1 = · · · = sk = −1 ≤ sk+1 ≤ · · · ≤ s2k−3 ≤ 1 = s2k−2 = · · · = s3k−3.

Proof: Consider any particular λi := λi,k Sk,s
. If ti+1 = ti+k−1, then (assuming

WLOG that ti < ti+1), λi = ∆(ti+1−), therefore ‖λi‖ = 1 ≤ dk. In the contrary case, we
may assume, after a suitable linear change of the independent variable, that −1 = ti+1,
ti+k−1 = 1. Let t̃ be the knot sequence obtained from t by inserting both −1 and 1
enough times to increase their multiplicity to k − 1, and let ĩ be such that t̃̃i+j = ti+j for
j = 1, . . . , k−1. The corresponding spline space Sk,t̃ may well be larger than the space Sk,t

we started with, but λi = λ̃ĩ since, by (97), λi only depends on the knots ti+1, . . . , ti+k−1.
This shows that

‖λi‖ := sup
f∈Sk,t

|λif |/‖f‖∞ ≤ sup
f∈Sk,t̃

|λ̃ĩf |/‖f‖∞ = ‖λ̃ĩ‖ = ‖λ̃ĩ‖([−1 . . 1]),

the last equality since λ̃ĩf only depends on f [−1..1].

Consequently, dk ≤ sups ‖λk−1,k‖([−1 . . 1]). The opposite equality is trivial.
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It is believed that dk ∼ 2k. However, earlier hopes that the extremal knot configura-
tion in the Claim would have no interior knots (i.e., would have an s with all its entries
from {−1, 1}) were dashed by the following simple counter-example: The cubic Chebyshev
polynomial can be shown to have maximum B-coefficient 5 when written as an element of
Sk,t with t = (−1,−1,−1,−1, 1, 1, 1, 1); however, the cubic Chebyshev spline for the knot
sequence (−1,−1,−1,−1, 0, 1, 1, 1, 1) has B-coefficients (1,−7/2, 11/2,−7/2, 1). Neverthe-
less, by considering the related extremum problem

(140) dk,1 := sup
t

sup
i

sup
f∈Sk,t

|λi,k,tf ||ti − ti+k|/‖f‖1([ti . . ti+k]),
“defdkone

Karl Scherer and Aleksei Shadrin were recently able to show that dk ≤ k2k.
It follows that

‖a‖∞/dk ≤ ‖
∑

i

Bi,kai‖∞ ≤ ‖a‖∞

for any knot sequence t and any coefficient sequence a.
For such an estimate in Lp, observe that, for any p and with 1/p+ 1/p∗ = 1 and by

Hölder’s Inequality,

|
∑

j

Bj(x)aj| ≤ (
∑

j

Bj(x)|aj|p)1/p(
∑

j

Bj(x))
1/p∗

,

hence
‖
∑

j

Bjaj‖pp ≤
∑

j

|aj|p(tj+k − tj)/k

(using the fact that
∫
Bj = (tj+k − tj)/k). On the other hand, from (140) and Hahn-

Banach, we deduce the following

(141) Proposition. There exists hj with |hj | ≤ dk,1/(tj+k−tj) and support in [tj . . tj+k]“propreprdualfunct

for which ∫

R

hjf =

∫ tj+k

tj

hjf = λj,kf, f ∈ Sk,t.

In particular,
dk ≤ dk,1.

Consequently, if f =
∑

j Bjaj and with
∫

j
:=
∫ tj+k

tj
, then

aj =

∫

j

hjf ≤ (

∫

j

|hj |p
∗

)1/p∗

(

∫

j

|f |p)1/p,

while

(

∫

j

|hj |p
∗

)1/p∗ ≤ dk,1

(tj+k − tj)
(tj+k − tj)1/p∗

= dk,1/(tj+k − tj)1/p.

Therefore, ∑

j

|aj|p(tj+k − tj)/k ≤ (dk,1)
p
∑

j

∫

j

|f |p/k ≤ (dk,1)
p‖f‖pp,
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the last inequality since at most k of the intervals [tj . . tj+k] have some given knot interval
[tℓ . . tℓ+1] in common. It follows that, for any 1 ≤ p ≤ ∞,

(142) ‖c‖p/dk,1 ≤ ‖
∑

i

Bi,k,pci‖p ≤ ‖c‖p,
“bsplinecondp

for any knot sequence t and any coefficient sequence c, with

(143) Bi,k,p := (k/(ti+k − ti))1/pBi,k.“defbsplp

Degree of approximation by splines

quasiinterpolants

It follows from Theorem (111) that the linear map

P : g 7→
∑

j

Bj,kλj,kg

is a linear projector, with range S = Sk,t = Πρ
k,t, provided (as we have already assumed)

that, for each i, we choose τ in (97) equal to some τi ∈ [ti . . ti+k). It is also local, since
λj,kg depends only on the behavior of g near τj, hence, by our choice of τj , only on the
behavior of g on suppBj,k.

However, P is defined only for sufficiently smooth functions. In order to get such a
projector on all of L1(Ik,t), we make use of (141) in order to obtain the linear functional

µjg :=

∫
hjg

with supp hj ⊂ [tj . . tj+k] and ‖hj‖∞ ≤ dk,1/(tj+k − tj) that, on Sk,t, agrees with λj,k,t.
This implies that, for any g ∈ L1 and for 1 ≤ p ≤ ∞,

|µjg| ≤
dk,1

(tj+k − tj)1/p
‖g‖p([tj . . tj+k]).

The corresponding linear map

Q : g 7→
∑

j

µjg Bj,k

is defined for any g ∈ L1(Ik,t), hence for any g ∈ Lp(Ik,t). Further, it is the identity on its
range, hence a linear projector, its norm is bounded by dk,1, and it is local, in the sense
that, for x ∈ [tl . . tl+1),
(144)

Qg(x) =

l∑

j=l+1−k

µjg Bj(x) ≤
l∑

j=l+1−k

|µjg| Bj(x)

≤ dk,1‖g‖p([tl+1−k . . tl+k])

l∑

j=l+1−k

Bj(x)/(tj+k − tj)1/p

≤ dk,1‖g‖p([tl+1−k . . tl+k]) max
j∈{l+1−k,...,l}

(tj+k − tj)−1/p.
“goodlocal
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Since also g −Qg = (1−Q)(g − q) for any q ∈ Π<k, we conclude that, for any g,

(145) ‖g −Qg‖p([tl . . tl+1]) ≤ (1 + dk,1) dist (g,Π<k)p([tl+1−k . . tl+k])“quasierrorbound

(since (tl+1 − tl)/(tj+k − tj) ≤ 1 for j = l + 1 − k, . . . , l). In fact, this conclusion can
already be reached if we only take care that µj agree with λj on Π<k, all j, while still
|µjg| ≤ dk,1‖g‖1([tj . . tj+k])/(tj+k − tj).

The resulting map Q is called a good quasiinterpolant of order k, with ‘good’
referring to the uniform localness expressed by (144), and ‘order k’ referring to the fact
that Q reproduces Π<k. The term ‘quasiinterpolant’ was chosen by finite-element people
once they realized that approximation order could be ascertained with the aid of maps
Q that did not actually interpolate at the ‘nodal points’ of their elements, but merely
matched enough information to give reproduction of certain polynomial spaces.

The error bound (145) is local; it is in terms of how well g can be approximated locally
from polynomials of order k. That local distance is best estimated with the aid of

(146) Whitney’s Theorem. For any finite interval I,“whitney

dist (g,Π<k)p(I) ∼ ωk(g, |I|)p.

Proof: For all f ∈ Π<k, ωk(g, |I|)p = ωk(g − f, |I|)p ≤ 2k‖g − f‖p(I), hence
ωk(g, |I|)p ≤ constk dist (g,Π<k)p(I).

For the converse inequality, let I =: [a . . b] and start with an arbitrary f ∈ W (k)
p (I).

With
Tkf :=

∑

j<k

Djf(a)(· − a)j/j!

its truncated Taylor series, we find

|f(x)− Tkf(x)| = |
∫

I

(x− ·)k−1
+ /(k − 1)! Dkf |

≤ ‖Dkf‖p/(k − 1)!
( ∫

I

|(x− ·)k−1
+ |p∗)1/p∗

≤ ‖Dkf‖p/(k − 1)! |I|k−1/p,

hence, for any 1 ≤ q ≤ ∞,

‖f − Tkf‖q(I) ≤ ‖Dkf‖p/(k − 1)! |I|k−1/p+1/q.

Consequently,

dist (g,Π<k)p(I) ≤ ‖g − Tkf‖p(I) ≤ ‖g − f‖p + |I|k‖Dkf‖p/(k − 1)!,

and, as f ∈W (k)
p (I) is arbitrary here, we get

dist (g,Π<k)p(I) ≤ constkK(g, |I|k;Lp(I),W
(k)
p (I)),

while, from Theorem (68), we know that ωk(g, t)p ∼ K(f, tk;Lp,W
(k)
p ).
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We conclude from Whitney’s theorem and from (145) that

(147) dist (g, Sk,t)p ≤ constk ωk(g, |t|)p, 1 ≤ p ≤ ∞.“splprejackson

More than that, since

ωk(g, h)p(I) = O(hk) ⇐⇒ g ∈W (k)
p (I),

with

sup
h

ωk(g, h)p

hk
=

{
‖Dkg‖p(I), p > 1;

Var(Dk−1g), p = 1,

we have the local bound

‖g −Qg‖p([tl . . tl+1]) ≤ constk|tl+k − tl+1−k|k‖Dkg‖p([tl+1−k . . tl+k]).

For p = ∞, this suggests that, in approximating some g that is smooth except for some
isolated singularities, the knot sequence t be chosen so as to make

l 7→ |tl − tl+1|k‖Dkg‖∞([tl . . tl+1])

approximately constant. This is equivalent to making the map

l 7→ |tl − tl+1|
(
‖Dkg‖∞([tl . . tl+1])

)1/k

approximately constant, or, at least for a large knot sequence, making

l 7→ |tl − tl+1||Dkg([tl . . tl+1])|1/k

approximately constant. If there are to be n knot intervals, then we can achieve this
(approximately), by choosing t0 = 0 < t1 < · · · < tn = 1 so that

l 7→
∫ tl+1

tl

|Dkg|1/k

is constant. With that choice,

1

nk
‖Dkg‖1/k =

( ∫ tl+1

tl

|Dkg|1/k
)k ∼ |tl+1 − tl|k‖Dkg‖∞([tl . . tl+1]),

hence
‖g −Qg‖∞ ≤ constkn

−k‖Dkg‖1/k.

While this argument lacks some details, it makes the following essential point: In
order to achieve approximation order n−k from the set of splines of order k with n interior
knots, it is sufficient to have

‖Dkg‖1/k

finite. For example, this norm is finite for functions such as | · |1/2 on [−1 . . 1], ensuring
therefore approximations by splines of order k whose error behaves like O(n−k), with n
the degrees of freedom used. In contrast, the error in best polynomial approximation from
Πn to | · |1/2 on [−1 . . 1] cannot be better than O(n−1/2), by Bernstein’s Inverse Theorem,
hence approximation by splines with n equally spaced knots cannot be better, either, as
we show in the next section.
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Jackson and Bernstein for splines with uniform knot sequence

We know from (147) that, for every g ∈W (k)
p ,

(148) dist (g, Sk,t)p ≤ constk|t|k‖Dkg‖p.“spljackson

However, having dist (g, Sk,t)p = O(|t|k) is, in general, no guarantee that g ∈W (k)
p unless

the knot sequences t involved are sufficiently ‘generic’. Indeed, if every knot sequence
considered contains the point 1/2, then the function g := (·−1/2)k−1

+ can be approximated
without error from Sk,t even though g fails to have a kth derivative. But it is true that

(148) cannot hold for every knot sequence t unless g ∈ W (k)
p . In fact, this conclusion can

already be reached if (148) holds for every uniform knot sequence. The essential point is
that, for every point in the interval of approximation, there must be infinitely many knot
sequences among those considered for which that point falls somewhere in the middle of a
knot interval. Here are the details.

(149) Theorem (Butler, DeVore, Richards). For m ∈ N, let“splbernstein

t(m) := (. . . , 0, 0, 1/m, 2/m, . . . , 1, 1, . . .),

and set
Em(g)p := dist (g, Sk,t(m))p(I)

with I := [0 . . 1]. Then,

ωk(g, δ)p ≤ constk

{(
1
n

∑2n
m=nEm(g)p

p

)1/p
, p <∞;

maxn≤m≤2n Em(g)∞, p =∞,

with
n := ⌊1/δ⌋.

Proof: Since

|∆k
hg(x)| = |∆k

h(g − f)(x)| ≤ 2k‖g − f‖∞(x . . x+ kh)

for every f ∈ Π<k, the heart of the proof is in the (nontrivial) observation (known as
a mixing lemma, see(150) below) that, for all n, there exists m ∈ {n, . . . , 2n} so that
dist (x, t(m)) ≥ 1/(16n), hence, for our n and for all 0 < h ≤ δ1 := 1/(16kn), since
kh ≤ k 1

16kn
= 1/(16n), there is m ∈ {n, . . . , 2n} so that [x . . x+ kh] ∩ t(m) = ∅, implying

that any f ∈ Sk,t(m) is a polynomial on [x . . x+ kh], hence, with f a ba to g from Sk,t(m) ,
we get

|∆k
hg(x)| ≤ 2kEm(g)∞.

It follows that
ωk(g, δ1) ≤ 2k max

n≤m≤2n
Em(g)∞.

8apr03 78 c©2003 Carl de Boor



notes(.tex) (as of 11apr03) TEX’ed at 16:24 on 21 November 2009

Since δ ≤ 1/n = 16kδ1, hence ωk(g, δ) ≤ ωk(g, 1/n) ≤ (16k)kωk(g, δ1), this implies the
claimed result for p =∞.

As to p <∞, the mixing lemma (150) implies that

2n∑

m=n

χ
Im

(x) ≥ n

64
on [0 . . 1− kh],

with
Im := {x ∈ [0 . . 1− kh] : [x . . x+ 1/(16n)] ∩ t(m) = ∅}.

Therefore,

1

64

∫ 1−kh

0

|∆k
hg(x)|p dx ≤ 1

n

2n∑

m=n

∫

Im

|∆k
hg(x)|p dx ≤ 2kp

n

2n∑

m=n

Em(g)p
p.

This proves the result for p <∞.

For the record, here is the afore-mentioned

(150) Mixing Lemma. For any x ∈ [0 . . 1] and any n ∈ N,“mixinglemma

#{n ≤ m ≤ 2n : dist (x, t(m)) ≥ 1/(16n)} ≥ n/64.

Its proof (see, e.g., [DeVore and Lorentz, Constructive Approximation: pp. 356-7])
relies on the fact that, for any i, N ∈ N with i < N ,

#{N ≤ m ≤ 2N : dist (i/N, t(m)) ≥ 1/(6N)} ≥ N/16.

We conclude from the Theorem that

En(g)p ∼ ωk(g, 1/n)p.

In particular,

En(g)p = O(n−k) ⇐⇒ g ∈
{
W

(k)
p 1 < p ≤ ∞;

W (k−1)(BV ) p = 1.

Further, we get the saturation result:

En(g)p = o(n−k) ⇐⇒ g ∈ Π<k.

For the characterization of other rates of convergence, we make use of the following stan-
dard way to measure convergence behavior.
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Approximation Spaces

It has become standard to measure the decay of En(g) := dist (g,Mn) of the distance
of g ∈ X from a given sequence (Mn : n ∈ N) of subsets by comparing it to the sequence
(n−α : n ∈ N) for various values of α. Most simply, one might ask to have

En(g) = O(n−α),

with the supremum over all such α then being the approximation order for g provided
by (Mn : n ∈ N). However, in order to be able to characterize the class of functions g with
a given approximation order, a somewhat more subtle way of measuring approximation
order turns out to be often needed.

Define

‖a‖(α)
q :=

{(∑
n(nα|a(n)|)q/n

)1/q
0 < q <∞;

supn n
α|a(n)| q =∞.

With this, we define

A(α)
q := {a ∈ R

N : ∆|a| ≤ 0, ‖a‖(α)
q <∞},

and make the following observations. First,

‖a‖(α)
∞ <∞ ⇐⇒ a(n) = O(n−α),

i.e., A
(α)
∞ consists exactly of all the antitone sequences a that go to zero (at least) to

order −α. Further, ‖a‖(α)
q < ∞ for some finite q implies that a(n) = o(n−α). (Indeed, if

a(n) 6= o(n−α), then m(n)α|a(m(n))| ≥M > 0 for some strictly increasing m : N→ N, and

AGTASMAT m(n − 1) < m(n)/2; thus, (‖a‖(α)
q )q ≥ ∑n

∑
m(n)/2≤j≤m(n)(j

α|a(j)|)q/j ≥∑
n(2−αM)q

∑
m(n)/2≤j≤m(n) 1/j → ∞ (since jα|a(j)| = (j/m(n))αm(n)α|a(m(n))| ≥

2−αM for m(n)/2 ≤ j < m(n), and
∑

m(n)/2≤j≤m(n) 1/j ∼ ln 2), a contradiction.) In
particular

N := ‖()αa‖∞ <∞,

hence
∞ > (‖a‖(α)

q )q =: N q
∑

n

|b(n)|q/n ≥ N q
∑

n

|b(n)|r/n

for any r > q since |b(n)| ≤ 1, all n. In particular,

‖a‖(α)
r = N

(∑

n

|b(n)|r/n
)1/r

is finite for any r > q. In other words,

q < r =⇒ A(α)
q ⊂ A(α)

r .
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Finally, under the same assumption, and for any positive ε and any r,

∑

n

|nα−εa(n)|r/n =
∑

n

|nαa(n)|r/n1+rε ≤ Nr
∑

n

n−1−rε <∞.

Hence,
β < α =⇒ A(α)

q ⊂ A(α)
∞ ⊂ A(β)

r , all q, r.

For a given sequence (Mn : n ∈ N) of subsets of the nlsX , one defines, correspondingly,
the approximation classes

A(α)
q (X, (Mn)) := {g ∈ X : ‖(En(g) : n ∈ N)‖(α)

q <∞}

that single out all the elements g of X for which En(g) goes to zero in a certain way. By

the earlier discussion of (α, q) 7→ ‖a‖(α)
q , we conclude that (α, q) 7→ A

(α)
q is antitone in α

for arbitrary q and isotone in q for fixed α, i.e.,

β < α =⇒ A(α)
q ⊂ A(β)

r ,

q < r =⇒ A(α)
q ⊂ A(α)

r .

There is a corresponding way to quantify and compare the speed at which, for a
function f , f(t) approaches 0 as t→ 0. Precisely, for such a function, one defines

‖f‖(α)
q :=

{(∫
I
|t−αf(t)|q dt/t

)1/q
, q <∞;

supI |t−αf(t)|, q =∞,

with I some suitable interval, e.g., I = [0 . . 1]. Usually, f is isotone. In that case,

‖f‖(α)
q is equivalent to (i.e., bounded above and below by certain f -independent positive

multiples of) the following discrete versions, in which I is replaced by the sequence (a)
I = (1/n : n ∈ N) or (b) I = (2−n : n = 0, 1, . . .), and, correspondingly, on the interval
[tn+1 . . tn], dt/t is replaced by ∼ (tn − tn+1)/tn, which, for (a), is 1/(n+ 1), and, for (b),
is a constant. For q <∞, this gives the equivalent discrete versions

‖f‖(α)
q (1/N) := ‖(f(1/n) : n ∈ N)‖(α)

q

and
‖f‖(α)

q (2−N) :=
(∑

n

(2nαf(2−n))q
)1/q

,

respectively.
With these definitions in place, consider again the earlier result that

En(g)p := dist (g, Sk,t(n))p ∼ ωk(g, 1/n)p,

hence
g ∈ A(α)

q (Lp, (Sk,t(n) : n ∈ N)) ⇐⇒ ‖ωk(g, ·)p‖(α)
q <∞.
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The latter condition appeared some time ago in the study of approximation order from
trigonometric polynomials, leading to what we now call Besov spaces. Precisely,

B(α)
q (Lp) := {g ∈ Lp : |g|

B
(α)
q (Lp)

:= ‖ω⌊α⌋+1(g, ·)p‖(α)
q <∞}, 0 < α, 0 < q ≤ ∞.

These are complete metric spaces with the metric given by the (quasi-)norm

‖g‖
B

(α)
q (Lp)

:= ‖g‖p + |g|
B

(α)
q (Lp)

.

(This is only a quasi-norm when p < 1 since then one only has ‖a+ b‖ ≤ const(‖a‖+‖b‖)
for some const instead of the triangle inequality.)

(151) Fact. For any r > α,

g 7→ ‖ωr(g, ·)p‖(α)
q

provides a (quasi-)seminorm on B
(α)
q (Lp) equivalent to | · |

B
(α)
q (Lp)

.

One direction of this claim is obvious since

ωr+m(g, t)p ≤ 2mωr(g, t)p.

For the other direction, one needs a result like

(152) Marchaud’s Theorem. For g ∈ Lp(I),“marchaud

ωr(g, t)p ≤ constrt
r
( ∫ |I|

t

ωr+m(g, s)p

sr+1
ds+

‖g‖p
|I|r

)
.

along with

(153) Hardy’s Inequality. For α > 0, and 1 ≤ q ≤ ∞, and f any positive measurable“hardy

function,
∫ ∞

0

[
t−α

∫ t

0

f(s)
ds

s

]q dt

t
≤ 1

αq

∫ ∞

0

[
t−αf(t)

]q dt

t
.

With this, we reach the conclusion that

(154) A(α)
q (Lp(0 . . 1), (Sk,t(n) : n ∈ N)) = B(α)

q (Lp(0 . . 1)), 0 < q ≤ ∞, 0 < α < k.“classisbesov

But we have to question just what we have gained by this somewhat formal exercise. The
gain is substantial to the extent that we understand
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Besov spaces

Such understanding comes from knowing more about ‘typical’ elements and/or from
knowing alternative characterizations of such spaces. Among these will be those derived
from the fact that Besov spaces turn out to be approximation spaces for various other se-
quences of approximating sets, among these Sk,n := splines with n free knots and Πn/Πn :=
rational functions with numerator and denominator degree ≤ n, both classical examples
of nonlinear approximating sets, to be discussed next.

As for specific examples, consider the Heaviside function

g := ()0+,

as an element of Lp[−1 . . 1], say. For 0 < h < 1, ‖∆hg‖pp = h, hence

ω1(g, h)p = h1/p.

Therefore, for 0 < α < 1 and 0 < q <∞,

(‖ω(g, ·)p‖(α)
q )q ∼

∫ 1

0

(t−αt1/p)q dt/t =

∫ 1

0

()(−α+1/p)q−1,

and this is finite iff α < 1/p. For q =∞, we look instead at

sup
t
t−αt1/p,

and this is finite iff α ≤ 1/p. Consequently,

()0+ ∈ B(α)
q (Lp) ⇐⇒

{
α < 1/p, if 0 < q <∞;

α ≤ 1/p, if q =∞.

Note the minor, yet decisive, role played by the parameter q here. Note also that α can
be large provided we are willing to consider p < 1. Finally, note the implication that
any function with finitely many jump discontinuities but that is otherwise smooth lies in

B
(α)
q (Lp) for exactly the same triples (α, q, p).

More generally,

(∆k
h()k−1

+ )(x) = k!hk∆(0, h, . . . , kh)(x+ ·)k−1
+ = (k − 1)!hk−1B(−x|0, h, . . . , kh),

hence, ‖∆k
h()k−1

+ ‖p ∼ hk−1+1/p, and so, for 0 < q <∞,

(‖ωk(()k−1
+ , ·)p‖(α)

q )q ∼
∫ 1

0

(t−αtk−1+1/p)q dt/t =

∫ 1

0

()(−α+k−1+1/p)q−1

while
‖ωk(()k−1

+ , ·)∞‖(α)
∞ ∼ sup

t
t−α+k−1+1/p.
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Therefore,

()k−1
+ ∈ B(α)

q (Lp) ⇐⇒
{
α < k − 1 + 1/p, if 0 < q <∞;
α ≤ k − 1 + 1/p, if q =∞.

Other examples include:

B(r)
∞ (Lp(I)) ⊃

{
W

(r)
p (I), if 1 < p <∞;

W (r−1)BV (I), if p = 1,
, r ∈ N,

i.e., for 1 ≤ p <∞ and integer r, B
(r)
∞ (Lp(I)) contains the Sobolev space of all functions

on I with absolutely continuous (r − 1)st derivative and (a) rth derivative in Lp if p > 1;
(b) (r − 1)st derivative of bounded variation, if p = 1. There is no equality here, the only
related equality being

B
(r)
2 (L2) = W

(r)
2 .

For p =∞, one has
B(r)

∞ (C(I)) = Lip(r + 1, C(I)),

with the special case B
(1)
∞ (C(I)) equal the Zygmund space, i.e., slightly larger than

Lip1(I). Note the somewhat more subtle description in the extreme cases p = 1,∞.
More generally, for nonintegral α, and with α =: r − 1 + β for some r ∈ N and

β ∈ (0 . . 1),
B(α)

∞ (Lp(I)) = Lip(α,Xp(I)),

the space of all functions on I with absolutely continuous (r − 1)st derivative and rth
derivative in Lipβ(I)p. In view of the fact that

Lipβ(I)p := {g ∈ Lp(I) : sup
h
‖∆hg‖p/hβ <∞},

this is certainly just a tautology.
Besov spaces are helpful also because they appear as the ‘right’ spaces in interpolation

between standard spaces and in the Sobolev embedding theorem and its generalization.
For the discussion of these matters, it is very helpful to follow Ron DeVore’s advice and

view the whole situation by representing all the spaces (B
(α)
q (Lp) : 0 < q ≤ ∞) by the

point
(1/p, α)

in R
2
+, as in Figure (155).

Besov spaces arise naturally in interpolation between the spaces Lp and W
(r)
p . Briefly,

for any pair (X0, X1) of (quasi-)normed spaces with

X1 →֒ X0,

i.e., X1 continuously imbedded in X0, one obtains a two-parameter continuum of spaces

X1 ⊂ (X0, X1)θ,q ⊂ X0
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1

C(α)

α+ 1
p

B(β)(L1/β)

LpL(1/p−α)−1

← B
(α)
· (Lp)

L(1/p−α+1)−11
C

(155) Figure. DeVore’s diagram associates with the point ( 1
p
, α) the whole

family B
(α)
· (Lp) := (B

(α)
q (Lp[0 . . 1]) : 0 < q ≤ ∞) of Besov

spaces, to facilitate discussion (and retention) of basic facts
about embeddings, interpolation in smoothness spaces, as well
as the essential difference between linear vs nonlinear approx-
imation.

The shaded triangle comprises all the Besov spaces into

which the marked space B
(α)
q (Lp) is continuously embedded,

with the precise choice of the secondary parameter, q, of import
only along the slanted edge.“figdevore

as
Xθ,q := (X0, X1)θ,q := {g ∈ X0 : |g|θ,q := ‖K(g, ·)‖(θ)

q <∞},
with

K(g, t) := K(g, t;X0, X1) := inf
f∈X1

(‖g − f‖X0
+ t‖f‖X1

)

the K-functional for the pair (X0, X1).
The main result concerning this interpolation of spaces is the following

(156) Theorem. Let X1 →֒ X0 and Y1 →֒ Y0 be pairs of complete (quasi-)normed“thminterp

spaces and assume that the linear map U maps Xi boundedly into Yi, i = 0, 1. Then, for
0 < q ≤ ∞ and 0 < θ < 1, U also maps each Xθ,q boundedly into Yθ,q and, with

Mi := ‖U : Xi → Yi‖, i = 0, 1,

one has
‖U : Xθ,q → Yθ,q‖ ≤M1−θ

0 Mθ
1 .

(See Theorem 7.1 in Chapter 6 of DeVore-Lorentz.)

11apr03 85 c©2003 Carl de Boor



notes(.tex) (as of 11apr03) TEX’ed at 16:24 on 21 November 2009

As an application, take X0 = Lp(I) and X1 = W
(k)
p (I). Then, for any 0 < α < k,

(X0, X1)α/k,q = B(α)
q (Lp),

(using Theorem (68)). Further, with Y0 = Lp = Y1, we take for U the error 1 − Q in
the quasi-interpolant Q introduced earlier. From (145) and Whitney’s Theorem (146), we
know that then

M1 := ‖(1−Q) : X1 → X0‖ ≤ constk|t|k,
while

M0 := ‖(1−Q) : X0 → X0‖ ≤ 1 + dk,1 <∞.
Therefore, for any 0 < α < k,

‖(1−Q) : B(α)
q (Lp)→ Lp‖ ≤ constk|t|α,

thus providing (a lower bound on) the approximation order from Sk,t to elements of

B
(α)
q (Lp), hence, in particular, of L

(α)
p (I) in case α is an integer.

Nonlinear approximation

We know from Theorem (149) that we cannot have dist (g, Sk,t)p = O(tk) for all t

unless g ∈ W (k)
p . Yet, we already observed that some functions without a kth derivative,

like g := 1/2 on I := [0 . . 1], can nevertheless be approximated to O(n−k) by a spline of
order k with n suitably chosen interior knots.

The basic results here are the following. Let

Mn := Sk,n

be the space of all splines of order k on I with < n interior knots, hence with at most
n polynomial pieces. Then, Mn is scale-invariant but fails to be closed under addition.
However,

Mn +Mn ⊂M2n,

hence Theorem (56) is applicable here provided we can produce compatible Jackson and
Bernstein inequalities. These were obtained not all that long ago by Petrushev.

(157) Theorem (Petrushev). Let 0 < p <∞ and, correspondingly,“thmpetrushev

B(α) := B(α)
γ (Lγ(0 . . 1)), γ := 1/(α+ 1/p).

then, for 0 < α < k,
(i) ∀g ∈ Lp, dist (g, Sk,n) ≤ constkn

−α|g|B(α) .
(ii) ∀m ∈ Sk,n, ‖m‖B(α) ≤ constkn

α‖m‖p.
(See Theorem 8.2 in Chapter 12 of DeVore-Lorentz.) In light of Peetre’s Theorem (56),

this says that these particular Besov spaces consist exactly of those functions that can be
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approximated in Lp to O(n−α) by splines with n polynomial pieces. To get that kind of
approximation order for splines with n polynomial pieces and a uniform knot sequence

(i.e., linear approximation), we need g to lie in B
(α)
∞ (Lp). In the DeVore diagram (155),

both spaces lie on the same horizontal line, but the latter is much further to the left (i.e.,
much smaller) than the former, and so nicely illustrates the gain available to nonlinear
approximation.

As a quick example, consider the simplest possible case, that of approximation from
Mn := S1,n, the (nonlinear) space of all step functions on [0 . . 1] with at most n different
values. Already in 1961, Kahane proved the following neat result:

(158) Proposition (Kahane). For g ∈ C([0 . . 1]), dist (g, S1,n) ≤M/(2n) for all n ∈ N“propkahane

if and only if Var(g) ≤M .

Proof: There is nothing to prove if M or Var(g) are infinite, hence assume that
both are finite.

Choose 0 = t0 < · · · < tn = 1 so that Var(g)(ti . . ti+1) ≤ Var(g)/n, all i. Let f ∈ S1,n

be such that, on (ti . . ti+1), f equals the midpoint of the interval g([ti . . ti+1]), all i. Then,
‖g − f‖∞ ≤ 1

2
Var(g)/n.

Conversely, for any f ∈ S1,n, and any 0 = x0 < · · · < xm = 1,

|g(xi)− g(xi−1)| ≤ 2‖g − f‖∞#f([xi−1 . . xi]),

therefore

∑

i

|g(xi−1)− g(xi)| ≤ 2‖g − f‖∞
m∑

i=1

#f([xi−1 . . xi]) ≤ 2(n+m)‖g − f‖∞.

Hence, if dist (g, S1,n) ≤M/(2n), then, for any ε > 0,

∑

i

|g(xi−1)− g(xi)| ≤ (M + ε)(1 +m/n),

therefore, by letting n→∞, Var(g) ≤M + ε.

Thus, while dist (g, S1,t(n))∞ = O(1/n) requires g to lie inW
(1)
∞ , getting dist (g, S1,n) =

O(1/n) only requires g ∈ BV, i.e., in B
(1)
∞ (L1). In the DeVore diagram (155), W

(1)
∞

lies vertically above C, while the latter space lies on the 45-degree line emanating from
C. Petrushev’s result shows this to hold for splines of general order k. Namely, the
approximation order from splines of order k cannot exceed k, but that order is achieved
by nonlinear approximation (i.e., approximation from (Sk,n : n ∈ N)) to much rougher
functions than is possible by linear approximation (i.e., approximation from (Sk,t(n) : n ∈
N)).

See DeVore’s survey article on Nonlinear Approximation, in Acta Numerica, 1998.
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