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Representing signals
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1D signals – Fourier basis, wavelets, polynomials,. . .

What to do in higher dimensions?

What to do for general data - images, documents, gene arrays, . . . ?
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What is general data?

Let X = {xi}Ni=1, xi ∈ RD , be a set of N points with two requirements:

1 The set X is associated with a kernel function K : RD × RD → R+,
and with the graph structure induced by K .

2 X has an associated tree structure – analog of a dydic partition.
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The goal

Find N functions

{φn}Nn=1, φn : X 7→ R,

such that 〈φn, φm〉 = δn,m.

We use
〈f , g〉 =

∑
x∈X

f (x)g(x), ∀f , g : X 7→ R.

Further requirements

I The construction must be applicable in cases where D (the dimension
of each point in X ) is very large.

I It should allow for a sparse representation of a large family of functions.

I It must have a fast and numerically stable algorithm.
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Known solutions

Two known solutions for general data
I Haar basis – Piecewise constant functions

I Fourier basis – Eigenvectors of the (graph) Laplacian

Haar basis Fourier basis
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Haar basis – general data

Haar-like on graphs (Gavish, Nadler, and Coifman)

Pros I Simple, fast.
I Applicable to high dimensional data.

Cons I Poor representations of smooth functions.
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Fourier basis

Eigenfunctions of the Laplacian, e.g., ϕ′′ = −λϕ.

How to generalize? – Eigenvectors of the “graph Laplacian”.

The graph Laplacian, in a nutshell:

1 For any set of points (in RD , on a manifold,. . . ), use kernel K to
construct a graph

Wi,j = K
(
‖xi − xj‖2/2ε

)
.

2 Normalize, e.g.,

L = I − B−1W , Bi,i =
N∑
j=1

Wi,j .

3 Compute the eigenvectors.
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Graph Laplacian basis

Graph Laplacian’s eigenvectors on meshes (Gabriel Peyré)

Pros I Efficient representation for smooth functions.
I Applicable to high dimensional (almost arbitrary) data.

Cons I Poor representation of non-smooth functions/rapidly changing
functions.

I Global basis functions.
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Let’s construct a new family of bases

Orthogonal

Multi-scale – basis elements of varying support.

A family of bases parameterized by k – controls the localization of the
basis elements.

Extreme cases
I k = 1 =⇒ Haar basis
I k = N =⇒ Fourier basis

Stable O(k2N logN + T (N, k) log(N)) algorithm, where T (N, k) is
the complexity of computing k top eigenvectors. Usually N � k.

Building blocks: graph Laplacian and multi-resolution analysis.
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Construction overview

Two phases:

1 Define the vectors which span the approximation spaces

V0 ⊂ V1 ⊂ · · · ⊂ Vj ,

where Vj = RN , with N the number of data points.

2 Apply a fast orthogonalization process to obtain

Vj = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj−1,

with Wp⊥Vp, Wp ⊕ Vp = Vp+1 for p ≥ 0.
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Phase one – V0 ⊂ V1 ⊂ · · · ⊂ Vj ,

Define the first approximation space V0 as

V0 = span {first k eigenvectors of the (global) graph Laplacian}

To construct Vj , j ≥ 1 we use

1 Restriction operator on Vj−1.

2 Local graph Laplacian and its first eigenvectors.

This construction is repeated until Vj satisfies dim(Vj) = N.
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Approximation spaces – an example

Constructing V1 = V1,0 + V1,1

Restriction Local eigenvectors
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A few additional remarks

1 Restriction operator and the tree ensure that the total number of
nonzeros in each level is kN (sparsity).

2 Balanced tree means O(logN) levels (or tree depth). Therefore, we
can “pack” the nested spaces in a sparse matrix of O(kN log(N))
nonzeros.

3 We do not assume the tree is binary nor a complete tree.

Nir Sharon (Tel-Aviv University) Laplacian multi-wavelets, MAIA 13 September 26, 2013 13 / 24



A few additional remarks

1 Restriction operator and the tree ensure that the total number of
nonzeros in each level is kN (sparsity).

2 Balanced tree means O(logN) levels (or tree depth). Therefore, we
can “pack” the nested spaces in a sparse matrix of O(kN log(N))
nonzeros.

3 We do not assume the tree is binary nor a complete tree.

Nir Sharon (Tel-Aviv University) Laplacian multi-wavelets, MAIA 13 September 26, 2013 13 / 24



A few additional remarks

1 Restriction operator and the tree ensure that the total number of
nonzeros in each level is kN (sparsity).

2 Balanced tree means O(logN) levels (or tree depth). Therefore, we
can “pack” the nested spaces in a sparse matrix of O(kN log(N))
nonzeros.

3 We do not assume the tree is binary nor a complete tree.

Nir Sharon (Tel-Aviv University) Laplacian multi-wavelets, MAIA 13 September 26, 2013 13 / 24



A few additional remarks

1 Restriction operator and the tree ensure that the total number of
nonzeros in each level is kN (sparsity).

2 Balanced tree means O(logN) levels (or tree depth). Therefore, we
can “pack” the nested spaces in a sparse matrix of O(kN log(N))
nonzeros.

3 We do not assume the tree is binary nor a complete tree.

Nir Sharon (Tel-Aviv University) Laplacian multi-wavelets, MAIA 13 September 26, 2013 13 / 24



Phase two

1 Recall that

Vj ⊂ VJ , VJ ⊥WJ =⇒ Vj ⊥WJ , 0 ≤ j < J.

2 Due to sparsity, every complement space Wj is calculated with
O(k2N) operations.

3 Overall complexity for this phase is O(k2N logN). Usually N � k.
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Representing functions (synthetic data)

The 1D case: taking 128 equally spaced on [0, 1]. Compare the Haar
(k = 1), Laplacian (k = N), and an intermediate case (1 < k < N)

Nir Sharon (Tel-Aviv University) Laplacian multi-wavelets, MAIA 13 September 26, 2013 15 / 24



Representing functions (synthetic data)

The function:
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Representing 1D functions – oscillatory function

The function:
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Representing 1D functions – oscillatory function (cont.)
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Representing 1D functions – piecewise smooth function
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A smooth function on S2 ⊂ R3

A 3D case - 1000 data points distributed on the sphere. Compare between
k = 1, 10, 50, 1000.
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A smooth function on S2 ⊂ R3
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Figure: Representing a smooth function on the sphere.
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A rapidly changing function on S2 ⊂ R3
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Figure: R oscillates rapidly in regions on the sphere where x close to be
orthogonal to x0.
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Compression of hyper spectral images

Remote-sensing platforms are often comprised of a cluster of different
spectral range detectors or sensors to benefit from the spectral
identification capabilities of each range.

In this example, hyperspectral image of visible spectral region:

Figure: The 12 different wave length images given as the data.
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Compression of surface temperature

The surface temperature is derived form sensors in non-visible
spectral region - long-wave infrared sensors. Measured in Kelvin.
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We compare the compression with two (non-adaptive) benchmarks:
DCT and JPEG2000.
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Compression results
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Compression results

Using 200 coefficients, that is 0.5%:
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(a) LMW
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(b) DCT
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Thank you !
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Questions ?
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