MULTIVARIATE APPROXIMATION AND INTERPOLATION WITH APPLICATIONS 2013

A class of Laplacian multi-wavelets bases for high-dimensional data

Nir Sharon

Tel-Aviv University

Joint work with Yoel Shkolnisky
A part of PhD thesis under the supervision of Yoel Shkolnisky and Nira Dyn
September 26, 2013

Representing signals

- 1D signals - Fourier basis, wavelets, polynomials,...

Representing signals

- 1D signals - Fourier basis, wavelets, polynomials,...
- What to do in higher dimensions?

Representing signals

- 1D signals - Fourier basis, wavelets, polynomials,...
- What to do in higher dimensions?
- What to do for general data - images, documents, gene arrays, ... ?

What is general data?

Let $\mathcal{X}=\left\{x_{i}\right\}_{i=1}^{N}, x_{i} \in \mathbb{R}^{D}$, be a set of N points with two requirements:
(B)

(E)
(D)

(F)

What is general data?

Let $\mathcal{X}=\left\{x_{i}\right\}_{i=1}^{N}, x_{i} \in \mathbb{R}^{D}$, be a set of N points with two requirements:
(1) The set \mathcal{X} is associated with a kernel function $K: \mathbb{R}^{D} \times \mathbb{R}^{D} \rightarrow \mathbb{R}_{+}$, and with the graph structure induced by K.

What is general data?

Let $\mathcal{X}=\left\{x_{i}\right\}_{i=1}^{N}, x_{i} \in \mathbb{R}^{D}$, be a set of N points with two requirements:
(1) The set \mathcal{X} is associated with a kernel function $K: \mathbb{R}^{D} \times \mathbb{R}^{D} \rightarrow \mathbb{R}_{+}$, and with the graph structure induced by K.
(2) \mathcal{X} has an associated tree structure - analog of a dydic partition.

The goal

Find N functions

$$
\left\{\phi_{n}\right\}_{n=1}^{N}, \quad \phi_{n}: \mathcal{X} \mapsto \mathbb{R}
$$

such that $\left\langle\phi_{n}, \phi_{m}\right\rangle=\delta_{n, m}$.

- We use

$$
\langle f, g\rangle=\sum_{x \in \mathcal{X}} f(x) g(x), \quad \forall f, g: \mathcal{X} \mapsto \mathbb{R}
$$

The goal

Find N functions

$$
\left\{\phi_{n}\right\}_{n=1}^{N}, \quad \phi_{n}: \mathcal{X} \mapsto \mathbb{R}
$$

such that $\left\langle\phi_{n}, \phi_{m}\right\rangle=\delta_{n, m}$.

- We use

$$
\langle f, g\rangle=\sum_{x \in \mathcal{X}} f(x) g(x), \quad \forall f, g: \mathcal{X} \mapsto \mathbb{R}
$$

- Further requirements
- The construction must be applicable in cases where D (the dimension of each point in \mathcal{X}) is very large.
- It should allow for a sparse representation of a large family of functions.
- It must have a fast and numerically stable algorithm.

Known solutions

- Two known solutions for general data
- Haar basis - Piecewise constant functions
- Fourier basis - Eigenvectors of the (graph) Laplacian

Haar basis

Fourier basis

Haar basis - general data

Haar basis - general data

Haar-like on graphs (Gavish, Nadler, and Coifman)

Pros Simple, fast.

- Applicable to high dimensional data.

Cons - Poor representations of smooth functions.

Fourier basis

- Eigenfunctions of the Laplacian, e.g., $\varphi^{\prime \prime}=-\lambda \varphi$.

Fourier basis

- Eigenfunctions of the Laplacian, e.g., $\varphi^{\prime \prime}=-\lambda \varphi$.
- How to generalize? - Eigenvectors of the "graph Laplacian".

Fourier basis

- Eigenfunctions of the Laplacian, e.g., $\varphi^{\prime \prime}=-\lambda \varphi$.
- How to generalize? - Eigenvectors of the "graph Laplacian".
- The graph Laplacian, in a nutshell:

Fourier basis

- Eigenfunctions of the Laplacian, e.g., $\varphi^{\prime \prime}=-\lambda \varphi$.
- How to generalize? - Eigenvectors of the "graph Laplacian".
- The graph Laplacian, in a nutshell:
(1) For any set of points (in \mathbb{R}^{D}, on a manifold,...), use kernel K to construct a graph

$$
W_{i, j}=K\left(\left\|x_{i}-x_{j}\right\|^{2} / 2 \varepsilon\right) .
$$

Fourier basis

- Eigenfunctions of the Laplacian, e.g., $\varphi^{\prime \prime}=-\lambda \varphi$.
- How to generalize? - Eigenvectors of the "graph Laplacian".
- The graph Laplacian, in a nutshell:
(1) For any set of points (in \mathbb{R}^{D}, on a manifold,...), use kernel K to construct a graph

$$
W_{i, j}=K\left(\left\|x_{i}-x_{j}\right\|^{2} / 2 \varepsilon\right) .
$$

(2) Normalize, e.g.,

$$
L=I-B^{-1} W, \quad B_{i, i}=\sum_{j=1}^{N} W_{i, j}
$$

Fourier basis

- Eigenfunctions of the Laplacian, e.g., $\varphi^{\prime \prime}=-\lambda \varphi$.
- How to generalize? - Eigenvectors of the "graph Laplacian".
- The graph Laplacian, in a nutshell:
(1) For any set of points (in \mathbb{R}^{D}, on a manifold,...), use kernel K to construct a graph

$$
W_{i, j}=K\left(\left\|x_{i}-x_{j}\right\|^{2} / 2 \varepsilon\right) .
$$

(2) Normalize, e.g.,

$$
L=I-B^{-1} W, \quad B_{i, i}=\sum_{j=1}^{N} W_{i, j}
$$

(3) Compute the eigenvectors.

Graph Laplacian basis

Graph Laplacian's eigenvectors on meshes (Gabriel Peyré)

Pros - Efficient representation for smooth functions.

- Applicable to high dimensional (almost arbitrary) data.

Cons - Poor representation of non-smooth functions/rapidly changing functions.

- Global basis functions.

Let's construct a new family of bases

Let's construct a new family of bases

- Orthogonal

Let's construct a new family of bases

- Orthogonal
- Multi-scale - basis elements of varying support.

Let's construct a new family of bases

- Orthogonal
- Multi-scale - basis elements of varying support.
- A family of bases parameterized by k - controls the localization of the basis elements.
- Extreme cases
- $k=1 \Longrightarrow$ Haar basis
- $k=N \Longrightarrow$ Fourier basis

Let's construct a new family of bases

- Orthogonal
- Multi-scale - basis elements of varying support.
- A family of bases parameterized by k - controls the localization of the basis elements.
- Extreme cases
- $k=1 \Longrightarrow$ Haar basis
- $k=N \Longrightarrow$ Fourier basis
- Stable $\mathcal{O}\left(k^{2} N \log N+T(N, k) \log (N)\right)$ algorithm, where $T(N, k)$ is the complexity of computing k top eigenvectors. Usually $N \gg k$.

Let's construct a new family of bases

- Orthogonal
- Multi-scale - basis elements of varying support.
- A family of bases parameterized by k - controls the localization of the basis elements.
- Extreme cases
- $k=1 \Longrightarrow$ Haar basis
- $k=N \Longrightarrow$ Fourier basis
- Stable $\mathcal{O}\left(k^{2} N \log N+T(N, k) \log (N)\right)$ algorithm, where $T(N, k)$ is the complexity of computing k top eigenvectors. Usually $N \gg k$.
- Building blocks: graph Laplacian and multi-resolution analysis.

Construction overview

Two phases:

Construction overview

Two phases:
(1) Define the vectors which span the approximation spaces

$$
V_{0} \subset V_{1} \subset \cdots \subset V_{j}
$$

where $V_{j}=\mathbb{R}^{N}$, with N the number of data points.

Construction overview

Two phases:
(1) Define the vectors which span the approximation spaces

$$
V_{0} \subset V_{1} \subset \cdots \subset V_{j}
$$

where $V_{j}=\mathbb{R}^{N}$, with N the number of data points.
(2) Apply a fast orthogonalization process to obtain

$$
V_{j}=V_{0} \oplus W_{0} \oplus W_{1} \oplus \cdots \oplus W_{j-1}
$$

with $W_{p} \perp V_{p}, W_{p} \oplus V_{p}=V_{p+1}$ for $p \geq 0$.

Phase one $-V_{0} \subset V_{1} \subset \cdots \subset V_{j}$,

Phase one $-V_{0} \subset V_{1} \subset \cdots \subset V_{j}$,

- Define the first approximation space V_{0} as
$V_{0}=\operatorname{span}\{$ first k eigenvectors of the (global) graph Laplacian $\}$

Phase one $-V_{0} \subset V_{1} \subset \cdots \subset V_{j}$,

- Define the first approximation space V_{0} as

$$
V_{0}=\operatorname{span}\{\text { first } k \text { eigenvectors of the (global) graph Laplacian }\}
$$

- To construct $V_{j}, j \geq 1$ we use
(1) Restriction operator on V_{j-1}.
(2) Local graph Laplacian and its first eigenvectors.

Phase one $-V_{0} \subset V_{1} \subset \cdots \subset V_{j}$,

- Define the first approximation space V_{0} as

$$
V_{0}=\operatorname{span}\{\text { first } k \text { eigenvectors of the (global) graph Laplacian }\}
$$

- To construct $V_{j}, j \geq 1$ we use
(1) Restriction operator on V_{j-1}.
(2) Local graph Laplacian and its first eigenvectors.
- This construction is repeated until V_{j} satisfies $\operatorname{dim}\left(V_{j}\right)=N$.

Approximation spaces - an example

Constructing $V_{1}=V_{1,0}+V_{1,1}$

Restriction

Local eigenvectors

Approximation spaces - an example

Constructing $V_{1}=V_{1,0}+V_{1,1}$

A few additional remarks

A few additional remarks

(1) Restriction operator and the tree ensure that the total number of nonzeros in each level is $k N$ (sparsity).

A few additional remarks

(1) Restriction operator and the tree ensure that the total number of nonzeros in each level is $k N$ (sparsity).
(2) Balanced tree means $\mathcal{O}(\log N)$ levels (or tree depth). Therefore, we can "pack" the nested spaces in a sparse matrix of $\mathcal{O}(k N \log (N))$ nonzeros.

A few additional remarks

(1) Restriction operator and the tree ensure that the total number of nonzeros in each level is $k N$ (sparsity).
(2) Balanced tree means $\mathcal{O}(\log N)$ levels (or tree depth). Therefore, we can "pack" the nested spaces in a sparse matrix of $\mathcal{O}(k N \log (N))$ nonzeros.
(3) We do not assume the tree is binary nor a complete tree.

Phase two

Phase two

(1) Recall that

$$
V_{j} \subset V_{J}, \quad V_{J} \perp W_{J} \Longrightarrow V_{j} \perp W_{J}, \quad 0 \leq j<J
$$

Phase two

(1) Recall that

$$
V_{j} \subset V_{J}, \quad V_{J} \perp W_{J} \Longrightarrow V_{j} \perp W_{J}, \quad 0 \leq j<J
$$

(2) Due to sparsity, every complement space W_{j} is calculated with $\mathcal{O}\left(k^{2} N\right)$ operations.

Phase two

(1) Recall that

$$
V_{j} \subset V_{J}, \quad V_{J} \perp W_{J} \Longrightarrow V_{j} \perp W_{J}, \quad 0 \leq j<J
$$

(2) Due to sparsity, every complement space W_{j} is calculated with $\mathcal{O}\left(k^{2} N\right)$ operations.
(3) Overall complexity for this phase is $\mathcal{O}\left(k^{2} N \log N\right)$. Usually $N \gg k$.

Representing functions (synthetic data)

The 1D case: taking 128 equally spaced on [0, 1]. Compare the Haar $(k=1)$, Laplacian $(k=N)$, and an intermediate case $(1<k<N)$

Representing functions (synthetic data)

The function:

Representing functions (synthetic data)

Representing 1D functions - oscillatory function

The function:

Representing 1D functions - oscillatory function

L_{2} approximation error

Representing 1D functions - oscillatory function (cont.)

L_{2} approximation error

Representing 1D functions - piecewise smooth function

$$
\operatorname{sign}\left(x-\frac{1}{2}\right) \sin (4 x)
$$

Representing 1D functions - piecewise smooth function

$\operatorname{sign}\left(x-\frac{1}{2}\right) \sin (4 x)$

L_{2} approximation error

A smooth function on $S^{2} \subset \mathbb{R}^{3}$

A 3D case - 1000 data points distributed on the sphere. Compare between $k=1,10,50,1000$.

A smooth function on $S^{2} \subset \mathbb{R}^{3}$

Figure: Representing a smooth function on the sphere.

A rapidly changing function on $S^{2} \subset \mathbb{R}^{3}$

(a) $R(x)=\sin \left(\left(x^{T} x_{0}+0.2\right)^{-1}\right)$

(b) L_{2} relative error

Figure: R oscillates rapidly in regions on the sphere where x close to be orthogonal to x_{0}.

Compression of hyper spectral images

Compression of hyper spectral images

- Remote-sensing platforms are often comprised of a cluster of different spectral range detectors or sensors to benefit from the spectral identification capabilities of each range.

Compression of hyper spectral images

- Remote-sensing platforms are often comprised of a cluster of different spectral range detectors or sensors to benefit from the spectral identification capabilities of each range.
- In this example, hyperspectral image of visible spectral region:

Figure: The 12 different wave length images given as the data.

Compression of surface temperature

Compression of surface temperature

- The surface temperature is derived form sensors in non-visible spectral region - long-wave infrared sensors. Measured in Kelvin.

Compression of surface temperature

- The surface temperature is derived form sensors in non-visible spectral region - long-wave infrared sensors. Measured in Kelvin.

- We compare the compression with two (non-adaptive) benchmarks: DCT and JPEG2000.

Compression results

Compression results

Using 200 coefficients, that is 0.5% :

(a) LMW

(b) DCT

(c) JPEG2000

Thank you!

Questions?

