Convergence of uniform subdivision

Amos Ron

Erice, Trapani, Sicilia, Italia, Europa September, 2013

Cascade and subdivision defined

Spectral means: using the spectral structure of a finite number of linear endomorphisms, each of which with a finite rank.

Spectral means: using the spectral structure of a finite number of linear endomorphisms, each of which with a finite rank. Spectral structure means: eigenvalues and eigenvectors.

Spectral means: using the spectral structure of a finite number of linear endomorphisms, each of which with a finite rank. Spectral structure means: eigenvalues and eigenvectors. Generalizations: $p < \infty$, vector subdivision, fast convergence, infinite mask, non-dyadic dilations...

mask and dilation

 $a \in \mathbb{C}^{\mathbb{Z}^d/2}$ is a finite mask. Considered as a discrete finite measure \mathcal{D} is dyadic dilation:

 $(\mathcal{D}f)(t)=f(2t).$

mask and dilation

 $a \in \mathbb{C}^{\mathbb{Z}^d/2}$ is a finite mask. Considered as a discrete finite measure \mathcal{D} is dyadic dilation:

 $(\mathcal{D}f)(t)=f(2t).$

Definition: the cascade operator C

 $C: f \mapsto \mathcal{D}f * a.$

A refinable function ϕ is a fixed-point of *C*:

$$C\phi = \phi.$$

mask and dilation

 $a \in \mathbb{C}^{\mathbb{Z}^d/2}$ is a finite mask. Considered as a discrete finite measure \mathcal{D} is dyadic dilation:

 $(\mathcal{D}f)(t)=f(2t).$

Definition: the cascade operator C

 $C: f \mapsto \mathcal{D}f * a.$

A refinable function ϕ is a fixed-point of *C*:

 $C\phi = \phi$.

Question

Given a compactly supported g, do we have

$$\|\boldsymbol{C}^{k}\boldsymbol{g}-\phi\|_{\infty} \to 0?$$

Cascade and subdivision defined

The cascade operator Some necessary condition for convergen

Each of the following conditions is necessary:

•
$$\boldsymbol{g}, \phi \in \boldsymbol{C}^{\alpha}$$
, $\alpha \geq 0$.

•
$$\sum_{j\in\gamma+2\mathbb{Z}^d} a(j) = 1, \gamma \in \{0,1\}^d.$$

- $g \phi$ has zero mean.
- The PSI space S(g) provides approximation order 1 in the ∞ -norm, viz., for each sufficiently smooth *f*, as $k \to \infty$,

$$\operatorname{dist}_{L_{\infty}}(f, \mathcal{D}^{k}S(g)) = O(2^{-k}).$$

G_0

is the collection of compact support *g* that satisfy the above.

Subdivision: definition and convergence

Definition: the space Q_k

$$\mathcal{Q}_k := \mathbb{C}^{\mathbb{Z}^d/2^k}$$

Definition: The subdivision operator S_k , convergence

$$S_k: Q_0 \to Q_k, \quad \lambda \mapsto \mathcal{D}^{k-1}a * S_{k-1}\lambda.$$

Convergence:

$$\|\mathcal{D}^k g * S_k \delta - \phi\|_{\infty} \to 0, \quad \forall g \in G_0.$$

Subdivision: definition and convergence

Definition: the space Q_k

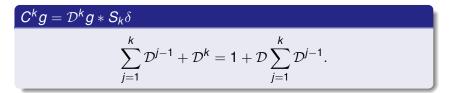
$$\mathcal{Q}_k := \mathbb{C}^{\mathbb{Z}^d/2^k}$$

Definition: The subdivision operator S_k , convergence

$$S_k: \mathcal{Q}_0 \to \mathcal{Q}_k, \quad \lambda \mapsto \mathcal{D}^{k-1}a * S_{k-1}\lambda.$$

Convergence:

$$\|\mathcal{D}^{k}g * S_{k}\delta - \phi\|_{\infty} \to 0, \quad \forall g \in G_{0}.$$



The cascade operator Some necessary condition for convergen

The Transfer operator T

With *f* a trig. pol., and $\tau := |\hat{a}|^2$,

$$T: f \mapsto \mathcal{D}^{-1}(\sum_{\gamma \in \{0,1\}^d} (\tau f)(\cdot + \pi \gamma)).$$

The Transfer operator T

With f a trig. pol., and $\tau := |\widehat{a}|^2$, $T : f \mapsto \mathcal{D}^{-1}(\sum_{\gamma \in \{0,1\}^d} (\tau f)(\cdot + \pi \gamma)).$

The transfer operator encodes L_2 -properties of *a* and ϕ , including a complete characterization of the convergence of cascade: essentially it need to have a unique dominant eigenvalue (acting on any large enough set of trig. pol.).

The Transfer operator T

With *f* a trig. pol., and $\tau := |\widehat{a}|^2$, $T : f \mapsto \mathcal{D}^{-1}(\sum_{\gamma \in \{0,1\}^d} (\tau f)(\cdot + \pi \gamma)).$

The transfer operator encodes L_2 -properties of *a* and ϕ , including a complete characterization of the convergence of cascade: essentially it need to have a unique dominant eigenvalue (acting on any large enough set of trig. pol.).

The transfer operator also encodes the L_2 -smoothness of ϕ .

The L_2 -case is spectral

The Transfer operator *T*

With *f* a trig. pol., and $\tau := |\hat{a}|^2$,

$$T: f \mapsto \mathcal{D}^{-1}(\sum_{\gamma \in \{0,1\}^d} (\tau f)(\cdot + \pi \gamma)).$$

The transfer operator encodes L_2 -properties of *a* and ϕ , including a complete characterization of the convergence of cascade: essentially it need to have a unique dominant eigenvalue (acting on any large enough set of trig. pol.).

The transfer operator also encodes the L_2 -smoothness of ϕ .

The transfer cannot be used (obvious reasons) for other norms.

Characterization: joint spectral radius

There are characterizations in terms of notion of joint spectral radius.

There are characterizations in terms of notion of joint spectral radius.

Despite of its name, the joint spectral radius is joint but not spectral.

The space K_{ϕ}

$$\mathcal{K}_{\phi} := \{\lambda \in \mathcal{Q}_{\mathbf{0}} : \phi * \lambda = \mathbf{0}.\}$$

Convergence of cascade: (more or less) we need that

 $S_k(K_{\phi}) \rightarrow 0.$

The space K_{ϕ}

$$K_{\phi} := \{ \lambda \in \mathcal{Q}_{\mathbf{0}} : \phi * \lambda = \mathbf{0}. \}$$

Convergence of cascade: (more or less) we need that

 $S_k(K_{\phi})
ightarrow 0.$

Special case:

If $S_k(K_{\phi}) = 0$ for some *k*, then convergence.

The space \mathcal{K}_{ϕ} $\mathcal{K}_{\phi} := \{\lambda \in \mathcal{Q}_0 : \ \phi * \lambda = 0.\}$ Convergence of cascade: (more or less) we need that $\mathcal{S}_k(\mathcal{K}_{\phi}) \to 0.$

Special case:

If $S_k(K_{\phi}) = 0$ for some *k*, then convergence.

Special case:

If dim $K_{\phi} < \infty$, then spectral.

The space K_{ϕ}

$$\mathcal{K}_{\phi} := \{\lambda \in \mathcal{Q}_{\mathbf{0}} : \phi * \lambda = \mathbf{0}.\}$$

Convergence of cascade: (more or less) we need that

 $S_k(K_\phi)
ightarrow 0.$

Special case:

If $S_k(K_{\phi}) = 0$ for some *k*, then convergence.

Special case:

If dim $K_{\phi} < \infty$, then spectral.

Special case: box splines, de Boor-R

If ϕ is a box spline, then spectral.

Cascade and subdivision defined

The cascade operator Some necessary condition for convergen