Generalized B-splines and local refinements

Carla Manni

Department of Mathematics, University of Roma "Tor Vergata"

collaboration with

P. Costantini, F. Pelosi, H. Speleers

11-th MAIA Conference

September 25–30, 2013

"Ettore Majorana" Foundation and Centre, Erice

Bernstein-like representations

- Bernstein-like representations
- Generalized B-splines

- Bernstein-like representations
- Generalized B-splines
- Local refinements

- Bernstein-like representations
- Generalized B-splines
- Local refinements
 - Hierarchical bases for Generalized B-splines

- Bernstein-like representations
- Generalized B-splines
- Local refinements
 - Hierarchical bases for Generalized B-splines
 - Generalized B-splines over T-meshes

Bernstein-like representations

- Generalized B-splines
- Local refinements
 - Hierarchical bases for Generalized B-splines
 - Generalized B-splines over T-meshes
 - Generalized B-splines over triangles

Bernstein-like representations

Ariadne's thread

- Generalized B-splines
- Local refinements
 - Hierarchical bases for Generalized B-splines
 - Generalized B-splines over T-meshes
 - Generalized B-splines over triangles

$$\sum_{i=0}^{p} \mathbf{p}_{i} \binom{p}{i} t^{i} (1-t)^{p-i}, \quad t \in [0,1], \ \mathbf{p}_{i} \in \mathbb{R}^{d}$$

$$\sum_{i=0}^{p} \mathbf{p}_{i} \binom{p}{i} t^{i} (1-t)^{p-i}, \quad t \in [0,1], \ \mathbf{p}_{i} \in \mathbb{R}^{d}$$

$$\sum_{i=0}^{p} \mathbf{p}_{i} \binom{p}{i} t^{i} (1-t)^{p-i}, \quad t \in [0,1], \ \mathbf{p}_{i} \in \mathbb{R}^{d}$$

space: \mathbb{P}_p

BÉZIER CURVE

BÉZIER CURVE

$$\sum_{i=0}^{p} \mathbf{p}_{i} B_{i}(t), \quad t \in [a, b] \mathbf{p}_{i} \in \mathbb{R}^{d}$$

Bernstein-like representation

$$\sum_{i=0}^{p} \mathbf{p}_{i} B_{i}(t), \quad t \in [a, b] \mathbf{p}_{i} \in \mathbb{R}^{d}$$

space: $\langle B_0, \cdots, B_n \rangle$

Bernstein-like representation

Bernstein-like representation

Bernstein/B-splines \Rightarrow **Optimal NTP bases**

Bernstein/B-splines bases are the ONTP bases for polynomials/piecewise polynomials

\Downarrow

- optimal from a geometric point of view
- optimal from a computational point of view

Bernstein/B-splines \Rightarrow **Optimal NTP bases**

Bernstein/B-splines bases are the ONTP bases for polynomials/piecewise polynomials

\Downarrow

- optimal from a geometric point of view
- optimal from a computational point of view

Beyond polynomials: constrained curves/surfaces

in CAGD curves/surfaces are often subjected to constraints

Beyond polynomials: constrained curves/surfaces

- in CAGD curves/surfaces are often subjected to constraints
 - reproduction constraints

exact reproduction of main curves/surfaces (conic sections, ...)

shape constraints

curvature orientation, torsion signs,...

tolerance constraints

offset constraints,...

9 ...

Beyond polynomials: constrained curves/surfaces

- in CAGD curves/surfaces are often subjected to constraints
 - reproduction constraints

exact reproduction of main curves/surfaces (conic sections, ...)

shape constraints

curvature orientation, torsion signs,...

tolerance constraints

offset constraints,...

- **9** ...
- polynomials/ piecewise polynomials (B-splines) are not sufficient

• exponentials $< 1, t, e^{\omega t}, e^{-\omega t} >$

- exponentials $< 1, t, e^{\omega t}, e^{-\omega t} >$
 - ω : shape parameter
 - $\textbf{ subic as } \omega \to 0$

- exponentials $< 1, t, e^{\omega t}, e^{-\omega t} >$
 - ω : shape parameter
 - $\textbf{ subic as } \omega \to 0$
- trigonometrics $< 1, t, \cos(\omega t), \sin(\omega t) >$

- exponentials $< 1, t, e^{\omega t}, e^{-\omega t} >$
 - \bullet : shape parameter
- trigonometrics $< 1, t, \cos(\omega t), \sin(\omega t) >$
 - **•** ω : shape parameter
 - \checkmark cubic if $\omega \to 0$

• exponentials $< 1, t, e^{\omega t}, e^{-\omega t} >$

- exponentials $< 1, t, e^{\omega t}, e^{-\omega t} >$
 - \bullet : shape parameter
 - $\textbf{ subic as } \omega \to 0$

- exponentials $< 1, t, e^{\omega t}, e^{-\omega t} >$
 - **•** ω : shape parameter
 - $\textbf{ subic as } \omega \to 0$
- ▶ variable degree $< 1, t, t^{\omega}, (1-t)^{\omega} >$

- exponentials $< 1, t, e^{\omega t}, e^{-\omega t} >$
 - **•** ω : shape parameter
 - $\textbf{ subic as } \omega \to 0$
- ▶ variable degree $< 1, t, t^{\omega}, (1-t)^{\omega} >$
 - ω : shape parameter
 - $\textbf{ subic if } \omega = 3$

- exponentials $< 1, t, e^{\omega t}, e^{-\omega t} >$
 - ω : shape parameter
 - $\textbf{ subic as } \omega \to 0$
- ▶ variable degree $< 1, t, t^{\omega}, (1-t)^{\omega} >$
 - **•** ω : shape parameter
 - $\textbf{ subic if } \omega = 3$

Unifying approach:

■ **Ex:** $< 1, t, u(t), v(t) > (\simeq \text{cubics})$ $u, v \in \mathbb{C}^2, t \in [0, 1]$

- **Ex:** $< 1, t, u(t), v(t) > (\simeq \text{cubics})$ $u, v \in \mathbb{C}^2, t \in [0, 1]$
- ONTP/Bernstein-like basis $\{B_0, B_1, B_2, B_3\}$:

- $\ \ \, \bullet \ \ \, {\sf Ex:} < 1,t,u(t),v(t) > {\it (}\simeq {\it cubics}{\it)} \ \ \, u,v\in {\it C}^2, \ \ t\in [0,1]$
- ONTP/Bernstein-like basis $\{B_0, B_1, B_2, B_3\}$:

 $C^2 \Rightarrow$ easy to characterize/construct

 $B_0(1) = B_0'(1) = B_0''(1) = 0$ $B_1(0) = B_1(1) = B_1'(1) = 0$ $B_2(0) = B_2'(0) = B_2(1) = 0$ $B_3(0) = B_3'(0) = B_3''(0) = 0$

- $\ \ \, {\bf S} \ \ \, {\bf Ex:} < 1,t,u(t),v(t) > {\bf (}\simeq {\rm cubics}{\bf)} \ \ u,v\in {\bf C}^2, \ \ t\in [0,1]$
- ONTP/Bernstein-like basis $\{B_0, B_1, B_2, B_3\}$:

 $C^2 \Rightarrow$ easy to characterize/construct

- $B_0(1) = B_0'(1) = B_0''(1) = 0$ $B_1(0) = B_1(1) = B_1'(1) = 0$ $B_2(0) = B_2'(0) = B_2(1) = 0$ $B_3(0) = B_3'(0) = B_3''(0) = 0$
- **•** control points: $(0, b_0)$, (ξ, b_1) , $(1 \eta, b_2)$, $(1, b_3)$, $0 < \xi < 1 \eta < 1$,

- $\ \ \, \bullet \ \ \, {\sf Ex:} < 1,t,u(t),v(t) > {\it (}\simeq {\it cubics}{\it)} \ \ \, u,v\in {\it C}^2, \ \ t\in [0,1]$
- ONTP/Bernstein-like basis $\{B_0, B_1, B_2, B_3\}$:

 $C^2 \Rightarrow$ easy to characterize/construct

- $B_0(1) = B_0'(1) = B_0''(1) = 0$ $B_1(0) = B_1(1) = B_1'(1) = 0$ $B_2(0) = B_2'(0) = B_2(1) = 0$ $B_3(0) = B_3'(0) = B_3''(0) = 0$
- control points: $(0, b_0)$, (ξ, b_1) , $(1 \eta, b_2)$, $(1, b_3)$, $0 < \xi < 1 \eta < 1$,

- $\ \ \, {\sf Ex:} \ <1,t,u(t),v(t)> {\rm (}\simeq {\rm cubics}{\rm)} \ \ u,v\in {\it C}^2, \ \ t\in [0,1]$
- ONTP/Bernstein-like basis $\{B_0, B_1, B_2, B_3\}$:

 $C^2 \Rightarrow$ easy to characterize/construct

- $B_0(1) = B_0'(1) = B_0''(1) = 0$ $B_1(0) = B_1(1) = B_1'(1) = 0$ $B_2(0) = B_2'(0) = B_2(1) = 0$ $B_3(0) = B_3'(0) = B_3''(0) = 0$
- **•** control points: $(0, b_0)$, (ξ, b_1) , $(1 \eta, b_2)$, $(1, b_3)$, $0 < \xi < 1 \eta < 1$,

Unifying approach:

 $\mathbb{P}_p = <1, t, \dots, t^{p-2}, t^{p-1}, t^p >$

Unifying approach:

 $\mathbb{P}_p^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >, \ p \ge 2 \ t \in [0,1]$

Unifying approach:

$\mathbb{P}_p^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >, \ p \ge 2 \ t \in [0,1]$

 $= \langle D^{p-1}u, D^{p-1}v \rangle$ Chebyshev in [0,1] and Extended Chebyshev in (0,1)

Unifying approach: ONTP-basis

Unifying approach: ONTP-basis

- \blacksquare u, v: trigonometric functions
- \blacksquare u, v: exponential functions
- \bullet *u*, *v*: variable degree
- **9**

Unifying approach: ONTP-basis

[Goodman, T.N.T., Mazure, M.-L., JAT, 2001] [Mainar, E., Peña, J.M., Sánchez-Reyes, J, CAGD 2001] [Carnicer, Mainar, Peña; CA 2004] [Mazure, M.-L., CA, 2005] [Costantini, P., Lyche, T., Manni, C., NM, 2005]

. . . .

smoothness between adjacent segments: easily described by control points

smoothness between adjacent segments: easily described by control points

 C^1 Trig/Exp

smoothness between adjacent segments: easily described by control points

smoothness between adjacent segments: easily described by control points

 $\mathbb{P}_p^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >, \ p \ge 2 \ t \in [0,1]$

 $\mathbb{E} \subset C^n$: n + 1 dimensional EC space containing constants \mathbb{E} is Extended Chebyshev (EC) in *I* if any non trivial element has at most *n* zeros in *I*

 $\mathbb{E} \subset C^n$: n+1 dimensional EC space containing constants

- $B_0, \dots B_n$ is a Bernstein-like basis of \mathbb{E} in $[a, b] \subset I$ if
 - $B_0, \cdots B_n$ is NTP
 - B_k vanishes exactly k times in a and n k times in b

 $\mathbb{E} \subset C^n$: n+1 dimensional EC space containing constants

- $B_0, \dots B_n$ is a Bernstein-like basis of \mathbb{E} in $[a, b] \subset I$ if
 - $B_0, \cdots B_n$ is NTP
 - B_k vanishes exactly k times in a and n k times in b
- A Bernstein-like basis of \mathbb{E} is the ONTP basis of \mathbb{E}

 $\mathbb{E} \subset C^n$: n+1 dimensional EC space containing constants

- $B_0, \dots B_n$ is a Bernstein-like basis of \mathbb{E} in $[a, b] \subset I$ if
 - $B_0, \cdots B_n$ is NTP
 - B_k vanishes exactly k times in a and n k times in b
- A Bernstein-like basis of \mathbb{E} is the ONTP basis of \mathbb{E}
- E possesses a Bernstein-like basis in any $[a, b] \subset I$ iff $\{f' : f \in \mathbb{E}\}$ is an Extended Chebyshev space in I

 $\mathbb{E} \subset C^n$: n+1 dimensional EC space containing constants

- $B_0, \dots B_n$ is a Bernstein-like basis of \mathbb{E} in $[a, b] \subset I$ if
 - $B_0, \cdots B_n$ is NTP

. . .

- B_k vanishes exactly k times in a and n k times in b
- A Bernstein-like basis of \mathbb{E} is the ONTP basis of \mathbb{E}
- E possesses a Bernstein-like basis in any $[a, b] \subset I$ iff $\{f' : f \in \mathbb{E}\}$ is an Extended Chebyshev space in I
- in \mathbb{E} all classical geometric design algorithms can be developed for the Bernstein-like basis (blossoms) $\Rightarrow \mathbb{E}$ is good for design true under less restrictive hypoteses

[Goodman, T.N.T., Mazure, M.-L., JAT, 2001], [Carnicer, Mainar, Peña; CA 2004], [Mazure, M.-L., AiCM, 2004], [Mazure, M.-L., CA, 2005], [Costantini, P., Lyche, T., Manni, C., NM, 2005], [Mazure, M.-L., NM, 2011]

● rational model: $\mathbb{P}_p \rightarrow B$ -splines $\rightarrow NURBS$

- rational model: $\mathbb{P}_p \rightarrow \text{B-splines} \rightarrow \text{NURBS}$
- alternative: $\mathbb{P}_p = <1, t, \dots, t^{p-2}, t^{p-1}, t^p >$ ↓ $\mathbb{P}_p^{\boldsymbol{u}, \boldsymbol{v}} := <1, t, \dots, t^{p-2}, \boldsymbol{u}(t), \boldsymbol{v}(t) >$

- rational model: $\mathbb{P}_p \rightarrow \text{B-splines} \rightarrow \text{NURBS}$
- alternative: $\mathbb{P}_p = <1, t, \dots, t^{p-2}, t^{p-1}, t^p >$ ↓ $\mathbb{P}_p^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >$
 - select proper $\mathbb{P}_p^{u,v}$:
 - good approximation properties

- rational model: $\mathbb{P}_p \rightarrow B$ -splines $\rightarrow NURBS$
- alternative: $\mathbb{P}_p = <1, t, \dots, t^{p-2}, t^{p-1}, t^p >$ ↓ $\mathbb{P}_p^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >$
 - select proper $\mathbb{P}_p^{u,v}$:
 - good approximation properties
 - exactly represent salient profiles

$$\begin{split} \mathbb{P}_p^{u,v} &:= < 1, t, \dots, t^{p-2}, \cos \omega t, \sin \omega t > \\ \mathbb{P}_p^{u,v} &:= < 1, t, \dots, t^{p-2}, \cosh \omega t, \sinh \omega t > \end{split}$$

● rational model: $\mathbb{P}_p \rightarrow B$ -splines $\rightarrow NURBS$

● alternative:
$$\mathbb{P}_p = <1, t, \dots, t^{p-2}, t^{p-1}, t^p > \downarrow$$

 $\mathbb{P}_p^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >$

- select proper $\mathbb{P}_p^{u,v}$:
 - good approximation properties
 - exactly represent salient profiles

$$\begin{split} \mathbb{P}_{p}^{u,v} &:= < 1, t, \dots, t^{p-2}, \cos \omega t, \sin \omega t >= \mathsf{TRIG} \\ \mathbb{P}_{p}^{u,v} &:= < 1, t, \dots, t^{p-2}, \cosh \omega t, \sinh \omega t >= \mathsf{HYP} \end{split}$$

conic sections, helix, cycloid, ...

- rational model: $\mathbb{P}_p \rightarrow B$ -splines $\rightarrow NURBS$
- alternative: $\mathbb{P}_p = <1, t, \dots, t^{p-2}, t^{p-1}, t^p >$ ↓ $\mathbb{P}_p^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >$
 - select proper $\mathbb{P}_p^{u,v}$:
 - good approximation properties
 - describe sharp variations

$$\mathbb{P}_{p}^{u,v} := < 1, t, \dots, t^{p-2}, e^{\omega t}, e^{-\omega t} >$$
$$\mathbb{P}_{p}^{u,v} := < 1, t, \dots, t^{p-2}, \ (1-t)^{\omega}, t^{\omega} >$$

● rational model: $\mathbb{P}_p \rightarrow \text{B-splines} \rightarrow \text{NURBS}$

● alternative:
$$\mathbb{P}_p = <1, t, \dots, t^{p-2}, t^{p-1}, t^p >$$

↓
 $\mathbb{P}_p^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >$

- select proper $\mathbb{P}_p^{u,v}$:
 - good approximation properties
 - describe sharp variations

$$\begin{split} \mathbb{P}_p^{u,v} &:= < 1, t, \dots, t^{p-2}, e^{\omega t}, e^{-\omega t} >= \mathsf{EXP} = (\mathsf{HYP}) \\ \mathbb{P}_p^{u,v} &:= < 1, t, \dots, t^{p-2}, \ (1-t)^{\omega}, t^{\omega} >= \mathsf{VDP} \end{split}$$

- rational model: $\mathbb{P}_p \rightarrow B$ -splines $\rightarrow NURBS$
- alternative: $\mathbb{P}_p = < 1, t, \dots, t^{p-2}, t^{p-1}, t^p >$ ↓ $\mathbb{P}_p^{u,v} := < 1, t, \dots, t^{p-2}, u(t), v(t) >$
 - construct/analyse spline spaces with sections in $\mathbb{P}_p^{u,v}$ with suitable bases for them (analogous to B-splines)

[Lyche, CA 1985]
[Schumaker, L.L.; 1993],
[Koch, P.E, Lyche, T.; Computing 1993],
[Marušic, M., Rogina, M.; JCAM 1995],
[Kvasov, B.I., Sattayatham, P.; JCAM 1999],
[Costantini, P.; CAGD 2000],
[Costantini, P., Manni, C.; RM 2006]
[Wang Fang; JCAM 2008],
[Kavcic, Rogina, Bosner, Math. Comput. in Simulation, 2010], ...

$$\begin{split} \Xi &:= \{\xi_1 \leq \xi_2 \leq \dots \leq \xi_{n+p+1}\},\\ \{\dots, \, u_i, v_i, \, \dots\}, < 1, t, \dots, t^{p-2}, u_i(t), v_i(t) >, < D^{p-1}u_i, D^{p-1}v_i > \mathsf{Chebyshev} \\ D^{p-1}v_i(\xi_i) &= 0, \quad D^{p-1}v_i(\xi_{i+1}) > 0, \qquad D^{p-1}u_i(\xi_i) > 0, \quad D^{p-1}u_i(\xi_{i+1}) = 0, \end{split}$$

$$\begin{split} \Xi &:= \{\xi_1 \leq \xi_2 \leq \dots \leq \xi_{n+p+1}\},\\ \{\dots, \, u_i, v_i, \, \dots\}, < 1, t, \dots, t^{p-2}, u_i(t), v_i(t) >, < D^{p-1}u_i, D^{p-1}v_i > \mathsf{Chebyshev} \\ D^{p-1}v_i(\xi_i) &= 0, \quad D^{p-1}v_i(\xi_{i+1}) > 0, \qquad D^{p-1}u_i(\xi_i) > 0, \quad D^{p-1}u_i(\xi_{i+1}) = 0,\\ \widehat{B}_{i,\Xi}^{(1)}(t) &:= \begin{cases} \frac{D^{p-1}v_i(t)}{D^{p-1}u_i(\xi_{i+1})} & t \in [\xi_i, \xi_{i+1}) \\ \frac{D^{p-1}u_{i+1}(t)}{D^{p-1}u_{i+1}(\xi_{i+1})} & t \in [\xi_{i+1}, \xi_{i+2}) \\ 0 & \text{elsewhere} \end{cases}$$

$$\Xi := \{\xi_1 \leq \xi_2 \leq \dots \leq \xi_{n+p+1}\}, \\ \{\dots, u_i, v_i, \dots\}, < 1, t, \dots, t^{p-2}, u_i(t), v_i(t) >, < D^{p-1}u_i, D^{p-1}v_i > \text{Chebyshev} \\ D^{p-1}v_i(\xi_i) = 0, \quad D^{p-1}v_i(\xi_{i+1}) > 0, \qquad D^{p-1}u_i(\xi_i) > 0, \quad D^{p-1}u_i(\xi_{i+1}) = 0, \\ \widehat{B}_{i,\Xi}^{(1)}(t) := \begin{cases} \frac{D^{p-1}v_i(t)}{D^{p-1}u_{i+1}(t)} & t \in [\xi_i, \xi_{i+1}) \\ \frac{D^{p-1}u_{i+1}(\xi_{i+1})}{D^{p-1}u_{i+1}(\xi_{i+1})} & t \in [\xi_{i+1}, \xi_{i+2}) \\ 0 & \text{elsewhere} \end{cases}$$

$$\widehat{B}_{i,\Xi}^{(p)}(t) = \int_{-\infty}^{t} \widehat{\delta}_{i,\Xi}^{(p-1)} \widehat{B}_{i,\Xi}^{(p-1)}(s) \mathrm{d}s - \int_{-\infty}^{t} \widehat{\delta}_{i+1,\Xi}^{(p-1)} \widehat{B}_{i+1,\Xi}^{(p-1)}(s) \mathrm{d}s$$

$$\widehat{\delta}_{i,\Xi}^{(p)} := \frac{1}{\int_{-\infty}^{+\infty} \widehat{B}_{i,W,\Xi}^{(p)}(s) \mathrm{d}s}$$

$$\Xi := \{\xi_1 \le \xi_2 \le \dots \le \xi_{n+p+1}\}, \\ \{\dots, u_i, v_i, \dots\}, < 1, t, \dots, t^{p-2}, u_i(t), v_i(t) >, < D^{p-1}u_i, D^{p-1}v_i > \text{Chebyshev} \\ D^{p-1}v_i(\xi_i) = 0, \quad D^{p-1}v_i(\xi_{i+1}) > 0, \quad D^{p-1}u_i(\xi_i) > 0, \quad D^{p-1}u_i(\xi_{i+1}) = 0, \\ \widehat{B}_{i,\Xi}^{(1)}(t) := \begin{cases} \frac{D^{p-1}v_i(t)}{D^{p-1}u_{i+1}(t)} & t \in [\xi_i, \xi_{i+1}) \\ \frac{D^{p-1}u_{i+1}(t)}{D^{p-1}u_{i+1}(\xi_{i+1})} & t \in [\xi_{i+1}, \xi_{i+2}) \\ 0 & \text{elsewhere} \end{cases} \quad B_{i,\Xi}^{(1)}(t) := \begin{cases} \frac{t-\xi_i}{\xi_{i+2}-t} & t \in [\xi_i, \xi_{i+1}) \\ \frac{\xi_{i+2}-\xi_{i+1}}{\xi_{i+2}-\xi_{i+1}} & t \in [\xi_{i+1}, \xi_{i+2}) \\ 0 & \text{elsewhere} \end{cases} \\ \widehat{B}_{i,\Xi}^{(p)}(t) = \int_{-\infty}^t \widehat{\delta}_{i,\Xi}^{(p-1)} \widehat{B}_{i,\Xi}^{(p-1)}(s) ds - \int_{-\infty}^t \widehat{\delta}_{i+1,\Xi}^{(p-1)} \widehat{B}_{i+1,\Xi}^{(p-1)}(s) ds \\ \widehat{\delta}_{i,\Xi}^{(p)} := \frac{1}{\int_{-\infty}^{+\infty} \widehat{B}_{i,W,\Xi}^{(p)}(s) ds} \end{cases}$$

$$B-\text{splines}$$

$$B_{i,\Xi}^{(p)}(t) = \int_{-\infty}^{t} \delta_{i,\Xi}^{(p-1)} B_{i,\Xi}^{(p-1)}(s) \mathrm{d}s - \int_{-\infty}^{t} \delta_{i+1,\Xi}^{(p-1)} B_{i+1,\Xi}^{(p-1)}(s) \mathrm{d}s$$

$$\delta_{i,\Xi}^{(p)} := \frac{1}{\int_{-\infty}^{+\infty} B_{i,\Xi}^{(p)}(s) \mathrm{d}s}$$

All Chebyshevian spline spaces good for design can be built by means of integral recurrence relations, [Mazure M.L., NM 2011]

Generalized B-splines: exponential (hyperbolic)

 $= \{\xi_1 \le \xi_2 \le \dots \le \xi_{n+p+1}\} : \text{knots} \quad W := \{\dots, \omega_i, \dots\} : \text{ shape parameters}$

$$\mathbb{P}_p^{u_i,v_i} := <1, t, \dots, t^{p-2}, \cosh \omega_i t, \sinh \omega_i t >$$

• Exponential case: p = 3

$$\mathsf{EXP}_3 = \mathbb{P}_3^{u,v} := <1, t, e^{\omega t}, e^{-\omega t} > \text{ isomorphic to } \mathbb{P}_3$$

Generalized B-splines: exponential (hyperbolic)

 $= \{\xi_1 \le \xi_2 \le \dots \le \xi_{n+p+1}\} : \text{knots} \quad W := \{\dots, \omega_i, \dots\} : \text{ shape parameters}$

$$\mathbb{P}_p^{u_i,v_i} := <1, t, \dots, t^{p-2}, \cosh \omega_i t, \sinh \omega_i t >$$

• Exponential case: p = 3

$$\mathsf{EXP}_3 = \mathbb{P}_3^{u,v} := <1, t, e^{\omega t}, e^{-\omega t} > \text{ isomorphic to } \mathbb{P}_3$$

Generalized B-splines: properties

$$\{\widehat{B}_{i,\Xi}^{(p)}(t), \ i = 1, \dots \},\$$

- Properties analogous to classical B-splines
 - positivity
 - partition of unity: $p \ge 2$
 - compact support
 - smoothness
 - derivatives
 - local linear independence
 - **9** ...

Generalized B-splines: properties

$$\{\widehat{B}_{i,\Xi}^{(p)}(t), \ i = 1, \dots \},\$$

- Properties analogous to classical B-splines
 - positivity
 - partition of unity: $p \ge 2$
 - compact support
 - smoothness
 - derivatives
 - local linear independence
 - **9** ...
 - shape properties $\{\ldots, u_i, v_i, \ldots\}$

Generalized B-splines: properties

$$\{\widehat{B}_{i,\Xi}^{(p)}(t), \ i = 1, \dots \},\$$

- Properties analogous to classical B-splines
 - positivity
 - partition of unity: $p \ge 2$
 - compact support
 - smoothness
 - derivatives
 - local linear independence
 - **9** ...
 - shape properties $\{\ldots, u_i, v_i, \ldots\}$
 - trig. and exp. parts can be mixed

Generalized B-splines: properties

$$\{\widehat{B}_{i,\Xi}^{(p)}(t), \ i = 1, \dots \},\$$

- Properties analogous to classical B-splines
 - positivity
 - partition of unity: $p \ge 2$
 - compact support
 - smoothness
 - derivatives
 - local linear independence
 - **9** ...
 - shape properties $\{\ldots, u_i, v_i, \ldots\}$
 - trig. and exp. parts can be mixed
 - straightforward multivariate extension via tensor product

 $\mathbb{P}_{p} = <1, t, \dots, t^{p-2}, t^{p-1}, t^{p} > \downarrow$ $\mathbb{P}_{p}^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >$

$$\mathbb{P}_p = <1, t, \dots, t^{p-2}, t^{p-1}, t^p > \downarrow$$
$$\mathbb{P}_p^{\boldsymbol{u}, \boldsymbol{v}} := <1, t, \dots, t^{p-2}, \boldsymbol{u(t)}, \boldsymbol{v(t)} >$$

Bernstein like bases/control polygon

$$\mathbb{P}_p = <1, t, \dots, t^{p-2}, t^{p-1}, t^p > \downarrow$$
$$\mathbb{P}_p^{\boldsymbol{u}, \boldsymbol{v}} := <1, t, \dots, t^{p-2}, \boldsymbol{u(t)}, \boldsymbol{v(t)} >$$

- Bernstein like bases/control polygon
- Generalized B-splines: spline spaces with sections in $\mathbb{P}_p^{u,v}$ with suitable bases for them (analogous to B-splines)

Iocal refinements are crucial in applications (geometric modelling, simulation,...)

0.8

the tensor product structure prevents local refinements Alternatives (polynomial B-splines):

- the tensor product structure prevents local refinements Alternatives (polynomial B-splines):
 - T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al.
 CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]...

- the tensor product structure prevents local refinements Alternatives (polynomial B-splines):
 - T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al. CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]...
 - **LR splines** [Dokken T., Lyche T., Pettersen K.F., CAGD 2013],

- the tensor product structure prevents local refinements Alternatives (polynomial B-splines):
 - T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al. CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]...
 - **LR splines** [Dokken T., Lyche T., Pettersen K.F., CAGD 2013],
 - Hierarchical bases

- the tensor product structure prevents local refinements Alternatives (polynomial B-splines):
 - T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al. CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]...
 - LR splines [Dokken T., Lyche T., Pettersen K.F., CAGD 2013],
 - Hierarchical bases
 - Splines over T-meshes

- the tensor product structure prevents local refinements Alternatives (polynomial B-splines):
 - T-splines/Analysis-Suitable T-splines [Bazilevs, Y., et al. CMAME 2010], [Beirão da Veiga, et al. CMAME, 2012]...
 - LR splines [Dokken T., Lyche T., Pettersen K.F., CAGD 2013],
 - Hierarchical bases
 - Splines over T-meshes
 - B-splines on triangulations

Generalized Splines: local refinements?

Generalized Splines: local refinements?

Generalized splines have global tensor-product structure

Generalized Splines: local refinements?

- Generalized splines have global tensor-product structure
- some localization techniques can be applied to (some) generalized spline spaces.
 - Hierarchical generalized splines
 - Generalized splines over T-meshes
 - Quadratic Generalized splines over triangulations

Hierarchical model

[Forsey, D.R., Bartels R.H., CG 1988], [Kraft R., Bartels R.H., Surf. Fitt. Mult. Meth. 1997], [Rabut C., 2005] [Vuong A.-V., Giannelli C., Jüttler B., Simeon B.; CMAME 2011], [Giannelli C., Jüttler B., Speleers, H.; CAGD 2012], [Bracco C., et al., JCAM 2014]

sequence of N nested tensor-product spline spaces

 $\mathbb{V}^0 \subset \mathbb{V}^1 \subset \cdots \subset \mathbb{V}^{N-1}$

[Forsey, D.R., Bartels R.H., CG 1988], [Kraft R., Bartels R.H., Surf. Fitt. Mult. Meth. 1997], [Rabut C., 2005] [Vuong A.-V., Giannelli C., Jüttler B., Simeon B.; CMAME 2011], [Giannelli C., Jüttler B., Speleers, H.; CAGD 2012], [Bracco C., et al., JCAM 2014]

sequence of N nested tensor-product spline spaces

 $\mathbb{V}^0 \subset \mathbb{V}^1 \subset \cdots \subset \mathbb{V}^{N-1}$

 \mathbb{V}^{ℓ} is spanned by a tensor-product B-spline basis \mathcal{B}^{ℓ} :

$$\mathcal{B}^{\ell} = \{\ldots, B_{i,\ell}, \ldots\}$$

[Forsey, D.R., Bartels R.H., CG 1988], [Kraft R., Bartels R.H., Surf. Fitt. Mult. Meth. 1997], [Rabut C., 2005] [Vuong A.-V., Giannelli C., Jüttler B., Simeon B.; CMAME 2011], [Giannelli C., Jüttler B., Speleers, H.; CAGD 2012], [Bracco C., et al., JCAM 2014]

sequence of N nested tensor-product spline spaces

 $\mathbb{V}^0 \subset \mathbb{V}^1 \subset \cdots \subset \mathbb{V}^{N-1}$

 \mathbb{V}^{ℓ} is spanned by a tensor-product B-spline basis \mathcal{B}^{ℓ} :

$$\mathcal{B}^{\ell} = \{\ldots, B_{i,\ell}, \ldots\}$$

sequence of N nested domains

$$\Omega_{N-1} \subset \Omega_{N-2} \subset \cdots \subset \Omega_0, \quad \Omega_N = \emptyset$$

Recursive definition

(I) Initialization: $\mathcal{H}^0 := \mathcal{B}^0$

Recursive definition

(I) Initialization: $\mathcal{H}^0 := \mathcal{B}^0$

(II) construction of $\mathcal{H}^{\ell+1}$ from \mathcal{H}^{ℓ} ,

$$\mathcal{H}^{\ell+1} := \mathcal{H}_C^{\ell+1} \cup \mathcal{H}_F^{\ell+1}$$

 $\ell = 0, 1, \dots, N-1$

Recursive definition

(I) Initialization: $\mathcal{H}^0 := \mathcal{B}^0$

(II) construction of $\mathcal{H}^{\ell+1}$ from \mathcal{H}^{ℓ} ,

$$\mathcal{H}^{\ell+1} := \mathcal{H}_C^{\ell+1} \cup \mathcal{H}_F^{\ell+1}$$

$$\ell = 0, 1, \dots, N-1$$

 $\mathcal{H}_C^{\ell+1} := \{ B_{i,\ell} \in \mathcal{H}^\ell : \mathsf{supp}(B_{i,\ell}) \not\subset \Omega_{\ell+1} \}$

Recursive definition

(I) Initialization: $\mathcal{H}^0 := \mathcal{B}^0$

(II) construction of $\mathcal{H}^{\ell+1}$ from \mathcal{H}^{ℓ} ,

$$\mathcal{H}^{\ell+1} := \mathcal{H}^{\ell+1}_C \cup \mathcal{H}^{\ell+1}_F$$

$$\ell = 0, 1, \dots, N-1$$

$$\begin{aligned} \mathcal{H}_C^{\ell+1} &:= \{ B_{i,\ell} \in \mathcal{H}^{\ell} : \operatorname{supp}(B_{i,\ell}) \not\subset \Omega_{\ell+1} \} \\ \mathcal{H}_F^{\ell+1} &:= \{ B_{i,\ell+1} \in \mathcal{B}^{\ell+1} : \operatorname{supp}(B_{i,\ell+1}) \subset \Omega_{\ell+1} \} \end{aligned}$$

sequence of N nested tensor-product spline spaces

$$\mathbb{V}^0 \subset \mathbb{V}^1 \subset \cdots \subset \mathbb{V}^{N-1}$$

 \mathbb{V}^{ℓ} is spanned by a tensor-product B-spline basis \mathcal{B}^{ℓ} :

$$\mathcal{B}^{\ell} = \{\ldots, B_{i,\ell}, \ldots\}$$

sequence of N nested domains

 $\Omega_{N-1} \subset \Omega_{N-2} \subset \cdots \subset \Omega_0, \quad \Omega_N = \emptyset$

Hierarchical Generalized B-spline model

Generalized B-splines support a hierarchical refinement

sequence of N nested tensor-product spline spaces

$$\mathbb{V}^0 \subset \mathbb{V}^1 \subset \cdots \subset \mathbb{V}^{N-1}$$

 \mathbb{V}^{ℓ} spanned by a tensor-product Generalized B-spline basis $\widehat{\mathcal{B}}^{\ell}$:

$$\widehat{\mathcal{B}}^{\ell} = \{ \dots, \ \widehat{B}_{i,\ell} \ , \dots \}$$

sequence of N nested domains

$$\Omega_{N-1} \subset \Omega_{N-2} \subset \cdots \subset \Omega_0, \quad \Omega_N = \emptyset$$

Hierarchical Generalized B-spline model

Generalized B-splines support a hierarchical refinement

sequence of N nested tensor-product spline spaces

$$\mathbb{V}^0 \subset \mathbb{V}^1 \subset \cdots \subset \mathbb{V}^{N-1}$$

V^{ℓ} spanned by a tensor-product Generalized B-spline basis $\widehat{\mathcal{B}}^{\ell}$:

$$\widehat{\mathcal{B}}^{\ell} = \{ \dots, \ \widehat{B}_{i,\ell} \ , \dots \}$$

sequence of N nested domains

$$\Omega_{N-1} \subset \Omega_{N-2} \subset \cdots \subset \Omega_0, \quad \Omega_N = \emptyset$$

 \Rightarrow similar recursive definition

1D Example: Cubic B-spline basis

1D Example: Cubic B-spline basis

1D Example: Cubic B-spline basis

1D Example: Cubic B-spline basis

1D Example: Cubic B-spline basis

Hierarchical Generalized B-spline model

Generalized B-splines support a hierarchical refinement

1D Example: EXP₃ B-splines basis $\omega_i = 50$

Hierarchical Generalized B-spline model

Generalized B-splines support a hierarchical refinement

1D Example: EXP₃ B-splines basis $\omega_i = 50$

The main properties of Hierarchical B-splines are inherited by Hierarchical GB-splines

The main properties of Hierarchical B-splines are inherited by Hierarchical GB-splines

It the functions in \mathcal{H}^{ℓ} obtained by the iterative procedure are linearly independent

The main properties of Hierarchical B-splines are inherited by Hierarchical GB-splines

- the functions in \mathcal{H}^{ℓ} obtained by the iterative procedure are linearly independent
- the hierarchical bases \mathcal{H}^{ℓ} , for each ℓ , span nested spaces:

 ${\rm span}\mathcal{H}^\ell\subseteq{\rm span}\mathcal{H}^{\ell+1}$

The main properties of Hierarchical B-splines are inherited by Hierarchical GB-splines

- the functions in \mathcal{H}^{ℓ} obtained by the iterative procedure are linearly independent
- the hierarchical bases \mathcal{H}^{ℓ} , for each ℓ , span nested spaces:

 $\mathrm{span}\mathcal{H}^\ell\subseteq\mathrm{span}\mathcal{H}^{\ell+1}$

The main properties of Hierarchical B-splines are inherited by Hierarchical GB-splines

- the functions in \mathcal{H}^{ℓ} obtained by the iterative procedure are linearly independent
- the hierarchical bases \mathcal{H}^{ℓ} , for each ℓ , span nested spaces:

 ${\rm span}\mathcal{H}^\ell\subseteq{\rm span}\mathcal{H}^{\ell+1}$

- positivity
- partition of unity

The main properties of Hierarchical B-splines are inherited by Hierarchical GB-splines

- the functions in \mathcal{H}^{ℓ} obtained by the iterative procedure are linearly independent
- the hierarchical bases \mathcal{H}^{ℓ} , for each ℓ , span nested spaces:

 $\mathrm{span}\mathcal{H}^\ell\subseteq\mathrm{span}\mathcal{H}^{\ell+1}$

- positivity
- partition of unity
 - by using truncated bases

[Giannelli, Jüttler, Speleers; AiCM 2013]

Generalized B-splines: truncated hierarchical basis

1D Example: EXP₃ B-splines basis $\omega_i = 50$

Generalized B-splines: truncated hierarchical basis

1D Example: EXP₃ B-splines basis $\omega_i = 50$

Generalized B-splines: truncated hierarchical basis

1D Example: EXP₃ B-splines basis $\omega_i = 50$

Hierarchical Generalized B-splines: space

sequence of N nested tensor-product spline spaces

 $\mathbb{V}^0 \subset \mathbb{V}^1 \subset \cdots \subset \mathbb{V}^{N-1}$

Hierarchical Generalized B-splines: space

sequence of N nested tensor-product spline spaces

$$\mathbb{V}^0 \subset \mathbb{V}^1 \subset \cdots \subset \mathbb{V}^{N-1}$$

V^ℓ tensor-product (Generalized) B-splines

sequence of N nested domains

$$\Omega_{N-1} \subset \Omega_{N-2} \subset \cdots \subset \Omega_0, \quad \Omega_N = \emptyset$$

Hierarchical Generalized B-splines: space

sequence of N nested tensor-product spline spaces

$$\mathbb{V}^0 \subset \mathbb{V}^1 \subset \cdots \subset \mathbb{V}^{N-1}$$

 \mathbb{V}^{ℓ} tensor-product (Generalized) B-splines

sequence of N nested domains

$$\Omega_{N-1} \subset \Omega_{N-2} \subset \cdots \subset \Omega_0, \quad \Omega_N = \emptyset$$

hierarchical (Generalized) B-splines span the full space

$$\{f: f|_{\Omega_0 \setminus \Omega_{\ell+1}} \in \mathbb{V}^{\ell}|_{\Omega_0 \setminus \Omega_{\ell+1}}, \ell = 0, \cdots, N-1\}$$

[Giannelli, Jüttler; JCAM 2013], [Speleers, Manni, 2013 preprint]

 $\mathbb{V}^0, \mathbb{V}^1, \cdots, \mathbb{V}^{N-1}$

 $\mathbb{V}^0, \mathbb{V}^1, \cdots, \mathbb{V}^{N-1}$

 $\mathbb{V}^0, \mathbb{V}^1, \cdots, \mathbb{V}^{N-1}$

 $\mathbb{V}^0, \mathbb{V}^1, \cdots, \mathbb{V}^{N-1}$

- great flexibility
- different section spaces at different levels

 $\mathbb{V}^0, \mathbb{V}^1, \cdots, \mathbb{V}^{N-1}$

- great flexibility
- different section spaces at different levels
- Ithe functions in \mathcal{H}^{ℓ} obtained by the iterative procedure remain linearly independent

the construction can be applied to a hierarchy of not nested spaces

 $\mathbb{V}^0, \mathbb{V}^1, \cdots, \mathbb{V}^{N-1}$

- great flexibility
- different section spaces at different levels
- Ithe functions in \mathcal{H}^{ℓ} obtained by the iterative procedure remain linearly independent
- not nested spaces $\operatorname{span}\mathcal{H}^\ell$

[Manni, Pelosi, Speleers; 2013, to appear]

Hierarchical B-splines are particular bases of particular spline spaces on special rectangular partitions

Spline spaces over T-meshes

• T-mesh \mathcal{T}

partition of a (rectangular) domain by rectangles: T-junctions (hanging vertices) are allowed

Spline spaces over T-meshes

• T-mesh \mathcal{T}

partition of a (rectangular) domain by rectangles: T-junctions (hanging vertices) are allowed

 $\mathbb{S}^{\mathbf{r}}_{\mathbf{d}}(\mathcal{T}) := \{ s(x,y) \in C^{\mathbf{r}}, \ s(x,y)_{|\tau_i} \in \mathbb{P}_{d_1} \times \mathbb{P}_{d_2}, \ \tau_i \in \mathcal{T} \},\$

$$\mathbb{P}_d := \left\{ q(z) = \sum_{j=0}^d z^j \right\}, \ \mathbf{r} = (r_1, r_2), \ \mathbf{d} = (d_1, d_2)$$

[Deng, J.-S., Chen, F-L., Feng, Y.-Y., JCAM 2006] [Schumaker, L. L. and Wang, L., CAGD 2012]

[Schumaker, L. L. and Wang, L., NM 2011]

Spline spaces over T-meshes

• T-mesh \mathcal{T}

partition of a (rectangular) domain by rectangles: T-junctions (hanging vertices) are allowed

$$\mathbb{S}^{\mathbf{r}}_{\mathbf{d}}(\mathcal{T}) := \left\{ s(x,y) \in C^{\mathbf{r}}, \ s(x,y)_{|\tau_i} \in \mathbb{P}_{d_1} \times \mathbb{P}_{d_2}, \ \tau_i \in \mathcal{T} \right\},$$
$$\mathbb{P}_d := \left\{ q(z) = \sum_{j=0}^d z^j \right\}, \ \mathbf{r} = (r_1, r_2), \ \mathbf{d} = (d_1, d_2)$$

polynomial reproduction

 \sim dimension?

 \sim suitable bases?

Spline spaces over T-meshes: dimension

Mourrain, B., Math. Comp. 2013] $\dim(\mathbb{S}_{d}^{r}(\mathcal{T})) =$ $F(d_{1}+1)(d_{2}+1) - E_{h}(d_{2}+1)(r_{2}+1) - E_{v}(d_{1}+1)(r_{1}+1) + V(r_{1}+1)(r_{2}+1)$ + homology term

 $F: #faces, E_h: #hor.edges, E_v: #vert.edges, V: #int.vertices$

Spline spaces over T-meshes: dimension

```
Mourrain, B., Math. Comp. 2013]
\dim(\mathbb{S}_{d}^{r}(\mathcal{T})) =
F(d_{1}+1)(d_{2}+1) - E_{h}(d_{2}+1)(r_{2}+1) - E_{v}(d_{1}+1)(r_{1}+1) + V(r_{1}+1)(r_{2}+1)
+ \text{homology term}
```

 $F: #faces, E_h: #hor.edges, E_v: #vert.edges, V: #int.vertices$

[Deng, J.-S., Chen, F-L., Feng, Y.-Y., JCAM 2006] [Schumaker, L. L. and Wang, L., 2011, CAGD 2012] [Schumaker, L. L. and Wang, L., NM 2011]

Spline spaces over T-meshes: dimension

```
Mourrain, B., Math. Comp. 2013]
\dim(\mathbb{S}_{d}^{r}(\mathcal{T})) =
F(d_{1}+1)(d_{2}+1) - E_{h}(d_{2}+1)(r_{2}+1) - E_{v}(d_{1}+1)(r_{1}+1) + V(r_{1}+1)(r_{2}+1)
+ \text{homology term}
```

 $F: #faces, E_h: #hor.edges, E_v: #vert.edges, V: #int.vertices$

• C^1 cubics: $\dim(\mathbb{S}^1_3(\mathcal{T})) = 4(V_b + V_+)$ $V_b : \#b. \ vertices, V_+ : \#cross. \ vertices$ Ex: $\dim(\mathbb{S}^1_3(\mathcal{T})) = 4(9+1)$

Splines over T-meshes: dimension

9 $\mathbf{d} \ge 2\mathbf{r} + 1$, rectangular domains: results based on

- Bernstein representation
- minimal determining sets

[Alfeld, P., Schumaker, L.L., CA 1987]
[Alfeld P., JCAM 2000]
[Deng, J.-S., Chen, F-L., Feng, Y.-Y., JCAM 2006]
[Schumaker, L. L. and Wang, L., 2011, preprint]
[Schumaker, L. L. and Wang, L., NM 2011]

Splines over T-meshes: dimension

9 $\mathbf{d} \ge 2\mathbf{r} + 1$, rectangular domains: results based on

- Bernstein representation
- minimal determining sets

[Alfeld, P., Schumaker, L.L., CA 1987]
[Alfeld P., JCAM 2000]
[Deng, J.-S., Chen, F-L., Feng, Y.-Y., JCAM 2006]
[Schumaker, L. L. and Wang, L., 2011, preprint]
[Schumaker, L. L. and Wang, L., NM 2011]

smoothing cofactors

[Wang, R.-H., 2001]

[Huang, Z.-J., Deng J.-S. Feng, Y.-Y., Chen, F.-L., JCM 2006]

• T-mesh: \mathcal{T}

partition of a (rectangular) domain by rectangles

so that T-junctions (hanging vertices) are allowed

• T-mesh: T

partition of a (rectangular) domain by rectangles

so that T-junctions (hanging vertices) are allowed

 $\widehat{\mathbb{S}}_{\mathbf{d}}^{\mathbf{r}}(\mathcal{T}) := \{ s(x,y) \in C^{\mathbf{r}}, \ s(x,y)_{|\tau_i} \in \mathbb{P}_{d_1}^{u_1,v_1} \otimes \mathbb{P}_{d_2}^{u_2,v_2}, \ \tau_i \in \mathcal{T} \},$

$$\mathbb{P}_p^{u,v} := <1, t, \dots, t^{p-2}, u(t), v(t) >$$

suitable spaces : exponential, trigonometric

- suitable spaces : exponential, trigonometric
- smoothness cond.: Bernstein like representation

- suitable spaces : exponential, trigonometric
- smoothness cond.: Bernstein like representation

- suitable spaces : exponential, trigonometric
- smoothness cond.: Bernstein like representation

Generalized Splines over T-meshes

Generalized Splines over T-meshes: dimension

• trigonometric/exponential C^1 cubics:

$\dim(\widehat{\mathbb{S}}_3^1(\mathcal{T})) = 4(V_b + V_+)$

 $V_b: \#b. \ vertices, V_+: \#cross. \ vertices$

 $\dim(\mathbb{S}_3^1(\mathcal{T})) = 4(9+1)$

So far so good...

Hierarchical bases, T-meshes: similar behavior of B-splines/GB-splines

- Hierarchical bases, T-meshes: similar behavior of B-splines/GB-splines
- Triangulations?

 $\square \mathbb{P}_2^{u,v} := <1, u(t), v(t) >$

- $\ \, \mathbb{P}_{2}^{u,v}:=<1, u(t), v(t)>$
- **• ONTP basis** $\{B_0, B_1, B_2\}$ $B_0(0) = 1, B_0(1) = B'_0(1) = 0, \cdots$

- $\mathbb{P}_2^{u,v} := <1, u(t), v(t) >$
- **• ONTP basis** $\{B_0, B_1, B_2\}$ $B_0(0) = 1, B_0(1) = B'_0(1) = 0, \cdots$
- Bernstein like representation control polygon for functions?

$$t \notin <1, u(t), v(t) >$$

No Greville abscissae

•
$$\mathbb{P}_2^{u,v} := <1, u(t), v(t) >$$

- **• ONTP basis** $\{B_0, B_1, B_2\}$ $B_0(0) = 1, B_0(1) = B'_0(1) = 0, \cdots$
- control points $f = b_0 B_0 + b_1 B_1 + b_2 B_2 \in \mathbb{P}_2^{u,v}$

 \Downarrow

 $(0, b_0), (\xi, b_1), (1 - \xi, b_1), (1, b_2) \quad B_0(t) = B_2(1 - t) \quad \xi = -1/B'_0(0) = 1/B'_2(1)$

•
$$\mathbb{P}_2^{u,v} := <1, u(t), v(t) >$$

- **• ONTP basis** $\{B_0, B_1, B_2\}$ $B_0(0) = 1, B_0(1) = B'_0(1) = 0, \cdots$
- control points $f = b_0 B_0 + b_1 B_1 + b_2 B_2 \in \mathbb{P}_2^{u,v}$

 $(0, b_0), (\xi, b_1), (1 - \xi, b_1), (1, b_2) \quad B_0(t) = B_2(1 - t) \quad \xi = -1/B'_0(0) = 1/B'_2(1)$

 \downarrow

•
$$\mathbb{P}_2^{u,v} := <1, u(t), v(t) >$$

- **• ONTP basis** $\{B_0, B_1, B_2\}$ $B_0(0) = 1, B_0(1) = B'_0(1) = 0, \cdots$
- control points $f = b_0 B_0 + b_1 B_1 + b_2 B_2 \in \mathbb{P}_2^{u,v}$

 $(0, b_0), (\xi, b_1), (1 - \xi, b_1), (1, b_2) \quad B_0(t) = B_2(1 - t) \quad \xi = -1/B'_0(0) = 1/B'_2(1)$

 \downarrow

geometric properties of the usual control polygon

 $\mathbb{H}_{\omega} := <1, \cosh \omega t, \sinh \omega t >, \ t \in [0, 1]$

$$\mathbb{H}_{\omega} := <1, \cosh \omega t, \sinh \omega t >, \ t \in [0, 1]$$

$$\mathbb{H}_{\omega} := <1, \cosh \omega t, \sinh \omega t >, \ t \in [0, 1]$$

ONTP basis $B_{0,\omega}, B_{1,\omega}, B_{2,\omega}, \omega \to 0$ quadratic Bernstein pol.

$$\mathbb{H}_{\omega} := <1, \cosh \omega t, \sinh \omega t >, \ t \in [0, 1]$$

$$\mathbb{H}_{\omega} := <1, \cosh \omega t, \sinh \omega t >, \ t \in [0, 1]$$

 $\mathbb{H}_{\omega} := <1, \cosh \omega t, \sinh \omega t >, \ t \in [0, 1]$

 $\mathbf{X} = \tau_1 \mathbf{V}_1 + \tau_2 \mathbf{V}_2 + \tau_3 \mathbf{V}_3$

 $\mathbb{H}_{\omega} := <1, \cosh \omega \tau_1, \sinh \omega \tau_1, \cosh \omega \tau_2, \sinh \omega \tau_2, \cosh \omega \tau_3, \sinh \omega \tau_3 >,$

 $\mathbb{H}_{\omega} := <1, \cosh \omega \tau_1, \sinh \omega \tau_1, \cosh \omega \tau_2, \sinh \omega \tau_2, \cosh \omega \tau_3, \sinh \omega \tau_3 >,$

 $\dim(\mathbb{H}_{\omega}) = 7$

 $\mathbb{H}_{\omega} := <1, \cosh \omega \tau_1, \sinh \omega \tau_1, \cosh \omega \tau_2, \sinh \omega \tau_2, \cosh \omega \tau_3, \sinh \omega \tau_3 >,$

 $\mathbb{H}_{\omega|\tau_3=0} := <1, \cosh \omega \tau_1, \sinh \omega \tau_1 >,$

 $B_{110,\omega}$???

 $B_{110,\omega}$???

 $B_{110,\omega}$???

7 suitable interp. conditions to recover edge behavior

 $B_{110,\omega}$???

7 suitable interp. conditions to recover edge behavior

easy: 6 function values at *

 $B_{110,\omega}$???

7 suitable interp. conditions to recover edge behavior

- easy: 6 function values at *
- exotic: second derivative at one vertex to mimic the polynomial case

one function still missed

 $B_{111,\omega}$???

$$B_{111,\omega} = 1 - \sum_{i+j+k=2} B_{ijk,\omega}$$

- $B_{ijk,\omega} \ge 0$
- partition of unity

Generalized B-splines and local refinements - p. 46/50

NO Greville abscissae

USUAL geometric interpretation

USUAL geometric interpretation $\omega = 0.1$

USUAL geometric interpretation

 $\omega = 1.5$

USUAL geometric interpretation

 $\omega = 10$

- Bernstein-like representations
 - optimal from geometrical and computational point of view
 - not confined to (piecewise) polynomial spaces

- Bernstein-like representations
 - optimal from geometrical and computational point of view
 - not confined to (piecewise) polynomial spaces
- Generalized (trigonometric/exponential/...) B-splines possible alternative to the rational model
 - Bernstein-like representations
 - CAGD applications
 - IgA applications

- Bernstein-like representations
 - optimal from geometrical and computational point of view
 - not confined to (piecewise) polynomial spaces
- Generalized (trigonometric/exponential/...) B-splines possible alternative to the rational model
 - Bernstein-like representations
 - CAGD applications
 - IgA applications
- Local refinements B-splines/Generalized B-splines
 - Hierarchical bases
 - T-meshes

- Bernstein-like representations
 - optimal from geometrical and computational point of view
 - not confined to (piecewise) polynomial spaces
- Generalized (trigonometric/exponential/...) B-splines possible alternative to the rational model
 - Bernstein-like representations
 - CAGD applications
 - IgA applications
- Local refinements B-splines/Generalized B-splines
 - Hierarchical bases
 - T-meshes
- B-splines and GB-splines similar structure/properties thanks to 1D Bernstein-like representation.

- Bernstein-like representations
 - optimal from geometrical and computational point of view
 - not confined to (piecewise) polynomial spaces
- Generalized (trigonometric/exponential/...) B-splines possible alternative to the rational model
 - Bernstein-like representations
 - CAGD applications
 - IgA applications
- Local refinements B-splines/Generalized B-splines
 - Hierarchical bases
 - T-meshes
- B-splines and GB-splines similar structure/properties thanks to 1D Bernstein-like representation.
- Extending Bernstein representations/Generalized
 B-splines to triangles is not trivial

Many Thanks!