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Expanding matrices

Let M ∈ Zs×s be an expanding matrix, i.e.
all its its eigenvalues are larger than one in modulus
‖M−n‖ → 0

⇓

as n increases, M−nZs → Rs

M defines a sampling lattice
d = | det(M)| is the number of cosets
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The cosets have the form
MZs + ξj , j = 0, . . . , d − 1

where
ξj ∈ M[0, 1)s

⋂
Zs

are the coset representatives.
It is well known that

Zs =
d−1⋃
j=0

(ξj + MZs)
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Separable/Nonseparable

M =

[
2 0

0 2

]
M =

[
1 1

−1 1

]
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Isotropy/Anisotropy

M =

[
1 1

−1 1

]
M =

[
1 1

1 −2

]
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Down/upsampling

Let c ∈ `(Zs) be a given signal.

Downsampling operator ↓M associated to M :
↓M c = c(M·)

Upsampling operator ↑M associated to M :

↑M c(α) =

{
c(M−1α) if α ∈ MZs

0 otherwise
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Filtering

Filter operator F :
Fc = f ∗ c =

∑
α∈Zs

f (· − α)c(α)

where f = F δ = (f (α) : α ∈ Zs) is the impulse
response of F
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d-channel filter bank
Critically sampled: d = | detM|

Analysis filter:
F : `(Zs)→ `d(Zs)

Fc = [↓M Fjc : j = 0, . . . , d − 1]

Synthesis filter:
G : `d(Zs)→ `(Zs)

G [cj : j = 0, . . . , d − 1] =
d∑
j=0

Gj ↑M cj ,

Perfect reconstruction:
GF = I
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d-channel filter bank

By perfect reconstruction:

c
F→


c1
0

c1
1...

c1d−1

 =

[
c1

d
1

]
G→ c

F0,G0 −→ low-pass
Fj ,Gj , j > 0 −→ high-pass
Multiresolution decomposition . . .
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Iterated filter bank
MRA structure...

c

c1

c2

c3

d
3

d
2

d
1
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Observe that
Gj ↑ c = gj∗ ↑M c =

∑
α∈Zs

gj(· −Mα) c(α),

i.e. all reconstruction filters act as stationary subdivision
operators with dilation matrix M .
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Stationary subdivision

Subdivision operator:
S := Sa,M : `(Zs)→ `(Zs)

defined by
c (n+1) := Sc (n) =

∑
α∈Zs

a(· −Mα)c (n)(α)

where M ∈ Zs×s is expanding
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Multiple subdivision
Consider a set of a finite number of dilation matrices

(Mj : j ∈ Zm)

where Zm = {0, . . . ,m − 1} for m ∈ N.

Associate a mask to each Mj :
aj ∈ ` (Zs) , j ∈ Zm

.
Together, aj and Mj define m stationary subdivision
operators

Sj := Saj ,Mj
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Multiple subdivision

Call
ε = (ε1, . . . , εn) ∈ Zn

m

a digit sequence of length n =: |ε|.

We collect all finite digit sequences in
Z∗m :=

⋃
n∈N

Zn
m

and extend |ε| canonically to ε ∈ Z∗m.
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Multiple subdivision
Consider the subdivision operator:

Sε = Sεn · · · Sε1 .

For any ε ∈ Z∗m there exists a mask
aε = Sεδ

such that
Sεc =

∑
α∈Zs

aε (· −Mεα) c(α), c ∈ `(Zs),

where
Mε := Mεn · · ·Mε1 , n = |ε|.
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Multiple subdivision
Values of Sεc = approximations to a function on M−1ε Zs .

In order for M−1ε Zs to tend to Rs :

each matrix Mj must be expanding,
all the matrices Mε must be expanding

⇓
The matrices Mε must all be jointly expanding i.e.

lim
|ε|→∞

∥∥M−1ε ∥∥ = 0, (1)
or, equivalently,

ρ
(
M−1j : j ∈ Zm

)
< 1

(joint spectral radius condition)
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Multiple subdivision

Example: adaptive subdivision/discrete shearlets
Based on:

parabolic scaling
[

2

4

]
shear

[
1 1

1

]
What about other choices?
Case study . . .
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Multiple d-channel filter bank
For each k ∈ Zm

Analysis filters: Fk : `(Zs)→ `d(Zs) acting as
Fkc = [↓Mk

Fk,jc : j = 0, . . . , d − 1]

Synthesis filters: Gk : `d(Zs)→ `(Zs), acting as

Gk [cj : j = 0, . . . , d − 1] =
d∑
j=0

Gk,j ↑Mk
cj ,

Perfect reconstruction:
GkFk = I , k ∈ Zm
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c

M0

c1
0

M0

c2
00

d
2

00

M1

c2
01

d
2

01

d
1

0

M1

c1
1

M0

c2
10

d
2

10

M1

c2
11

d
2

11

d
1

1
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Symbol notation

Given a finitely supported a

Symbol:
a](z) :=

∑
α∈Zs

a(α)zα

Subsymbols:
a]ξj (z) :=

∑
α∈Zs

a(Mα + ξj)z
α, j = 0, . . . , d − 1
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Filter bank construction

Start from the lowpass reconstruction filter G0 associated
to a mask a.

G0 can be completed to a perfect reconstruction filter
bank if and only if a is unimodular:

algebraic property
involved in general
simple for interpolatory schemes

In 1D −→ a](z) and a](−z) have no common zeros.
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Filter bank construction
Simplest filter bank −→ lazy filters: translation operators

τξi , i = 0, . . . , d − 1

In fact

I =
d−1∑
i=0

τξi ↑ ↓ τ−ξi ,

It:

decomposes a signal modulo M in the analysis
recombines the components in the synthesis
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Filter bank construction

If a defines an interpolatory subdivision scheme, then G0can be easily completed to a perfect reconstruction filter
bank.

A subdivision operator Sa with dilation matrix M is called
interpolatory if

Sac(M·) = c , for any c ∈ `(Zs)
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Prediction–correction scheme

The completion of an interpolatory a yields the
prediction–correction scheme

Analysis part:
F0 = I , Fj = τ−ξj (I − Sa ↓M) , j = 1, . . . , d − 1,

Synthesis part:
G0 and Gj = τξj , j = 1, . . . , d − 1.
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Prediction–correction scheme

In terms of symbols:
F ]
0
(z) = 1, F ]j (z) = zξj − a]ξj (z

−M), j = 1, . . . , d − 1

G ]
0
(z) = a](z), F ]j (z) = zξj , j = 1, . . . , d − 1
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A special construction of s-variate
interpolatory schemes

Let
M = ΘΣΘ′

be a Smith factorization of the expanding matrix M , where

Σ =


σ1

σ2 . . .
σs


and Θ, Θ′ unimodular
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A special construction of s-variate
interpolatory schemes

1 Find s univariate interpolatory subdivision schemes
bj , j = 1, . . . , s

with scaling factors or “arity” σj ;

2 Consider the tensor product
bΣ :=

s⊗
j=1

bj , bΣ(α) =
s∏

j=1

bj (αj) , α ∈ Zs ,

which is an interpolatory subdivision scheme for the
diagonal scaling matrix Σ, i.e.

bΣ(Σ·) = δ
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A special construction of s-variate
interpolatory schemes

3 Set
bM := bΣ(Θ−1·)

Then:
bM defines an interpolatory scheme for the dilation matrix
M .
In terms of symbols:

b]M(z) = b]Σ
(
zΘ
)
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A special choice of scaling matrices

We are considering the matrices
M0 :=

[
1 1

1 −2

]

M1 := S1M0 =

[
2 −1
1 −2

]
,

where we make use of the shear matrices

Sj :=

[
1 j

0 1

]
, j ∈ Z.
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A special choice of scaling matrices

It is easily verified that
detM0 = detM1 = −3

M0 is anisotropic (eigenvalues: 1

2

(
1±
√
13
)

M1 is isotropic (eigenvalues: ±√3)
M0 and M1 are jointly expanding so they define a
reasonable subdivision scheme.

Multiple multiresolution analysis
N



A special choice of scaling matrices

It is easily verified that
detM0 = detM1 = −3
M0 is anisotropic (eigenvalues: 1

2

(
1±
√
13
)

M1 is isotropic (eigenvalues: ±√3)
M0 and M1 are jointly expanding so they define a
reasonable subdivision scheme.

Multiple multiresolution analysis
N



A special choice of scaling matrices

It is easily verified that
detM0 = detM1 = −3
M0 is anisotropic (eigenvalues: 1

2

(
1±
√
13
)

M1 is isotropic (eigenvalues: ±√3)

M0 and M1 are jointly expanding so they define a
reasonable subdivision scheme.

Multiple multiresolution analysis
N



A special choice of scaling matrices

It is easily verified that
detM0 = detM1 = −3
M0 is anisotropic (eigenvalues: 1

2

(
1±
√
13
)

M1 is isotropic (eigenvalues: ±√3)
M0 and M1 are jointly expanding so they define a
reasonable subdivision scheme.

Multiple multiresolution analysis
N



Coset representation: M0
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Coset representation: M1
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The subdivision process

Initial data

M0 M0 M0 M0 M0 M0 

M0 M0 M0 M0 M0 M0 M0 M0 M0 

 Sequence 0  0  0  0  0  0

M0 M0 M0 M0 M0 M0 
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The subdivision process

Initial data
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In ”Multiple MRA” one considers functions of the form
φη(Mε · −α), α ∈ Zs .

φη : limit function of subdivision
Role of Mε: scale & rotate

Can we get ”all rotations” by appropriate ε?
→ Slope resolution
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Slope resolution
Action of:

M1M1 (blue), M0M1 (red), M1M0 (green), M0M0 (cyan)
on the unit vectors
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Slope resolution
Action of:

M1M1M1M1M1M1 (blue), M0M1M0M1M0M1 (red),
M1M0M1M0M1M0 (green), M0M0M0M0M0M0 (cyan)
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Slope resolution

Can all directions, i.e., all lines through the origin, be
generated by applying an appropriate Mε to a given
reference line?
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Slope resolution

Given the reference line
Lx := R x , x ∈ R2

and a target line
Ly := R y , y ∈ R2

we ask whether there exists ε ∈ Z∗m such that
Ly ∼ MεLx .
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Slope resolution
We represent lines by means of slopes, setting

L(s) := R
[

1

s

]
, s ∈ R ∪ {±∞},

where s = ±∞ corresponds to (the same) vertical line.

Theorem
For each s ∈ (0, 1

2
), any s ′ ∈ R and any δ > 0 there exists

ε ∈ Z∗m such that

|s ′ − sε| < δ, L(sε) = MεLs .

Indeed even combinations of M01 = M0M1 and
M01 = M1M0 are sufficient to satisfy the claim of the
theorem.

Multiple multiresolution analysis
N



Slope resolution
We represent lines by means of slopes, setting

L(s) := R
[

1

s

]
, s ∈ R ∪ {±∞},

where s = ±∞ corresponds to (the same) vertical line.
Theorem
For each s ∈ (0, 1

2
), any s ′ ∈ R and any δ > 0 there exists

ε ∈ Z∗m such that

|s ′ − sε| < δ, L(sε) = MεLs .

Indeed even combinations of M01 = M0M1 and
M01 = M1M0 are sufficient to satisfy the claim of the
theorem.
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Bivariate interpolatory schemes
associated to M0 and M1

Smith factorizations of M0, M1:
M0 =

[
4 1

1 0

] [
1

3

] [
1 −2
−1 3

]
,

M1 =

[
5 1

1 0

] [
1

3

] [
1 −2
−1 3

]
.
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Bivariate interpolatory schemes
associated to M0 and M1

Possible choices for the ternary interpolatory schemes
piecewise linear interpolant:

b2 =
1

3
(. . . , 0, 1, 2, 3, 2, 1, 0, . . . )

four point scheme based on local cubic interpolation
b2 =

1

81
(. . . , 0,−4,−5, 0, 30, 60, 81, 60, 30, 0,−5,−4, 0, . . . )
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Bivariate interpolatory schemes
associated to M0 and M1

The schemes are obtained from
b]M(z) = b]Σ

(
zΘ
)

which result in the following two symbols

A]
1
(z1, z2) =

z−2
1

3

(
1 + z1 + z2

1

)2
,

A]
2
(z1, z2) = −z−5

1

81

(
1 + z1 + z2

1

)4 (
4z2

1
− 11z1 + 4

)
,

Multiple multiresolution analysis
N



Theorem
Suppose:

bj , j = 1, . . . , s define univariate subdivision schemes
with scaling factors σj ≥ 1

Sbj1 = 1.

Then bM is a convergent subdivision scheme with dilation
matrix M iff the vector scheme SBΣ

defined by
∇D(Θ′Θ)−1SbΣ

= SBΣ
∇ satisfies

1 > ρ∞ (SBΣ
| ∇) := lim

n→∞
sup
‖∇c‖≤1

∥∥Sn
BΣ
∇c
∥∥1/n .

where

DΛ is the dilation operator DΛc = c(Λ·)
∇ is the forward difference operator
∇c = [c(·+ εj)− c : j = 1, . . . , s]
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A]
1
(z1, z2) =

z−2
1

3
(1 + z1 + z2

1
)
2, M0 =

[
1 1

1 −2

]

−2

0

2

−2

0

2

0

1
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A]
1
(z1, z2) =

z−2
1

3
(1 + z1 + z2

1
)
2, M1 =

[
2 −1
1 −2

]

−2

0

2

−2

0

2

0

1
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A]
2
(z1, z2) = − z−5

1

81
(1 + z1 + z2

1
)
4

(4z2
1
− 11z1 + 4),
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[
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Filter bank associated to M0

A]
1
(z1, z2) =

z−2
1

3
(1 + z1 + z2

1
)
2 and M0

Analysis
F0 F1 F2 0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

  0 0 0 0 0

0 − 2

3
1 0 − 1

3

0 0 0 0 0

  0 0 0 0 0

0 0 0 0 0

− 1

3
0 1 − 2

3
0


Synthesis

G0 G1 G2 0 0 0 0 0
1

3

2

3
1

2

3

1

3

0 0 0 0 0

  0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

  0 0 0 0 0

0 0 0 0 0

0 0 0 1 0
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Filter bank associated to M1

A]
1
(z1, z2) =

z−2
1

3
(1 + z1 + z2

1
)
2 and M1

Analysis
F0 F1 F2 0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

  0 0 0 0 0

0 0 0 0 0

− 1

3
0 1 − 2

3
0

  0 0 0 0 0

0 − 2

3
1 0 − 1

3

0 0 0 0 0


Synthesis

G0 G1 G2 0 0 0 0 0
1

3

2

3
1

2

3

1

3

0 0 0 0 0

  0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

  0 0 0 0 0

0 0 0 1 0

0 0 0 0 0
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c

M0

c10

M0

c200

d2
00

M1

c201

d2
01

d1
0

M1

c11

M0

c210

d2
10

M1

c211

d2
11

d1
1

1
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Grazie!
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