A class of anisotropic multiple multiresolution analysis

Mariantonia Cotronei
University of Reggio Calabria, Italy
MAIA 2013, Erice, September 2013

Jointly with:
Mira Bozzini, Milvia Rossini, Tomas Sauer

- Description of expanding matrices and related objects
- Description of expanding matrices and related objects
- Inside filterbanks and subdivisions
- Description of expanding matrices and related objects
- Inside filterbanks and subdivisions
- Remarks of their multiple counterparts
- Description of expanding matrices and related objects
- Inside filterbanks and subdivisions
- Remarks of their multiple counterparts
- An efficient strategy to construct (multiple) filterbanks
- Description of expanding matrices and related objects
- Inside filterbanks and subdivisions
- Remarks of their multiple counterparts
- An efficient strategy to construct (multiple) filterbanks
- Case study
- Description of expanding matrices and related objects
- Inside filterbanks and subdivisions
- Remarks of their multiple counterparts
- An efficient strategy to construct (multiple) filterbanks
- Case study

Expanding matrices

Let $M \in \mathbb{Z}^{s \times s}$ be an expanding matrix, i.e.

- all its its eigenvalues are larger than one in modulus
- $\left\|M^{-n}\right\| \rightarrow 0$
\Downarrow
as n increases, $M^{-n} \mathbb{Z}^{s} \rightarrow \mathbb{R}^{s}$

Expanding matrices

Let $M \in \mathbb{Z}^{\boldsymbol{s} \times \boldsymbol{s}}$ be an expanding matrix, i.e.

- all its its eigenvalues are larger than one in modulus
- $\left\|M^{-n}\right\| \rightarrow 0$

as n increases, $M^{-n} \mathbb{Z}^{s} \rightarrow \mathbb{R}^{s}$
- M defines a sampling lattice
- $d=|\operatorname{det}(M)|$ is the number of cosets

The cosets have the form

$$
M \mathbb{Z}^{s}+\xi_{j}, \quad j=0, \ldots, d-1
$$

where

$$
\xi_{j} \in M[0,1)^{s} \bigcap \mathbb{Z}^{s}
$$

are the coset representatives.
It is well known that

$$
\mathbb{Z}^{s}=\bigcup_{j=0}^{d-1}\left(\xi_{j}+M \mathbb{Z}^{s}\right)
$$

Separable/Nonseparable

Isotropy/Anisotropy

Down/upsampling

Let $c \in \ell\left(\mathbb{Z}^{s}\right)$ be a given signal.

Down/upsampling

Let $c \in \ell\left(\mathbb{Z}^{s}\right)$ be a given signal.

- Downsampling operator \downarrow_{M} associated to M :

$$
\downarrow_{M} c=c(M \cdot)
$$

Down/upsampling

Let $c \in \ell\left(\mathbb{Z}^{s}\right)$ be a given signal.

- Downsampling operator \downarrow_{M} associated to M :

$$
\downarrow_{M} c=c(M \cdot)
$$

- Upsampling operator \uparrow_{M} associated to M :

$$
\uparrow_{M} c(\alpha)= \begin{cases}c\left(M^{-1} \alpha\right) & \text { if } \alpha \in M \mathbb{Z}^{s} \\ 0 & \text { otherwise }\end{cases}
$$

Filtering

- Filter operator F:

$$
F c=f * c=\sum_{\alpha \in \mathbb{Z}^{s}} f(\cdot-\alpha) c(\alpha)
$$

where $f=F \delta=\left(f(\alpha): \alpha \in \mathbb{Z}^{s}\right)$ is the impulse response of F

d-channel filter bank

Critically sampled: $d=|\operatorname{det} M|$

d-channel filter bank

Critically sampled: $d=|\operatorname{det} M|$

- Analysis filter:

$$
\begin{gathered}
F: \ell\left(\mathbb{Z}^{s}\right) \rightarrow \ell^{d}\left(\mathbb{Z}^{s}\right) \\
F_{C}=\left[\downarrow_{M} F_{j} c: j=0, \ldots, d-1\right]
\end{gathered}
$$

- Synthesis filter:

$$
\begin{gathered}
G: \ell^{d}\left(\mathbb{Z}^{s}\right) \rightarrow \ell\left(\mathbb{Z}^{s}\right) \\
G\left[c_{j}: j=0, \ldots, d-1\right]=\sum_{j=0}^{d} G_{j} \uparrow_{M} c_{j},
\end{gathered}
$$

d-channel filter bank

Critically sampled: $d=|\operatorname{det} M|$

- Analysis filter:

$$
\begin{gathered}
F: \ell\left(\mathbb{Z}^{s}\right) \rightarrow \ell^{d}\left(\mathbb{Z}^{s}\right) \\
F_{C}=\left[\downarrow_{M} F_{j} c: j=0, \ldots, d-1\right]
\end{gathered}
$$

- Synthesis filter:

$$
\begin{gathered}
G: \ell^{d}\left(\mathbb{Z}^{s}\right) \rightarrow \ell\left(\mathbb{Z}^{s}\right) \\
G\left[c_{j}: j=0, \ldots, d-1\right]=\sum_{j=0}^{d} G_{j} \uparrow_{M} c_{j},
\end{gathered}
$$

Perfect reconstruction:

$$
G F=1
$$

d-channel filter bank

By perfect reconstruction:

$$
c \stackrel{F}{\rightarrow}\left[\begin{array}{c}
c_{0}^{1} \\
\hline c_{1}^{1} \\
\vdots \\
c_{d-1}^{1}
\end{array}\right]=\left[\frac{c^{1}}{\boldsymbol{d}^{1}}\right] \xrightarrow{G} c
$$

$F_{0}, G_{0} \longrightarrow$ low-pass
$F_{j}, G_{j}, \quad j>0 \longrightarrow$ high-pass
Multiresolution decomposition ...

Iterated filter bank

MRA structure...

Observe that

$$
G_{j} \uparrow c=g_{j} * \uparrow M c=\sum_{\alpha \in \mathbb{Z}^{s}} g_{j}(\cdot-M \alpha) c(\alpha),
$$

i.e. all reconstruction filters act as stationary subdivision operators with dilation matrix M.

Stationary subdivision

Subdivision operator:

$$
S:=S_{a, M}: \ell\left(\mathbb{Z}^{s}\right) \rightarrow \ell\left(\mathbb{Z}^{s}\right)
$$

defined by

$$
c^{(n+1)}:=S c^{(n)}=\sum_{\alpha \in \mathbb{Z}^{s}} a(\cdot-M \alpha) c^{(n)}(\alpha)
$$

where $M \in \mathbb{Z}^{s \times s}$ is expanding

Multiple subdivision

- Consider a set of a finite number of dilation matrices

$$
\left(M_{j}: j \in \mathbb{Z}_{m}\right)
$$

where $\mathbb{Z}_{m}=\{0, \ldots, m-1\}$ for $m \in \mathbb{N}$.

Multiple subdivision

- Consider a set of a finite number of dilation matrices

$$
\left(M_{j}: j \in \mathbb{Z}_{m}\right)
$$

where $\mathbb{Z}_{m}=\{0, \ldots, m-1\}$ for $m \in \mathbb{N}$.

- Associate a mask to each M_{j} :

$$
a_{j} \in \ell\left(\mathbb{Z}^{s}\right), \quad j \in \mathbb{Z}_{m}
$$

Multiple subdivision

- Consider a set of a finite number of dilation matrices

$$
\left(M_{j}: j \in \mathbb{Z}_{m}\right)
$$

where $\mathbb{Z}_{m}=\{0, \ldots, m-1\}$ for $m \in \mathbb{N}$.

- Associate a mask to each M_{j} :

$$
a_{j} \in \ell\left(\mathbb{Z}^{s}\right), \quad j \in \mathbb{Z}_{m}
$$

Together, a_{j} and M_{j} define m stationary subdivision operators

$$
S_{j}:=S_{a_{j}, M_{j}}
$$

Multiple subdivision

Call

$$
\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in \mathbb{Z}_{m}^{n}
$$

a digit sequence of length $n=:|\epsilon|$.

Multiple subdivision

Call

$$
\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right) \in \mathbb{Z}_{m}^{n}
$$

a digit sequence of length $n=:|\epsilon|$.
We collect all finite digit sequences in

$$
\mathbb{Z}_{m}^{*}:=\bigcup_{n \in \mathbb{N}} \mathbb{Z}_{m}^{n}
$$

and extend $|\epsilon|$ canonically to $\epsilon \in \mathbb{Z}_{m}^{*}$.

Multiple subdivision

Consider the subdivision operator:

$$
S_{\epsilon}=S_{\epsilon_{n}} \cdots S_{\epsilon_{1}}
$$

Multiple subdivision

Consider the subdivision operator:

$$
S_{\epsilon}=S_{\epsilon_{n}} \cdots S_{\epsilon_{1}}
$$

For any $\epsilon \in \mathbb{Z}_{m}^{*}$ there exists a mask

$$
a_{\epsilon}=S_{\epsilon} \delta
$$

such that

$$
S_{\epsilon} c=\sum_{\alpha \in \mathbb{Z}^{s}} a_{\epsilon}\left(\cdot-M_{\epsilon} \alpha\right) c(\alpha), \quad c \in \ell\left(\mathbb{Z}^{s}\right)
$$

where

$$
M_{\epsilon}:=M_{\epsilon_{n}} \cdots M_{\epsilon_{1}}, \quad n=|\epsilon| .
$$

Multiple subdivision

Values of $S_{\epsilon} c=$ approximations to a function on $M_{\epsilon}^{-1} \mathbb{Z}^{s}$.

Multiple subdivision

Values of $S_{\epsilon} c=$ approximations to a function on $M_{\epsilon}^{-1} \mathbb{Z}^{s}$. In order for $M_{\epsilon}^{-1} \mathbb{Z}^{s}$ to tend to \mathbb{R}^{s} :

Multiple subdivision

Values of $S_{\epsilon} c=$ approximations to a function on $M_{\epsilon}^{-1} \mathbb{Z}^{s}$.
In order for $M_{\epsilon}^{-1} \mathbb{Z}^{s}$ to tend to \mathbb{R}^{s} :

- each matrix M_{j} must be expanding,

Multiple subdivision

Values of $S_{\epsilon} c=$ approximations to a function on $M_{\epsilon}^{-1} \mathbb{Z}^{s}$.
In order for $M_{\epsilon}^{-1} \mathbb{Z}^{s}$ to tend to \mathbb{R}^{s} :

- each matrix M_{j} must be expanding,
- all the matrices M_{ϵ} must be expanding

Multiple subdivision

Values of $S_{\epsilon} c=$ approximations to a function on $M_{\epsilon}^{-1} \mathbb{Z}^{s}$.
In order for $M_{\epsilon}^{-1} \mathbb{Z}^{s}$ to tend to \mathbb{R}^{s} :

- each matrix M_{j} must be expanding,
- all the matrices M_{ϵ} must be expanding

$$
\Downarrow
$$

The matrices M_{ϵ} must all be jointly expanding i.e.

$$
\begin{equation*}
\lim _{|\epsilon| \rightarrow \infty}\left\|M_{\epsilon}^{-1}\right\|=0 \tag{1}
\end{equation*}
$$

or, equivalently,

$$
\rho\left(M_{j}^{-1}: j \in \mathbb{Z}_{m}\right)<1
$$

(joint spectral radius condition)

Multiple subdivision

Example: adaptive subdivision/discrete shearlets
Based on:

Multiple subdivision

Example: adaptive subdivision/discrete shearlets
Based on:

- parabolic scaling $\left[\begin{array}{ll}2 & \\ & 4\end{array}\right]$

Multiple subdivision

Example: adaptive subdivision/discrete shearlets

Based on:

- parabolic scaling $\left[\begin{array}{ll}2 & \\ & 4\end{array}\right]$
- shear $\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right]$

Multiple subdivision

Example: adaptive subdivision/discrete shearlets
Based on:

- parabolic scaling $\left[\begin{array}{ll}2 & \\ & 4\end{array}\right]$
- shear $\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right]$

What about other choices?
Case study ...

Multiple d-channel filter bank

For each $k \in \mathbb{Z}_{m}$

- Analysis filters: $F_{k}: \ell\left(\mathbb{Z}^{s}\right) \rightarrow \ell^{d}\left(\mathbb{Z}^{s}\right)$ acting as

$$
F_{k} c=\left[\downarrow M_{k} F_{k, j} c: j=0, \ldots, d-1\right]
$$

Multiple d-channel filter bank

For each $k \in \mathbb{Z}_{m}$

- Analysis filters: $F_{k}: \ell\left(\mathbb{Z}^{s}\right) \rightarrow \ell^{d}\left(\mathbb{Z}^{s}\right)$ acting as

$$
F_{k} c=\left[\downarrow M_{k} F_{k, j} c: j=0, \ldots, d-1\right]
$$

- Synthesis filters: $G_{k}: \ell^{d}\left(\mathbb{Z}^{s}\right) \rightarrow \ell\left(\mathbb{Z}^{s}\right)$, acting as

$$
G_{k}\left[c_{j}: j=0, \ldots, d-1\right]=\sum_{j=0}^{d} G_{k, j} \uparrow_{M_{k}} c_{j}
$$

Multiple d-channel filter bank

For each $k \in \mathbb{Z}_{m}$

- Analysis filters: $F_{k}: \ell\left(\mathbb{Z}^{s}\right) \rightarrow \ell^{d}\left(\mathbb{Z}^{s}\right)$ acting as

$$
F_{k} c=\left[\downarrow M_{k} F_{k, j} c: j=0, \ldots, d-1\right]
$$

- Synthesis filters: $G_{k}: \ell^{d}\left(\mathbb{Z}^{s}\right) \rightarrow \ell\left(\mathbb{Z}^{s}\right)$, acting as

$$
G_{k}\left[c_{j}: j=0, \ldots, d-1\right]=\sum_{j=0}^{d} G_{k, j} \uparrow_{M_{k}} c_{j}
$$

Perfect reconstruction:

$$
G_{k} F_{k}=l, \quad k \in \mathbb{Z}_{m}
$$

Symbol notation

Given a finitely supported a

- Symbol:

$$
a^{\sharp}(z):=\sum_{\alpha \in \mathbb{Z}^{s}} a(\alpha) z^{\alpha}
$$

Symbol notation

Given a finitely supported a

- Symbol:

$$
a^{\sharp}(z):=\sum_{\alpha \in \mathbb{Z}^{s}} a(\alpha) z^{\alpha}
$$

- Subsymbols:

$$
a_{\xi_{j}}^{\sharp}(z):=\sum_{\alpha \in \mathbb{Z}^{s}} a\left(M \alpha+\xi_{j}\right) z^{\alpha}, \quad j=0, \ldots, d-1
$$

Filter bank construction

Start from the lowpass reconstruction filter G_{0} associated to a mask a.

Filter bank construction

Start from the lowpass reconstruction filter G_{0} associated to a mask a.
G_{0} can be completed to a perfect reconstruction filter bank if and only if a is unimodular:

- algebraic property
- involved in general
- simple for interpolatory schemes

Filter bank construction

Start from the lowpass reconstruction filter G_{0} associated to a mask a.
G_{0} can be completed to a perfect reconstruction filter bank if and only if a is unimodular:

- algebraic property
- involved in general
- simple for interpolatory schemes

In 1D $\longrightarrow a^{\sharp}(z)$ and $a^{\sharp}(-z)$ have no common zeros.

Filter bank construction

Simplest filter bank \longrightarrow lazy filters: translation operators

$$
\tau_{\xi_{i}}, \quad i=0, \ldots, d-1
$$

In fact

$$
I=\sum_{i=0}^{d-1} \tau_{\xi_{i}} \uparrow \downarrow \tau_{-\xi_{i}}
$$

Filter bank construction

Simplest filter bank \longrightarrow lazy filters: translation operators

$$
\tau_{\xi_{i}}, \quad i=0, \ldots, d-1
$$

In fact

$$
I=\sum_{i=0}^{d-1} \tau_{\xi_{i}} \uparrow \downarrow \tau_{-\xi_{i}}
$$

It:

- decomposes a signal modulo M in the analysis
- recombines the components in the synthesis

Filter bank construction

If a defines an interpolatory subdivision scheme, then G_{0} can be easily completed to a perfect reconstruction filter bank.

Filter bank construction

If a defines an interpolatory subdivision scheme, then G_{0} can be easily completed to a perfect reconstruction filter bank.

A subdivision operator S_{a} with dilation matrix M is called interpolatory if

$$
S_{a} c(M \cdot)=c, \quad \text { for any } c \in \ell\left(\mathbb{Z}^{s}\right)
$$

Prediction-correction scheme

The completion of an interpolatory a yields the prediction-correction scheme

Prediction-correction scheme

The completion of an interpolatory a yields the prediction-correction scheme

- Analysis part:

$$
F_{0}=I, \quad F_{j}=\tau_{-\xi_{j}}\left(I-S_{a} \downarrow_{M}\right), \quad j=1, \ldots, d-1
$$

- Synthesis part:

$$
G_{0} \quad \text { and } \quad G_{j}=\tau_{\xi_{j}}, \quad j=1, \ldots, d-1
$$

Prediction-correction scheme

In terms of symbols:

$$
\begin{gathered}
F_{0}^{\sharp}(z)=1, \quad F_{j}^{\sharp}(z)=z^{\xi_{j}}-a_{\xi_{j}}^{\sharp}\left(z^{-M}\right), \quad j=1, \ldots, d-1 \\
G_{0}^{\sharp}(z)=a^{\sharp}(z), \quad F_{j}^{\sharp}(z)=z^{\xi_{j}}, \quad j=1, \ldots, d-1
\end{gathered}
$$

A special construction of s-variate interpolatory schemes

Let

$$
M=\Theta \Sigma \Theta^{\prime}
$$

be a Smith factorization of the expanding matrix M, where

$$
\Sigma=\left[\begin{array}{llll}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{s}
\end{array}\right]
$$

and Θ, Θ^{\prime} unimodular

A special construction of s-variate interpolatory schemes

(1) Find s univariate interpolatory subdivision schemes

$$
b_{j}, \quad j=1, \ldots, s
$$

with scaling factors or "arity" σ_{j};

A special construction of s-variate interpolatory schemes

(1) Find s univariate interpolatory subdivision schemes

$$
b_{j}, \quad j=1, \ldots, s
$$

with scaling factors or "arity" σ_{j};
(2) Consider the tensor product

$$
b_{\Sigma}:=\bigotimes_{j=1}^{s} b_{j}, \quad b_{\Sigma}(\alpha)=\prod_{j=1}^{s} b_{j}\left(\alpha_{j}\right), \quad \alpha \in \mathbb{Z}^{s}
$$

which is an interpolatory subdivision scheme for the diagonal scaling matrix Σ, i.e.

$$
b_{\Sigma}(\Sigma \cdot)=\delta
$$

A special construction of s-variate interpolatory schemes

(3) Set

$$
b_{M}:=b_{\Sigma}\left(\Theta^{-1} \cdot\right)
$$

A special construction of s-variate interpolatory schemes

© Set

$$
b_{M}:=b_{\Sigma}\left(\Theta^{-1} \cdot\right)
$$

Then:
b_{M} defines an interpolatory scheme for the dilation matrix M.

A special construction of s-variate interpolatory schemes

© Set

$$
b_{M}:=b_{\Sigma}\left(\Theta^{-1} \cdot\right)
$$

Then:
b_{M} defines an interpolatory scheme for the dilation matrix M.

In terms of symbols:

$$
b_{M}^{\sharp}(z)=b_{\Sigma}^{\sharp}\left(z^{\Theta}\right)
$$

A special choice of scaling matrices

We are considering the matrices

$$
\begin{gathered}
M_{0}:=\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right] \\
M_{1}:=S_{1} M_{0}=\left[\begin{array}{ll}
2 & -1 \\
1 & -2
\end{array}\right],
\end{gathered}
$$

where we make use of the shear matrices

$$
S_{j}:=\left[\begin{array}{ll}
1 & j \\
0 & 1
\end{array}\right], \quad j \in \mathbb{Z} .
$$

A special choice of scaling matrices

It is easily verified that

- $\operatorname{det} M_{0}=\operatorname{det} M_{1}=-3$

A special choice of scaling matrices

It is easily verified that

- $\operatorname{det} M_{0}=\operatorname{det} M_{1}=-3$
- M_{0} is anisotropic (eigenvalues: $\frac{1}{2}(1 \pm \sqrt{13})$

A special choice of scaling matrices

It is easily verified that

- $\operatorname{det} M_{0}=\operatorname{det} M_{1}=-3$
- M_{0} is anisotropic (eigenvalues: $\frac{1}{2}(1 \pm \sqrt{13})$
- M_{1} is isotropic (eigenvalues: $\pm \sqrt{3}$)

A special choice of scaling matrices

It is easily verified that

- $\operatorname{det} M_{0}=\operatorname{det} M_{1}=-3$
- M_{0} is anisotropic (eigenvalues: $\frac{1}{2}(1 \pm \sqrt{13})$
- M_{1} is isotropic (eigenvalues: $\pm \sqrt{3}$)
- M_{0} and M_{1} are jointly expanding so they define a reasonable subdivision scheme.

Coset representation: M_{0}

Coset representation: M_{1}

The subdivision process

Sequence 000000

Initial data

M0

MO MO MO MO

MO MO

MO MO MO MO MO

MO MO MO

MO MO MO MO MO MO

The subdivision process

$$
\text { Sequence } \begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}
$$

Initial data

M1 M1 M1 M1

M1 M1 M1 M1 M1

M1 M1 M1

M1 M1 M1 M1 M1 M1

The subdivision process

Sequence 010101

Initial data

M0 M1 M0 M1

M1 M0 M1 M0 M1

M1 M0 M1

M0 M1 M0 M1 M0 M1

Multiple multiresolution analysis

The subdivision process

Sequence 101010

Initial data

M1 M0 M1 M0

M0 M1 M0

M0 M1 M0 M1 M0
M1 M0 M1 M0 M1 M0

In "Multiple MRA" one considers functions of the form

$$
\phi_{\eta}\left(M_{\epsilon} \cdot-\alpha\right), \quad \alpha \in \mathbb{Z}^{s} .
$$

In "Multiple MRA" one considers functions of the form

$$
\phi_{\eta}\left(M_{\epsilon} \cdot-\alpha\right), \quad \alpha \in \mathbb{Z}^{s} .
$$

- ϕ_{η} : limit function of subdivision

In "Multiple MRA" one considers functions of the form

$$
\phi_{\eta}\left(M_{\epsilon} \cdot-\alpha\right), \quad \alpha \in \mathbb{Z}^{s} .
$$

- ϕ_{η} : limit function of subdivision
- Role of M_{ϵ} : scale EI rotate

In "Multiple MRA" one considers functions of the form

$$
\phi_{\eta}\left(M_{\epsilon} \cdot-\alpha\right), \quad \alpha \in \mathbb{Z}^{s} .
$$

- ϕ_{η} : limit function of subdivision
- Role of M_{ϵ} : scale Ef rotate

Can we get "all rotations" by appropriate ϵ ?

In "Multiple MRA" one considers functions of the form

$$
\phi_{\eta}\left(M_{\epsilon} \cdot-\alpha\right), \quad \alpha \in \mathbb{Z}^{s} .
$$

- ϕ_{η} : limit function of subdivision
- Role of M_{ϵ} : scale Ef rotate

Can we get "all rotations" by appropriate ϵ ?
\rightarrow Slope resolution

Slope resolution

Action of:
$M_{1} M_{1}$ (blue), $M_{0} M_{1}$ (red), $M_{1} M_{0}$ (green), $M_{0} M_{0}$ (cyan) on the unit vectors

Multiple multiresolution analysis

Slope resolution

Action of:
$M_{1} M_{1} M_{1} M_{1} M_{1} M_{1}$ (blue), $M_{0} M_{1} M_{0} M_{1} M_{0} M_{1}$ (red),
$M_{1} M_{0} M_{1} M_{0} M_{1} M_{0}$ (green), $M_{0} M_{0} M_{0} M_{0} M_{0} M_{0}$ (cyan)
on the unit vectors

Multiple multiresolution analysis

Slope resolution

Can all directions, i.e., all lines through the origin, be generated by applying an appropriate M_{ϵ} to a given reference line?

Slope resolution

Given the reference line

$$
L_{x}:=\mathbb{R} x, \quad x \in \mathbb{R}^{2}
$$

and a target line

$$
L_{y}:=\mathbb{R} y, \quad y \in \mathbb{R}^{2}
$$

we ask whether there exists $\epsilon \in \mathbb{Z}_{m}^{*}$ such that

$$
L_{y} \sim M_{\epsilon} L_{x}
$$

Slope resolution

We represent lines by means of slopes, setting

$$
L(s):=\mathbb{R}\left[\begin{array}{l}
1 \\
s
\end{array}\right], \quad s \in \mathbb{R} \cup\{ \pm \infty\}
$$

where $s= \pm \infty$ corresponds to (the same) vertical line.

Slope resolution

We represent lines by means of slopes, setting

$$
L(s):=\mathbb{R}\left[\begin{array}{l}
1 \\
s
\end{array}\right], \quad s \in \mathbb{R} \cup\{ \pm \infty\}
$$

where $s= \pm \infty$ corresponds to (the same) vertical line.

Theorem

For each $s \in\left(0, \frac{1}{2}\right)$, any $s^{\prime} \in \mathbb{R}$ and any $\delta>0$ there exists
$\epsilon \in \mathbb{Z}_{m}^{*}$ such that

$$
\left|s^{\prime}-s_{\epsilon}\right|<\delta, \quad L\left(s_{\epsilon}\right)=M_{\epsilon} L_{s}
$$

Slope resolution

We represent lines by means of slopes, setting

$$
L(s):=\mathbb{R}\left[\begin{array}{l}
1 \\
s
\end{array}\right], \quad s \in \mathbb{R} \cup\{ \pm \infty\}
$$

where $s= \pm \infty$ corresponds to (the same) vertical line.

Theorem

For each $s \in\left(0, \frac{1}{2}\right)$, any $s^{\prime} \in \mathbb{R}$ and any $\delta>0$ there exists
$\epsilon \in \mathbb{Z}_{m}^{*}$ such that

$$
\left|s^{\prime}-s_{\epsilon}\right|<\delta, \quad L\left(s_{\epsilon}\right)=M_{\epsilon} L_{s}
$$

Slope resolution

We represent lines by means of slopes, setting

$$
L(s):=\mathbb{R}\left[\begin{array}{l}
1 \\
s
\end{array}\right], \quad s \in \mathbb{R} \cup\{ \pm \infty\}
$$

where $s= \pm \infty$ corresponds to (the same) vertical line.

Theorem

For each $s \in\left(0, \frac{1}{2}\right)$, any $s^{\prime} \in \mathbb{R}$ and any $\delta>0$ there exists $\epsilon \in \mathbb{Z}_{m}^{*}$ such that

$$
\left|s^{\prime}-s_{\epsilon}\right|<\delta, \quad L\left(s_{\epsilon}\right)=M_{\epsilon} L_{s}
$$

Indeed even combinations of $M_{01}=M_{0} M_{1}$ and $M_{01}=M_{1} M_{0}$ are sufficient to satisfy the claim of the theorem.

Bivariate interpolatory schemes associated to M_{0} and M_{1}

Smith factorizations of M_{0}, M_{1} :

$$
\begin{aligned}
& M_{0}=\left[\begin{array}{ll}
4 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & \\
& 3
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right], \\
& M_{1}=\left[\begin{array}{ll}
5 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & \\
& 3
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-1 & 3
\end{array}\right] .
\end{aligned}
$$

Bivariate interpolatory schemes associated to M_{0} and M_{1}

Possible choices for the ternary interpolatory schemes

- piecewise linear interpolant:

$$
b_{2}=\frac{1}{3}(\ldots, 0,1,2,3,2,1,0, \ldots)
$$

Bivariate interpolatory schemes associated to M_{0} and M_{1}

Possible choices for the ternary interpolatory schemes

- piecewise linear interpolant:

$$
b_{2}=\frac{1}{3}(\ldots, 0,1,2,3,2,1,0, \ldots)
$$

- four point scheme based on local cubic interpolation

$$
b_{2}=\frac{1}{81}(\ldots, 0,-4,-5,0,30,60,81,60,30,0,-5,-4,0, \ldots)
$$

Bivariate interpolatory schemes associated to M_{0} and M_{1}

The schemes are obtained from

$$
b_{M}^{\sharp}(z)=b_{\Sigma}^{\sharp}\left(z^{\Theta}\right)
$$

which result in the following two symbols

$$
\begin{gathered}
A_{1}^{\sharp}\left(z_{1}, z_{2}\right)=\frac{z_{1}^{-2}}{3}\left(1+z_{1}+z_{1}^{2}\right)^{2}, \\
A_{2}^{\sharp}\left(z_{1}, z_{2}\right)=-\frac{z_{1}^{-5}}{81}\left(1+z_{1}+z_{1}^{2}\right)^{4}\left(4 z_{1}^{2}-11 z_{1}+4\right),
\end{gathered}
$$

Theorem

Suppose:

- $b_{j}, j=1, \ldots$, s define univariate subdivision schemes with scaling factors $\sigma_{j} \geq 1$
- $S_{b_{j}} 1=1$.

Theorem

Suppose:

- $b_{j}, j=1, \ldots$, s define univariate subdivision schemes with scaling factors $\sigma_{j} \geq 1$
- $S_{b_{j}} 1=1$.

Then b_{M} is a convergent subdivision scheme with dilation matrix M iff the vector scheme $S_{B_{\Sigma}}$ defined by $\nabla D_{\left(\Theta^{\prime} \Theta\right)^{-1}} S_{b_{\Sigma}}=S_{B_{\Sigma}} \nabla$ satisfies

$$
1>\rho_{\infty}\left(S_{B_{\Sigma}} \mid \nabla\right):=\lim _{n \rightarrow \infty} \sup _{\|\nabla c\| \leq 1}\left\|S_{B_{\Sigma}}^{n} \nabla c\right\|^{1 / n}
$$

where

- D_{Λ} is the dilation operator $D_{\Lambda} c=c(\Lambda \cdot)$
- ∇ is the forward difference operator

$$
\nabla c=\left[c\left(\cdot+\epsilon_{j}\right)-c: j=1, \ldots, s\right]
$$

$$
A_{1}^{\sharp}\left(z_{1}, z_{2}\right)=\frac{z_{1}^{-2}}{3}\left(1+z_{1}+z_{1}^{2}\right)^{2}, M_{0}=\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]
$$

$$
A_{1}^{\sharp}\left(z_{1}, z_{2}\right)=\frac{z_{1}^{-2}}{3}\left(1+z_{1}+z_{1}^{2}\right)^{2}, M_{1}=\left[\begin{array}{ll}
2 & -1 \\
1 & -2
\end{array}\right]
$$

$$
\begin{aligned}
& A_{2}^{\sharp}\left(z_{1}, z_{2}\right)=-\frac{z_{1}^{-5}}{81}\left(1+z_{1}+z_{1}^{2}\right)^{4}\left(4 z_{1}^{2}-11 z_{1}+4\right), \\
& M_{0}=\left[\begin{array}{cc}
1 & 1 \\
1 & -2
\end{array}\right]
\end{aligned}
$$

Multiple multiresolution analysis

$$
\begin{aligned}
& A_{2}^{\sharp}\left(z_{1}, z_{2}\right)=-\frac{z_{1}^{-5}}{81}\left(1+z_{1}+z_{1}^{2}\right)^{4}\left(4 z_{1}^{2}-11 z_{1}+4\right), \\
& M_{1}=\left[\begin{array}{ll}
2 & -1 \\
1 & -2
\end{array}\right]
\end{aligned}
$$

Filter bank associated to M_{0}

$A_{1}^{\sharp}\left(z_{1}, z_{2}\right)=\frac{z_{1}^{-2}}{3}\left(1+z_{1}+z_{1}^{2}\right)^{2}$ and M_{0}
Analysis

$$
\left[\right] \quad\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -\frac{2}{3} & 1 & 0 \\
0 & -\frac{1}{3} \\
0 & 0 & 0 & 0
\end{array} 0 \quad\left[\right]\right.
$$

Synthesis

$$
\left[\begin{array}{ccccc}
0 & 0 & G_{0} & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1 & \frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccccc}
0 & 0 & G_{1} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{ccccc}
0 & 0 & G_{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Filter bank associated to M_{1}

$A_{1}^{\sharp}\left(z_{1}, z_{2}\right)=\frac{z_{1}^{-2}}{3}\left(1+z_{1}+z_{1}^{2}\right)^{2}$ and M_{1}
Analysis

$$
\left[\begin{array}{lllll}
0 & F_{0} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{ccccc}
0 & 0 & F_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-\frac{1}{3} & 0 & 1 & -\frac{2}{3} & 0
\end{array}\right] \quad\left[\begin{array}{ccccc}
0 & 0 & F_{2} \\
0 & -\frac{2}{3} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Synthesis

$$
\left[\begin{array}{ccccc}
0 & 0 & G_{0} & 0 & 0 \\
\frac{1}{3} & \frac{2}{3} & 1 & \frac{2}{3} & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccccc}
0 & 0 & G_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccccc}
0 & 0 & G_{2} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Grazie!

