Exact recovery from 'projections' onto polynomial spaces over compact manifolds

Shai Dekel (GE Global Research \& Tel-Aviv University)

Joint work with: Tamir Bendory and Arie Feuer (Technion).

Case I: Trigonometric polynomials

- Spike train $f(t)=\sum_{m=1}^{M} a_{m} \delta_{t_{m}}(t), \quad \delta_{x}$ Dirac,

$$
a_{m} \in \mathbb{C} \text { coefficients, }-\pi \leq t_{1}<t_{2}<\cdots<t_{M}<\pi \text { knots. }
$$

$\bullet\langle f, g\rangle=\sum_{m} a_{m} g\left(t_{m}\right), \quad \forall g \in C[-\pi, \pi]$.

- f in dual space of Borel measures $\mathcal{M}([-\pi, \pi])$.
- Total variation of a complex measure over a compact $A \subset \mathbb{R}^{n}$
$\|\mu\|_{T V}=|\mu|(A):=\sup \sum_{k} \mu\left(A_{k}\right) \mid, \quad A=\bigcup_{k} A_{k}$, interior disjoint finite collection.
- For a spike train $f(t)=\sum_{m} a_{m} \delta_{t_{m}}(t), \quad\|f\|_{T V}=\sum_{m}\left|a_{m}\right|$.
- Input: For some degree N, Fourier 'coefficients':

$$
y_{k}:=\left\langle f, e^{i k \cdot}\right\rangle=\frac{1}{2 \pi} \sum_{m} a_{m} e^{-i k t_{m}},-N \leq k \leq N
$$

Note: number of spikes and the coefficients are unknown.

- Goal: Recover f exactly from $\left\{y_{k}\right\}_{k=-N}^{N}$.
- E Candés \& C. Fernandez-Granda, Towards a Mathematical Theory of Super-Resolution, 2012.

(a)

(b)

Spikes and their lower-resolution 'projection'

(*) E Candés \& C. Fernandez-Granda, Towards a Mathematical Theory of Super-Resolution, 2012.

Two different trains with qualitatively similar 'projections'

(*) E Candés \& C. Fernandez-Granda, Towards a Mathematical Theory of Super-Resolution, 2012.

- Separation condition [CF] Assume that for $N \geq 128$

$$
\Delta(T):=\min _{j, k}\left|t_{j}-t_{k}\right| \geq \frac{4 \pi}{N} \text { (Cyclic distance). }
$$

Theorem [CF 2012] If the knots of a spike train f satisfy the separation condition and $y_{k}=\left\langle f, e^{i k \cdot}\right\rangle,-N \leq k \leq N$, are given, then f is the unique complex measure solving

$$
\min _{\tilde{f} \in \mathcal{M}[-\pi, \pi]}\|\tilde{f}\|_{T V}, \quad \text { s.t. }\left\langle\tilde{f}, e^{i k \cdot}\right\rangle=y_{k}, \quad-N \leq k \leq N .
$$

- CF also analyzed the 'applied setting':
(i) Resilience to noise,
(ii) Stable recovery algorithm.

The 'dual interpolating polynomial'

Theorem 7. Let $f=\sum_{m} c_{m} \delta_{x_{m}}$ where $X:=\left\{x_{m}\right\} \subseteq A$, and $A \subset \mathbb{R}^{n}$ is compact. Let Θ_{D} be a linear space of continuous functions of dimension $D+1$ in A. For any basis $\left\{\theta_{k}\right\}_{k=0}^{D}$, of Θ_{D}, let $y_{k}=\left\langle f, \theta_{k}\right\rangle$ for all $0 \leq k \leq D$. If for any set $\left\{u_{m}\right\}, u_{m} \in \mathbb{C}$, with $\left|u_{m}\right|=1$, there exists $q \in \Theta_{D}$ such that

$$
\begin{align*}
& q\left(x_{m}\right)=u_{m}, \forall x_{m} \in X, \tag{2.1}\\
& |q(x)|<1, \forall x \in A \backslash X, \tag{2.2}
\end{align*}
$$

then f is the unique complex Borel measure satisfying

$$
\begin{equation*}
\min _{g \in \mathcal{M}(A)}\|g\|_{T V} \quad \text { subject to } \quad y_{k}=\left\langle g, \theta_{k}\right\rangle, 0 \leq k \leq D . \tag{2.3}
\end{equation*}
$$

Constructions of interpolating polynomials (with certain properties) \Rightarrow Exact recovery of spike trains through TVminimization.

An interpolating algebraic polynomial with values $u_{m} \in\{-1,1\}$ at specified knots

Non-negative signals

- Assume the unknown spike-train is of form

$$
f(t)=\sum_{m=1}^{M} a_{m} \delta_{t_{m}}(t), \quad a_{m}>0, \quad t \in[-\pi, \pi]
$$

Theorem If $M \leq N$, then f is the unique minimizer over all nonnegative real measures of

$$
\min _{\tilde{f} \in \mathcal{M} \mathcal{M}_{2}[-\pi, \pi]}\|\tilde{f}\|_{T V}, \quad \text { s.t. }\left\langle\tilde{f}, e^{i k \cdot}\right\rangle=y_{k}, \quad-N \leq k \leq N .
$$

Remark: Discrete 'non-negative' version known from DonohoTanner (2005). Very different arguments.

Here, we use a simple version of the 'duality' theorem for nonnegative measures (the polynomial needs to be real).

The construction of q :

$$
q(t):=1-2^{-M-1} \prod_{m=1}^{M}\left(1-\cos \left(t-t_{m}\right)\right)
$$

q is a real trigonometric polynomial that satisfies
(i) q is a polynomial of degree $\leq N$.
(ii) $q\left(t_{m}\right)=1$, for $1 \leq m \leq M$.
(iii) $0<q(t)<1$, for $t \neq t_{m}, 1 \leq m \leq M$.

Case II: Algebraic polynomials

- Spike train

$$
f(x)=\sum_{m} a_{m} \delta_{x_{m}}(x), \quad \delta_{t} \text { Dirac, }
$$

$$
a_{m} \in \mathbb{C} \text { coefficients, } \quad-1 \leq x_{1}<x_{2}<\cdots<x_{M}<1 \text { knots. }
$$

- Input: For some degree N and polynomial basis $\left\{P_{k}\right\}$ of V_{N} :

$$
y_{k}:=\left\langle f, P_{k}\right\rangle=\sum_{m} a_{m} P_{k}\left(x_{m}\right), 0 \leq k \leq N .
$$

Recall: number of spikes and the coefficients are unknown.

- Goal: Recover f exactly from $\left\{y_{k}\right\}_{k=-N}^{N}$.
- Separation condition Assume for $N \geq 128$, that the knots satisfy

$$
\begin{aligned}
& \frac{x_{k+1}-x_{k}}{\sqrt{1-\bar{x}^{2}}} \geq \frac{4 \pi}{N}, x:=\arg \min _{z \in\left[x_{k}, x_{k+1}\right]} \mid z, \\
& \text { (+ another technical condition) }
\end{aligned}
$$

- Condition aligns with the classical metric over the interval. We can allow closer knots near the endpoints.

Theorem If the knots of a spike train f satisfy the (algebraic) separation condition and $y_{k}=\left\langle f, P_{k}\right\rangle, 0 \leq k \leq N$, are given, then f is the unique complex measure solving

$$
\min _{\tilde{f} \in \mathcal{M}[-1,1]}\|\tilde{f}\|_{T V}, \quad \text { s.t. }\left\langle\tilde{f}, P_{k}\right\rangle=y_{k}, \quad 0 \leq k \leq N .
$$

Algebraic polynomials over $[-1,1]^{2}$

- Spike train $f(x)=\sum_{m} a_{m} \delta_{x_{m}}(x), \quad \delta_{t} \quad$ Dirac,

$$
a_{m} \in \mathbb{R} \text { coefficients, } \quad x_{m}=\left(x_{m}(1), x_{m}(2)\right) \in(-1,1)^{2} .
$$

- 2D separation condition Assume for $N \geq 128$, that

$$
\min _{j, k}\left\{\begin{array}{c}
\frac{x_{k}(1)-x_{j}(1) \mid}{\sqrt{1-\bar{x}_{1}^{2}}}, \frac{\mid x_{k}(2)-x_{j}(2)}{\sqrt{1-\bar{x}_{2}^{2}}} \\
(+ \text { technical condition). }
\end{array}\right\} \geq \frac{4 \pi}{N},
$$

Theorem If the knots of a 2D spike train f satisfy the 2D separation condition and $y_{k}=\left\langle f, P_{k}\right\rangle, k=\left(k_{1}, k_{2}\right), 0 \leq k_{1}, k_{2} \leq N$, are given, then f is the unique real measure solving

$$
\min _{\tilde{f} \in \mathcal{M}[-1,1,]^{\mid}}\|\tilde{f}\|_{T V}, \quad \text { s.t. }\left\langle\tilde{f}, P_{k}\right\rangle=y_{k} .
$$

Spline case

Assume the unknown f is a piecewise constant (order $r=1$)

$$
f(t)=c_{0} \mathbf{1}_{\left[-1, t_{1}\right)}+\sum_{m=1}^{M-1} c_{m} \mathbf{1}_{\left[t_{m}, t_{m+1}\right)}(t)+c_{M} \mathbf{1}_{\left[t_{M}, 1\right]}(t)
$$

With known:
(i) boundary conditions $f(-1)=c_{0}, f(1)=c_{M}$ (M unknown!).
(ii) $y_{k}=\left\langle f, P_{k}\right\rangle,\left\{P_{k}\right\}$ some polynomial basis of V_{N}.

The distributional derivative is a spike train

$$
f^{\prime}(t)=\sum_{m=1}^{M-1}\left(c_{m}-c_{m-1}\right) \delta_{t_{m}}(t)
$$

What are $\left\{\left\langle f^{\prime}, P_{k}\right\rangle\right\}=$?

- Let $\left\{\alpha_{k, n}\right\}$ coefficients such that

$$
P_{k}^{\prime}=\sum_{n} \alpha_{k, n} P_{n}, \quad \forall k
$$

- Then with $y_{k}=\left\langle f, P_{k}\right\rangle$, integration by parts gives

$$
\left\langle f^{\prime}, P_{k}\right\rangle=f(1) P_{k}(1)-f(-1) P_{k}(-1)-\sum_{n} \alpha_{k, n} y_{n} .
$$

- Exact recovery of the spike train f^{\prime} yields exact recovery of the piecewise constant f.
- Generalization to spline of arbitrary order r (degree $r-1$):
- Assume boundary conditions $f^{(j)}(-1), f^{(j)}(1), j=0, \ldots, r-1$, are known.
- Recover (via recursion) f from the spike train $f^{(r)}$.

Case III: Spherical Harmonics on \mathbb{S}^{d-1}

- $\mathbb{Y}_{n}\left(\mathbb{R}^{d}\right)$ Homogeneous Harmonic polynomials of degree n.
- $\mathbb{Y}_{n}^{d}:=\mathbb{Y}_{n}\left(\mathbb{R}^{d}\right)_{\mathbb{s}^{d-1}}$ Spherical Harmonics of degree n in d dimensions.
- Generalization of trigonometric polynomials.
- Let $\left\{P_{n, k}\right\}, n \leq N, 1 \leq k \leq Z_{n, d}$ be a basis for spherical harmonics of degree N

$$
Z_{n, d}=\frac{(2 n+d-2)(n+d-3)!}{n!(d-2)!}
$$

$$
f(\xi)=\sum_{m} a_{m} \delta_{\xi_{m}}(\xi), \quad a_{m} \in \mathbb{R}, \Xi=\left\{\xi_{m}\right\}, \xi_{m} \in \mathbb{S}^{2} \subset \mathbb{R}^{3}
$$

- Sphere separation condition For a fixed constant $v>1$, assume the points $\Xi=\left\{\xi_{m}\right\}$ satisfy for (sufficiently large) N,

$$
\min _{\xi_{j}, \xi_{k} \in \Xi} \operatorname{arcos}\left(\xi_{j} \cdot \xi_{k}\right) \geq \frac{v}{N} .
$$

Theorem If the set $\Xi=\left\{\xi_{m}\right\}$ satisfies the separation condition for sufficiently large N and $y_{n, k}=\left\langle f, P_{n, k}\right\rangle, n \leq N$, are given, then f is the unique real measure solving

$$
\min _{\tilde{f} \in \mathcal{M}\left(\mathbb{S}^{2}\right)}\|\tilde{f}\|_{T V}, \quad \text { s.t. }\left\langle\tilde{f}, P_{n, k}\right\rangle=y_{n, k}
$$

So what's under the hood? A localization principle!

19

Localization principle

- Recall that we need to construct q, such that
(i) $q\left(t_{m}\right)=u_{m}, t_{m}$ knots, $u_{m} \in \mathbb{C},\left|u_{m}\right|=1$ prescribed.
(ii) $|q(t)|<1, t \neq t_{m}$.
- Proof relies on finding well-localized polynomial kernel $K_{N}(x, y)$ of the given degree N.
- Trigonometric polynomials

$$
q(t)=\sum_{m}\left(\alpha_{m} K\left(t-t_{m}\right)+\beta_{m} K^{\prime}\left(t-t_{m}\right)\right)
$$

$K_{N}(x, y)=K(x-y)$, the Jackson kernel, $\left\{\alpha_{m}\right\},\left\{\beta_{m}\right\}$ selected to satisfy conditions $\left(q\left(t_{m}\right)=u_{m}, \ldots\right)$.

- Algebraic polynomials
- Well localized kernel exists, but not translation invariant!
- Direct proof exists... but easier to reduce the problem to the trigonometric case.
- Spherical harmonics
- Rotation invariant well-localized(!) kernel,

$$
K_{N}\left(\xi_{1} \cdot \xi_{2}\right)=\kappa_{N} \sum_{n=0}^{\infty} \varphi\left(\frac{n}{N}\right) \mathcal{P}_{n}\left(\xi_{1} \cdot \xi_{2}\right)
$$

$\mathcal{P}_{n}\left(\xi_{1} \cdot \xi_{2}\right)$ - ortho-projection onto harmonics of degree n,

$$
\varphi \in C^{\infty}\left(\mathbb{R}_{+}\right), \varphi(t)=\left\{\begin{array}{cc}
1 & t \leq 1 / 2 \\
0 \leq \varphi(t) \leq 1 & 1 / 2 \leq t<1 \\
0 & \text { else }
\end{array}\right.
$$

$$
\left|K_{N}\left(\xi_{1} \cdot \xi_{2}\right)\right| \leq \frac{c_{k}}{\left(1+N \operatorname{arcos}\left(\xi_{1} \cdot \xi_{2}\right)\right)^{k}}, \quad \xi_{1}, \xi_{2} \in \mathbb{S}^{d-1} .
$$

- Lie algebra structure - rotational derivatives.
- With v the constant from the separation condition, we prove estimates of the type

$$
\left\|I-\left(K_{N}\left(\xi_{j} \cdot \xi_{k}\right)\right)_{j, k}\right\|_{\infty} \leq \frac{c_{k}}{v^{k-1}} .
$$

