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Case I: Trigonometric polynomials

M
oSpiketrain  f(t)=> a s, (t), o, Dirac,
a € C coefficients, -z <t <t, <---<t,, <7z knots.

f g>=Zamg(tm), Vg eCl|-x, 7]
e f indual space of Borel measures A7 ([—z,7]).

e Total variation of a complex measure over a compact Ac R"

My = (A)=sup ) (A

collection.

. A=[JA  interior disjoint finite
K



o For aspike train f(t)=> a6, (1), [, =D [a,:
e Input: For some degree N, Fourier ‘coefficients’:
. 1 _
=(f,e")="Yae™ —_N<k<N.
yk < > 272'; m
Note: number of spikes and the coefficients are unknown.

e Goal: Recover f exactly from {y,}" .

e E Candés & C. Fernandez-Granda, Towards a Mathematical Theory of
Super-Resolution, 2012.
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(a) (b)
Spikes and their lower-resolution ‘projection’

(*) E Candés & C. Fernandez-Granda, Towards a Mathematical Theory of Super-Resolution, 2012.
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Two different trains with qualitatively similar ‘projections’

(*) E Candés & C. Fernandez-Granda, Towards a Mathematical Theory of Super-Resolution, 2012.
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e Separation condition [CF] Assume that for N >128
A(T)=mint; —t, 2 AI'\T (Cyclic distance).
J

Theorem [CF 2012] If the knots of a spike train f satisfy the
separation condition and y, =( f,e*), =N <k <N, are given, then
f 1s the unigue complex measure solving

~S

_min H fl . st(fe¥) =y, -N<k<N.
e CF also analyzed the ‘applied setting’:

(1) Resilience to noise,
(i) Stable recovery algorithm.



The ‘dual interpolating polynomial’

Theorem 7. Let f = > ¢,0,, where X = {x,,} C A, and A C R" s
compact. Let Op be a linear space of continuous functions of dimension D+1
in A. For any basis {0}, of Op. let yp. = (f.0) for all 0 < k < D. If
for any set {uy, |, u, € C, with |u,,| =1, there erists ¢ € Op such that

(Tm) = Uy, VT, € X, (2.1)
q(z)| <1, Vz e A\ X, (2.2)

then f 1s the unique complexr Borel measure satisfying

min ||g||lrv  subject to yp = (g,60r), 0 <k < D. (2.3)
geM(A)

Constructions of interpolating polynomials (with certain
properties) = Exact recovery of spike trains through TV-
minimization.
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An interpolating algebraic polynomial with values u, € {-1,1} at
specified knots
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Non-negative signals

e Assume the unknown spike-train is of form

f(t)=Ya6 (1) a,>0, te[-ma].

Theorem If M <N , then f is the unique minimizer over all non-
negative real measures of

~S

min ]Hwa’ st.(f.e“)=y,, -N<k<N.,

fetly|-7,7

Remark: Discrete ‘non-negative’ version known from Donoho-
Tanner (2005). Very different arguments.



Here, we use a simple version of the ‘duality’ theorem for non-
negative measures (the polynomial needs to be real).

The construction of (:
M

q(t):=1-2""] J(1-cos(t-t,))
m=1
q Is areal trigonometric polynomial that satisfies
(1) g Isapolynomial of degree < N.
(i) q(t,)=1forl<m<M.
(iii) 0<q(t)<1,fort=t ,1<m<M.
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Case Il: Algebraic polynomials
oSpiketrain  f(x)=>a.d, (x), & Dirac,
a_ € C coefficients, —-1<x <X, <---<X,, <1knots.

e Input: For some degree N and polynomial basis {P,} of V, :
Za P (X,), 0<k<N.

Recall: number of spikes and the coefficients are unknown.

e Goal: Recover f exactly from {yk}k'\':_N
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e Separation condition Assume for N >128, that the knots satisfy

X, — X _ 4rn :
kil k> " X:=arg min
\/1— Xz N ZE[XK’Xk+1]

(+ another technical condition)

V4

e Condition aligns with the classical metric over the interval. We
can allow closer knots near the endpoints.

Theorem If the knots of a spike train f satisfy the (algebraic)
separation conditionand y, =(f,R. ), 0<k <N, are given, then f
IS the unique complex measure solving

~S

st.(f,R)=y,, O<k<N.

min ﬂ\

fet[-1]] H TV
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Algebraic polynomials over [—1,1]2
eSpiketrain  f(x)=> a5, (x), & Dirac,

a, € R coefficients, x, =(x,(1),x,(2))e(-11)".

e 2D separation condition Assume for N >128, that

min - ‘Xk (H)-x @) ‘X % (2)‘\>>4_7Z
ik \/1—X1 \/1 x> | N

(+ technical condltlon)
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Theorem If the knots of a 2D spike train f satisfy the 2D
separation condition and y, =(f,R, ), k=(k,k,), 0<k,k, <N, are
given, then f Is the unique real measure solving

~/ ~S

min |fl ., st (f,R)=y,.

f~e./l//[—1,1]2
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Spline case
Assume the unknown f is a piecewise constant (order r =1)

M -1
f(t)=c, LT Z Colp ¢ ) (t)+cy, L (1),
m=1

With known:
(i) boundary conditions f(-1)=c,, f(1)=c,, (M unknown!).
(i) y,=(f,R),{R} some polynomial basis of V.

The distributional derivative is a spike train
M -1

(1) = 3 (6o —Coy) 5 (1),

m=1
What are {( f',P, )} ="?
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olLet{c,,} coefficients such that
P/ => &P, Vk.

e Then with y, =(f, P, ), integration by parts gives

fLR) =T ()R D)~ f(-1)R(-1)- Zak,nyn :
e Exact recovery of the spike train f' yields exact recovery of the

piecewise constant f.

e Generalization to spline of arbitrary order r (degree r —1):

o Assume boundary conditions f(-1), f%(1), j=0,...,r-1,
are known.
o Recover (via recursion) f from the spike train "
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Case Il1: Spherical Harmonics on s

e Y,(R") Homogeneous Harmonic polynomials of degree n .

Y, =Y, (R")
dimensions.

ot Spherical Harmonics of degree n in d

e GGeneralization of trigonometric polynomials.

elet{P },n<N,1<k<Z ; beabasis for spherical
harmonics of degree N

~(2n+d-2)(n+d -3)!
“na = n!(d —2)!
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Zam - (), a,eR,E={& }, & eS° R

e Sphere separatlon condition For a fixed constant v >1, assume
the points = ={&_ } satisfy for (sufficiently large) N,

min arcos >V
min arcos(&; &) = |
Theorem If the set Z={& | satisfies the separation condition for

sufficiently large N and y, , = <f,Pnk> n<N, are given, then f Is

the unique real measure solving

~/

min || ., st (f.P, )=y,

feM(Sz)
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So what’s under the hood? A localization
principle!
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Localization principle

e Recall that we need to construct g, such that
(i) a(t,)=u,,t, knots,u, €C,|u, =1 prescribed.

(i) lg(t) <1, t=t,.

e Proof relies on finding well-localized polynomial kernel K, (X,y)

of the given degree N.
e Trigonometric polynomials

a(t) =D (e, K(t-t,)+B,K'(t-t,)),

m

Ky (X, ¥)=K(x-y), the Jackson kernel, {«,,},{5,,} selected to
satisfy conditions (q(t,)=u,, ...).
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e Algebraic polynomials
o Well localized kernel exists, but not translation invariant!
o Direct proof exists...but easier to reduce the problem to the
trigonometric case.

e Spherical harmonics
o Rotation invariant well-localized(!) kernel,

Ko (&-5,) KZqo( A,

2 (&, -¢,) - ortho-projection onto harmonics of degree n,

( 1 t<1/2,
peC”(R,), p(t)=10<9p(t)<1 1/2<t<],
0 else.

.
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Cy

(1+ N arcos(& - &,))

Ky(4-&) < o .5 eS8

e Lie algebra structure - rotational derivatives.

e \With v the constant from the separation condition, we prove
estimates of the type

< G
Vk—l

1-(Ka(§-6)),,
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