Using a Hilbert-Schmidt SVD for Stable Kernel Computations

Greg Fasshauer* Mike McCourt Roberto Cavoretto

Department of Applied Mathematics
Illinois Institute of Technology
Partially supported by NSF Grant DMS-1115392

MAIA 2013
Multivariate Approximation and Interpolation with Applications
Erice, Sicily
Sept.25, 2013

Outline

(1) Fundamental Problem
(2) Hilbert-Schmidt SVD and General RBF-QR Algorithm
(3) Implementation for Compact Matérn Kernels
(4) Application 1: Basic Function Approximation
(5) Application 2: Optimal Shape Parameters via MLE

6 Summary

Kernel-based Interpolation

Given data $\left(\boldsymbol{x}_{i}, y_{i}\right)_{i=1}^{N}$, use a data-dependent linear function space

$$
s(\boldsymbol{x})=\sum_{j=1}^{N} c_{j} K\left(\boldsymbol{x}, \boldsymbol{x}_{j}\right), \quad \boldsymbol{x} \in \Omega \subseteq \mathbb{R}^{d}
$$

with $K: \Omega \times \Omega \rightarrow \mathbb{R}$ a positive definite reproducing kernel.

Kernel-based Interpolation

Given data $\left(\boldsymbol{x}_{i}, y_{i}\right)_{i=1}^{N}$, use a data-dependent linear function space

$$
s(\boldsymbol{x})=\sum_{j=1}^{N} c_{j} K\left(\boldsymbol{x}, \boldsymbol{x}_{j}\right), \quad \boldsymbol{x} \in \Omega \subseteq \mathbb{R}^{d}
$$

with $K: \Omega \times \Omega \rightarrow \mathbb{R}$ a positive definite reproducing kernel.
To find c_{j} solve the interpolation equations

$$
s\left(\boldsymbol{x}_{i}\right)=y_{i}, \quad i=1, \ldots, N,
$$

which leads to a linear system $\mathrm{Kc}=\boldsymbol{y}$ with symmetric positive definite - often ill-conditioned - system matrix

$$
\mathrm{K}_{i j}=K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right), \quad i, j=1, \ldots, N .
$$

Common Complaints About Kernels

Kernel methods suffer from

- numerical instability,
- the presence of free parameter(s),
- high computational cost.

Common Complaints About Kernels

Kernel methods suffer from

- numerical instability,
- the presence of free parameter(s),
- high computational cost.

In this talk we will address the first two issues:

- We obtain stable methods by working with a "better" basis which leads to a Hilbert-Schmidt SVD of the matrix K.
- Free parameters can be "optimally" chosen by using statistical methods such as MLE, which are significantly enhanced by using the HS-SVD.

Hilbert-Schmidt Theory

We assume that we know a Hilbert-Schmidt expansion (or Mercer series expansion) of our kernel K :

$$
K(\boldsymbol{x}, \boldsymbol{z})=\sum_{n=1}^{\infty} \lambda_{n} \varphi_{n}(\boldsymbol{x}) \varphi_{n}(\boldsymbol{z})
$$

where $\left(\lambda_{n}, \varphi_{n}\right)$ are orthonormal eigenpairs of a Hilbert-Schmidt integral operator $\mathcal{T}_{K}: L_{2}(\Omega, \rho) \rightarrow L_{2}(\Omega, \rho)$ defined as

$$
\left(\mathcal{T}_{K} f\right)(\boldsymbol{x})=\int_{\Omega} K(\boldsymbol{x}, \boldsymbol{z}) f(\boldsymbol{z}) \rho(\boldsymbol{z}) \mathrm{d} \boldsymbol{z}
$$

where $\Omega \subset \mathbb{R}^{d}$ and $\|K\|_{L_{2}(\Omega \times \Omega, \rho \times \rho)}<\infty$.

Gaussian Eigenfunctions

[Rasmussen/Williams (2006), F./McCourt (2012)]

$$
\mathrm{e}^{-\varepsilon^{2}(x-z)^{2}}=\sum_{n=0}^{\infty} \lambda_{n} \varphi_{n}(x) \varphi_{n}(z)
$$

Gaussian Eigenfunctions

[Rasmussen/Williams (2006), F./McCourt (2012)]

$$
\mathrm{e}^{-\varepsilon^{2}(x-z)^{2}}=\sum_{n=0}^{\infty} \lambda_{n} \varphi_{n}(x) \varphi_{n}(z)
$$

where

$$
\lambda_{n}=\sqrt{\frac{\alpha^{2}}{\alpha^{2}+\delta^{2}+\varepsilon^{2}}}\left(\frac{\varepsilon^{2}}{\alpha^{2}+\delta^{2}+\varepsilon^{2}}\right)^{n}, \quad \varphi_{n}(x)=\gamma_{n} \mathrm{e}^{-\delta^{2} x^{2}} H_{n}(\alpha \beta x)
$$

with H_{n} Hermite polynomials,

$$
\beta=\left(1+\left(\frac{2 \varepsilon}{\alpha}\right)^{2}\right)^{\frac{1}{4}}, \quad \gamma_{n}=\sqrt{\frac{\beta}{2^{n} \Gamma(n+1)}}, \quad \delta^{2}=\frac{\alpha^{2}}{2}\left(\beta^{2}-1\right)
$$

and $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ (ρ-weighted) L_{2}-orthonormal, i.e.,

$$
\int_{-\infty}^{\infty} \varphi_{m}(x) \varphi_{n}(x) \rho(x) \mathrm{d} x=\delta_{m n}, \quad \rho(x)=\frac{\alpha}{\sqrt{\pi}} \mathrm{e}^{-\alpha^{2} x^{2}}
$$

Multivariate Eigenfunction Expansion

Use tensor product form of the Gaussian kernel

$$
\begin{array}{r}
K(\boldsymbol{x}, \boldsymbol{z})=\mathrm{e}^{-\varepsilon^{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}=\mathrm{e}^{-\sum_{\ell=1}^{d} \varepsilon^{2}\left(x_{\ell}-z_{\ell}\right)^{2}}}=\prod_{\ell=1}^{d} \mathrm{e}^{-\varepsilon^{2}\left(x_{\ell}-z_{\ell}\right)^{2}} \\
\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
\end{array}
$$

Multivariate Eigenfunction Expansion

Use tensor product form of the Gaussian kernel

$$
\begin{array}{r}
K(\boldsymbol{x}, \boldsymbol{z})=\mathrm{e}^{-\varepsilon^{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}=\mathrm{e}^{-\sum_{\ell=1}^{d} \varepsilon_{\ell}^{2}\left(x_{\ell}-z_{\ell}\right)^{2}}}=\prod_{\ell=1}^{d} \mathrm{e}^{-\varepsilon_{\ell}^{2}\left(x_{\ell}-z_{\ell}\right)^{2}} \\
\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
\end{array}
$$

Multivariate Eigenfunction Expansion

Use tensor product form of the Gaussian kernel

$$
\begin{aligned}
K(\boldsymbol{x}, \boldsymbol{z}) & =\mathrm{e}^{-\varepsilon^{2}\|\boldsymbol{x}-\boldsymbol{z}\|_{2}^{2}}=\mathrm{e}^{-\sum_{\ell=1}^{d} \varepsilon_{\ell}^{2}\left(x_{\ell}-z_{\ell}\right)^{2}}=\prod_{\ell=1}^{d} \mathrm{e}^{-\varepsilon_{\ell}^{2}\left(x_{\ell}-z_{\ell}\right)^{2}} \\
& =\sum_{\boldsymbol{n} \in \mathbb{N}^{d}} \lambda_{\boldsymbol{n}} \varphi_{\boldsymbol{n}}(\boldsymbol{x}) \varphi_{\boldsymbol{n}}(\boldsymbol{z}), \quad \boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d},
\end{aligned}
$$

where

$$
\lambda_{\boldsymbol{n}}=\prod_{\ell=1}^{d} \lambda_{n_{\ell}}, \quad \varphi_{\boldsymbol{n}}(\boldsymbol{x})=\prod_{\ell=1}^{d} \varphi_{n_{\ell}}\left(x_{\ell}\right) .
$$

Different shape parameters ε_{ℓ} for different space dimensions allowed (i.e., K may be anisotropic).

Fundamental idea: use the eigen-expansion of the kernel K to rewrite the matrix K from the interpolation problem as

$$
\left.\begin{array}{c}
\mathrm{K}=\left(\begin{array}{ccc}
K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right) & \ldots & K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{N}\right) \\
\vdots & & \vdots \\
K\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{1}\right) & \ldots & K\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{N}\right)
\end{array}\right) \\
=\left(\begin{array}{ccc}
\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{1}\right) \\
\vdots & & \vdots \\
\varphi_{1}\left(\boldsymbol{x}_{N}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{N}\right)
\end{array} \quad \ldots\right.
\end{array}\right)\left(\begin{array}{cccc}
\lambda_{1} & & & \\
& \ddots & & \\
& & \lambda_{M} & \\
& & & \ddots
\end{array}\right)\left(\begin{array}{ccc}
\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{1}\left(\boldsymbol{x}_{N}\right) \\
\vdots & & \vdots \\
\varphi_{M}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{N}\right) \\
\vdots & & \vdots
\end{array}\right) .
$$

But we can't compute with infinite matrices, so we choose a truncation value M (supported by $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$, more later) and rewrite

$$
\begin{gathered}
\mathrm{K}=\left(\begin{array}{ccc}
K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right) & \ldots & K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{N}\right) \\
\vdots & & \vdots \\
K\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{1}\right) & \ldots & K\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{N}\right)
\end{array}\right) \\
=\underbrace{\left(\begin{array}{cccc}
\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{1}\right) \\
\vdots & & \vdots \\
\varphi_{1}\left(\boldsymbol{x}_{N}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{N}\right)
\end{array}\right)}_{=\Phi} \underbrace{\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{M}
\end{array}\right)}_{=\Lambda} \underbrace{\left(\begin{array}{ccc}
\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{1}\left(\boldsymbol{x}_{N}\right) \\
\vdots & & \vdots \\
\varphi_{M}\left(\boldsymbol{x}_{1}\right) & \ldots & \vdots \\
& \varphi_{M}\left(\boldsymbol{x}_{N}\right)
\end{array}\right)}_{=\Phi^{T}}
\end{gathered}
$$

But we can't compute with infinite matrices, so we choose a truncation value M (supported by $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$, more later) and rewrite

$$
\begin{gathered}
\mathrm{K}=\left(\begin{array}{ccc}
K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right) & \ldots & K\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{N}\right) \\
\vdots & & \vdots \\
K\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{1}\right) & \ldots & K\left(\boldsymbol{x}_{N}, \boldsymbol{x}_{N}\right)
\end{array}\right) \\
=\underbrace{\left(\begin{array}{cccc}
\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{1}\right) \\
\vdots & & \vdots \\
\varphi_{1}\left(\boldsymbol{x}_{N}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{N}\right)
\end{array}\right)}_{=\Phi} \underbrace{\left(\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{M}
\end{array}\right)}_{=\Lambda} \underbrace{\left(\begin{array}{ccc}
\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{1}\left(\boldsymbol{x}_{N}\right) \\
\vdots & & \vdots \\
\varphi_{M}\left(\boldsymbol{x}_{1}\right) & \ldots & \vdots \\
& \varphi_{M}\left(\boldsymbol{x}_{N}\right)
\end{array}\right)}_{=\Phi^{T}}
\end{gathered}
$$

Since

$$
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)=\sum_{n=1}^{\infty} \lambda_{n} \varphi_{n}\left(\boldsymbol{x}_{i}\right) \varphi_{n}\left(\boldsymbol{x}_{j}\right) \approx \sum_{n=1}^{M} \lambda_{n} \varphi_{n}\left(\boldsymbol{x}_{i}\right) \varphi_{n}\left(\boldsymbol{x}_{j}\right)
$$

accurate reconstruction of all entries of K will likely require $M>N$.

The matrix K is often ill-conditioned, so forming K and computing with it is not a good idea.

The matrix K is often ill-conditioned, so forming K and computing with it is not a good idea.

The eigen-decomposition

$$
\mathrm{K}=\Phi \wedge \Phi^{T}
$$

provides an accurate (elementwise) approximation of K without ever forming it.

The matrix K is often ill-conditioned, so forming K and computing with it is not a good idea.

The eigen-decomposition

$$
\mathrm{K}=\Phi \wedge \Phi^{T}
$$

provides an accurate (elementwise) approximation of K without ever forming it.

However, it is not recommended to directly use this decomposition either since all of the ill-conditioning associated with K is still present sitting in the matrix \wedge.

The matrix K is often ill-conditioned, so forming K and computing with it is not a good idea.

The eigen-decomposition

$$
\mathrm{K}=\Phi \wedge \Phi^{T}
$$

provides an accurate (elementwise) approximation of K without ever forming it.

However, it is not recommended to directly use this decomposition either since all of the ill-conditioning associated with K is still present sitting in the matrix \wedge.

We now use mostly standard numerical linear algebra to isolate some of this ill-conditioning and develop the Hilbert-Schmidt SVD and a general RBF-QR algorithm.

Details of the Hilbert-Schmidt SVD

Assume $M>N$, so that Φ is "short and fat" and partition Φ :

$$
\left(\begin{array}{cccccc}
\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \cdots & \varphi_{N}\left(\boldsymbol{x}_{1}\right) & \varphi_{N+1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{1}\right) \\
\vdots & & \vdots & \vdots & & \vdots \\
\varphi_{1}\left(\boldsymbol{x}_{N}\right) & \cdots & \varphi_{N}\left(\boldsymbol{x}_{N}\right) & \varphi_{N+1}\left(\boldsymbol{x}_{N}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{N}\right)
\end{array}\right)=\left(\begin{array}{ll}
\underbrace{}_{N \times N} & \underbrace{\Phi_{2}}_{N \times(M-N)}
\end{array}\right)
$$

Details of the Hilbert-Schmidt SVD

Assume $M>N$, so that Φ is "short and fat" and partition Φ :
$\left(\begin{array}{cccccc}\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \cdots & \varphi_{N}\left(\boldsymbol{x}_{1}\right) & \varphi_{N+1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{1}\right) \\ \vdots & & \vdots & \vdots & & \vdots \\ \varphi_{1}\left(\boldsymbol{x}_{N}\right) & \cdots & \varphi_{N}\left(\boldsymbol{x}_{N}\right) & \varphi_{N+1}\left(\boldsymbol{x}_{N}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{N}\right)\end{array}\right)=\left(\begin{array}{ll}\underbrace{}_{N \times N} & \underbrace{\Phi_{2}}_{N \times(M-N)}\end{array}\right)$
Then

$$
\mathrm{K}=\Phi \Lambda \Phi^{T}
$$

Details of the Hilbert-Schmidt SVD

Assume $M>N$, so that Φ is "short and fat" and partition Φ :
$\left(\begin{array}{cccccc}\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{N}\left(\boldsymbol{x}_{1}\right) & \varphi_{N+1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{1}\right) \\ \vdots & & \vdots & \vdots & & \vdots \\ \varphi_{1}\left(\boldsymbol{x}_{N}\right) & \ldots & \varphi_{N}\left(\boldsymbol{x}_{N}\right) & \varphi_{N+1}\left(\boldsymbol{x}_{N}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{N}\right)\end{array}\right)=\left(\begin{array}{ll}\underbrace{\Phi_{1}}_{N \times N} & \underbrace{\Phi_{2}}_{N \times(M-N)}\end{array}\right)$
Then

$$
\begin{aligned}
\mathrm{K} & =\Phi \Lambda \Phi^{T} \\
& =\Phi\left(\begin{array}{ll}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right)\binom{\Phi_{1}^{T}}{\Phi_{2}^{T}}
\end{aligned}
$$

Details of the Hilbert-Schmidt SVD

Assume $M>N$, so that Φ is "short and fat" and partition Φ :
$\left(\begin{array}{cccccc}\varphi_{1}\left(\boldsymbol{x}_{1}\right) & \cdots & \varphi_{N}\left(\boldsymbol{x}_{1}\right) & \varphi_{N+1}\left(\boldsymbol{x}_{1}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{1}\right) \\ \vdots & & \vdots & \vdots & & \vdots \\ \varphi_{1}\left(\boldsymbol{x}_{N}\right) & \cdots & \varphi_{N}\left(\boldsymbol{x}_{N}\right) & \varphi_{N+1}\left(\boldsymbol{x}_{N}\right) & \ldots & \varphi_{M}\left(\boldsymbol{x}_{N}\right)\end{array}\right)=\left(\begin{array}{ll}\underbrace{}_{N \times N} & \underbrace{\Phi_{2}}_{N \times(M-N)}\end{array}\right)$
Then

$$
\begin{aligned}
\mathrm{K} & =\Phi \wedge \Phi^{T} \\
& =\Phi\left(\begin{array}{ll}
\Lambda_{1} & \\
& \Lambda_{2}
\end{array}\right)\binom{\Phi_{1}^{T}}{\Phi_{2}^{T}} \\
& =\underbrace{\Phi\binom{\mathrm{I}_{N}}{\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}}}_{=\Psi} \underbrace{\Lambda_{1} \Phi_{1}^{T}}_{=\mathrm{M}}
\end{aligned}
$$

There are at least two ways to interpret the Hilbert-Schmidt SVD

$$
\mathrm{K}=\Psi \Lambda_{1} \Phi_{1}^{T}
$$

There are at least two ways to interpret the Hilbert-Schmidt SVD

$$
\mathrm{K}=\Psi \Lambda_{1} \Phi_{1}^{T}
$$

- We've found an invertible $M=\Lambda_{1} \Phi_{1}^{T}$ such that $\psi=K^{-1}$ is better conditioned than K "better basis".

There are at least two ways to interpret the Hilbert-Schmidt SVD

$$
\mathrm{K}=\Psi \Lambda_{1} \Phi_{1}^{T}
$$

- We've found an invertible $M=\Lambda_{1} \Phi_{1}^{T}$ such that $\psi=K^{-1}$ is better conditioned than K \rightsquigarrow "better basis".
- We've diagonalized the matrix K, i.e.,

$$
\mathrm{K}=\Psi \Lambda_{1} \Phi_{1}^{T}
$$

where

- Λ_{1} is a diagonal matrix of Hilbert-Schmidt singular values,
- ψ and Φ_{1} are matrices generated by orthogonal eigenfunctions (but not orthogonal matrices).

There are at least two ways to interpret the Hilbert-Schmidt SVD

$$
\mathrm{K}=\Psi \Lambda_{1} \Phi_{1}^{T}
$$

- We've found an invertible $M=\Lambda_{1} \Phi_{1}^{T}$ such that $\psi=K^{-1}$ is better conditioned than K \rightsquigarrow "better basis".
- We've diagonalized the matrix K, i.e.,

$$
\mathrm{K}=\Psi \Lambda_{1} \Phi_{1}^{T}
$$

where

- Λ_{1} is a diagonal matrix of Hilbert-Schmidt singular values,
- ψ and Φ_{1} are matrices generated by orthogonal eigenfunctions (but not orthogonal matrices).

Remark

The matrix ψ is the same for both interpretations.

- It can be computed stably.
- We get a well-conditioned linear system $\Psi \boldsymbol{b}=\boldsymbol{y}$ (where $\boldsymbol{b}=\mathrm{Mc}$) for the interpolation problem.

Taking a closer look at the matrix Ψ, we see that

$$
\begin{aligned}
\Psi & =\left(\Phi_{1} \Phi_{2}\right)\binom{\mathrm{I}_{N}}{\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}} \\
& =\Phi_{1}+\Phi_{2}\left[\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}\right]
\end{aligned}
$$

We can interpret this as having a new basis $\psi(\cdot)^{T}=\left(\psi_{1}(\cdot), \ldots, \psi_{N}(\cdot)\right)$ for the interpolation space span $\left\{K\left(\cdot, \boldsymbol{x}_{1}\right), \ldots, K\left(\cdot, \boldsymbol{x}_{N}\right\}\right\}$ consisting of the appropriately corrected first N eigenfunctions:

Taking a closer look at the matrix Ψ, we see that

$$
\begin{aligned}
\Psi & =\left(\Phi_{1} \Phi_{2}\right)\binom{I_{N}}{\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}} \\
& =\Phi_{1}+\Phi_{2}\left[\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}\right]
\end{aligned}
$$

We can interpret this as having a new basis $\psi(\cdot)^{T}=\left(\psi_{1}(\cdot), \ldots, \psi_{N}(\cdot)\right)$ for the interpolation space span $\left\{K\left(\cdot, \boldsymbol{x}_{1}\right), \ldots, K\left(\cdot, \boldsymbol{x}_{N}\right\}\right\}$ consisting of the appropriately corrected first N eigenfunctions:
If we let $\phi(\cdot)^{T}=\left(\varphi_{1}(\cdot), \ldots, \varphi_{N}(\cdot), \varphi_{N+1}(\cdot), \ldots, \varphi_{M}(\cdot)\right)$, then we can rewrite our kernel basis using the Hilbert-Schmidt SVD

$$
\boldsymbol{k}(\boldsymbol{x})^{T}=\phi(\boldsymbol{x})^{T}\binom{\mathrm{I}_{N}}{\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}} \Lambda_{1} \Phi_{1}^{T}=\boldsymbol{\psi}(\boldsymbol{x})^{T} \Lambda_{1} \Phi_{1}^{T}
$$

Taking a closer look at the matrix Ψ, we see that

$$
\begin{aligned}
\Psi & =\left(\Phi_{1} \Phi_{2}\right)\binom{I_{N}}{\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}} \\
& =\Phi_{1}+\Phi_{2}\left[\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}\right]
\end{aligned}
$$

We can interpret this as having a new basis $\psi(\cdot)^{T}=\left(\psi_{1}(\cdot), \ldots, \psi_{N}(\cdot)\right)$ for the interpolation space span $\left\{K\left(\cdot, \boldsymbol{x}_{1}\right), \ldots, K\left(\cdot, \boldsymbol{x}_{N}\right\}\right\}$ consisting of the appropriately corrected first N eigenfunctions:
If we let $\phi(\cdot)^{T}=\left(\varphi_{1}(\cdot), \ldots, \varphi_{N}(\cdot), \varphi_{N+1}(\cdot), \ldots, \varphi_{M}(\cdot)\right)$, then we can rewrite our kernel basis using the Hilbert-Schmidt SVD

$$
\boldsymbol{k}(\boldsymbol{x})^{T}=\phi(\boldsymbol{x})^{T}\binom{\mathrm{I}_{N}}{\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}} \Lambda_{1} \Phi_{1}^{T}=\psi(\boldsymbol{x})^{T} \Lambda_{1} \Phi_{1}^{T} .
$$

The data-dependence of the new basis is captured by the "correction" term. The new basis is more stable since we have removed Λ_{1}.

The QR in RBF-QR

Additional stability in the computation of the correction matrix

$$
\left[\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}\right]
$$

in particular, in the formation of $\Phi_{2}^{T} \Phi_{1}^{-T}$, is achieved via a QR decomposition of Φ, i.e.,

$$
\left(\begin{array}{ll}
\Phi_{1} & \Phi_{2}
\end{array}\right)=\mathrm{Q}(\underbrace{\mathrm{R}_{1}}_{N \times N} \underbrace{\mathrm{R}_{2}}_{N \times(M-N)})
$$

with orthogonal $N \times N$ matrix Q and upper triangular matrix R_{1}.

The QR in RBF-QR

Additional stability in the computation of the correction matrix

$$
\left[\Lambda_{2} \Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}\right]
$$

in particular, in the formation of $\Phi_{2}^{T} \Phi_{1}^{-T}$, is achieved via a QR decomposition of Φ, i.e.,

$$
\left(\begin{array}{ll}
\Phi_{1} & \Phi_{2}
\end{array}\right)=\mathrm{Q}(\underbrace{\mathrm{R}_{1}}_{N \times N} \underbrace{\mathrm{R}_{2}}_{N \times(M-N)})
$$

with orthogonal $N \times N$ matrix Q and upper triangular matrix R_{1}. Then we have

$$
\Phi_{2}^{T} \Phi_{1}^{-T}=\mathrm{R}_{2}^{T} \mathrm{Q}^{T} \mathrm{QR}_{1}^{-T}=\mathrm{R}_{2}^{T} \mathrm{R}_{1}^{-T}
$$

This idea appeared in [Fornberg/Piret (2008)].

Summary of Method

Instead of solving the "original" interpolation problem with ill-conditioned matrix K

$$
\mathrm{K} \boldsymbol{c}=\boldsymbol{y}
$$

leading to inaccurate coefficients which then need to be multiplied against poorly conditioned basis functions, we now solve

$$
\Psi \boldsymbol{b}=\boldsymbol{y}
$$

for a new set of coefficients which we then evaluate via

$$
s(\boldsymbol{x})=\sum_{j=1}^{N} b_{j} \psi_{j}(\boldsymbol{x})
$$

i.e., using the new basis.

General Implementation

It is crucial to know the Hilbert-Schmidt expansion of K :

$$
K(\boldsymbol{x}, \boldsymbol{z})=\sum_{n=1}^{\infty} \lambda_{n} \varphi_{n}(\boldsymbol{x}) \varphi_{n}(\boldsymbol{z})
$$

General Implementation

It is crucial to know the Hilbert-Schmidt expansion of K :

$$
K(\boldsymbol{x}, \boldsymbol{z})=\sum_{n=1}^{\infty} \lambda_{n} \varphi_{n}(\boldsymbol{x}) \varphi_{n}(\boldsymbol{z})
$$

The multivariate Gaussian kernels mentioned earlier were used in

- [F./Hickernell/Woźniakowski (2012)] to prove dimension-independent convergence rates
- [F./McCourt (2012)] to obtain and implement a stable GaussQR algorithm.

General Implementation

It is crucial to know the Hilbert-Schmidt expansion of K :

$$
K(\boldsymbol{x}, \boldsymbol{z})=\sum_{n=1}^{\infty} \lambda_{n} \varphi_{n}(\boldsymbol{x}) \varphi_{n}(\boldsymbol{z})
$$

The multivariate Gaussian kernels mentioned earlier were used in

- [F./Hickernell/Woźniakowski (2012)] to prove dimension-independent convergence rates
- [F./McCourt (2012)] to obtain and implement a stable GaussQR algorithm.

We now discuss the implementation for generalizations of the Brownian bridge kernel

$$
K(x, z)=\min (x, z)-x z, \quad x, z \in[0,1]
$$

which we call compact Matérn kernels [Cavoretto/F./McCourt (2013)].

We define compact Matérn kernels as Green's kernels of

$$
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\varepsilon^{2} \mathcal{I}\right)^{\beta} K(x, z)=\delta(x-z), \quad x, z \in[0,1], \beta \in \mathbb{N}, \varepsilon \geq 0
$$

subject to

$$
\frac{\mathrm{d}^{2 \nu}}{\mathrm{~d} x^{2 \nu}} K(0, z)=\frac{\mathrm{d}^{2 \nu}}{\mathrm{~d} x^{2 \nu}} K(1, z)=0, \quad \nu=0, \ldots, \beta-1 .
$$

We define compact Matérn kernels as Green's kernels of

$$
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\varepsilon^{2} \mathcal{I}\right)^{\beta} K(x, z)=\delta(x-z), \quad x, z \in[0,1], \beta \in \mathbb{N}, \varepsilon \geq 0
$$

subject to

$$
\frac{\mathrm{d}^{2 \nu}}{\mathrm{~d} x^{2 \nu}} K(0, z)=\frac{\mathrm{d}^{2 \nu}}{\mathrm{~d} x^{2 \nu}} K(1, z)=0, \quad \nu=0, \ldots, \beta-1 .
$$

The Hilbert-Schmidt expansion for compact Matérn kernels is

$$
K_{\beta, \varepsilon}(x, z)=\sum_{n=1}^{\infty} \frac{2}{\left(n^{2} \pi^{2}+\varepsilon^{2}\right)^{\beta}} \sin (n \pi x) \sin (n \pi z),
$$

i.e., the eigenvalues and eigenfunctions are

$$
\lambda_{n}=\frac{1}{\left(n^{2} \pi^{2}+\varepsilon^{2}\right)^{\beta}}, \quad \varphi_{n}(x)=\sqrt{2} \sin (n \pi x) .
$$

Clearly,

- the eigenfunctions are bounded by $\sqrt{2}$,
- and, for a fixed value of ε, the eigenvalues decay as $n^{-2 \beta}$.

Therefore the truncation length M needed for accurate representation of the entries of K can be easily determined as a function of β and ε :

Clearly,

- the eigenfunctions are bounded by $\sqrt{2}$,
- and, for a fixed value of ε, the eigenvalues decay as $n^{-2 \beta}$.

Therefore the truncation length M needed for accurate representation of the entries of K can be easily determined as a function of β and ε :

To ensure that we keep the first M significant terms we take M such that

$$
\lambda_{M}<\epsilon_{\text {mach }} \lambda_{N}, \quad M>N
$$

Clearly,

- the eigenfunctions are bounded by $\sqrt{2}$,
- and, for a fixed value of ε, the eigenvalues decay as $n^{-2 \beta}$.

Therefore the truncation length M needed for accurate representation of the entries of K can be easily determined as a function of β and ε :

To ensure that we keep the first M significant terms we take M such that

$$
\lambda_{M}<\epsilon_{\operatorname{mach}} \lambda_{N}, \quad M>N
$$

Using the explicit representation of the eigenvalues, we solve for M :

$$
M\left(\beta, \varepsilon ; \epsilon_{\text {mach }}\right)=\left\lceil\frac{1}{\pi} \sqrt{\epsilon_{\text {mach }}^{-1 / \beta}\left(N^{2} \pi^{2}+\varepsilon^{2}\right)-\varepsilon^{2}}\right\rceil .
$$

```
Program (MaternQRSolve.m)
function yy = MaternQRSolve(x,y,ep,beta,xx)
    phifunc = @(n,x) sqrt(2)*sin(pi*x*n);
    N = length(x);
    M = ceil(1/pi*sqrt(eps^(-1/beta)*(N^2*pi^2+ep^2)-ep^2));
    n = 1:M;
    Lambda = diag(((n*pi).^2+ep^2).^(-beta));
    Phi = phifunc(n,x);
    [Q,R] = qr(Phi);
    R1 = R(:,1:N); R2 = R(:,N+1:end);
    Rhat = R1\R2;
    Lambda1 = Lambda(1:N,1:N);
    Lambda2 = Lambda(N+1:M,N+1:M);
    Rbar = Lambda2*Rhat'/Lambda1;
    Psi = Phi*[eye(N);Rbar];
    b = Psi\y;
    Phi_eval = phifunc(n,xx);
    yy = Phi_eval*[eye(N);Rbar]*b;
end
```


Standard RBF vs. MatérnQR Interpolation

We use

- $K_{\beta, \varepsilon}$ with $\beta=7$ and $\varepsilon=1$
- $N=21$ uniform samples of $f(x)=(1-4 x)_{+}^{14}(4 x-3)_{+}^{14}$

Likelihood Functions for Gaussian Random Fields

Kernel-based interpolation has an analog in statistics called kriging.
If, instead of trying to recover a function, we treat our scattered data as samples of one realization of a Gaussian random field, we can prescribe a positive definite kernel K as the presumed covariance between realizations of the Gaussian random field.

The likelihood function of a zero-mean Gaussian random field (the probability of the data $\left(\boldsymbol{x}_{i}, y_{i}\right)_{i=1}^{N}$ given the kernel K with shape parameters $\boldsymbol{\theta}=(\varepsilon, \beta)$) is

$$
L(\boldsymbol{\theta} ; \boldsymbol{y})=p(\boldsymbol{y} \mid \boldsymbol{\theta})=\frac{1}{\sqrt{\left(2 \pi \sigma^{2}\right)^{N} \operatorname{det}(\mathrm{~K})}} \exp \left(-\frac{1}{2 \sigma^{2}} \boldsymbol{y}^{\top} \mathrm{K}^{-1} \boldsymbol{y}\right)
$$

K is the kernel interpolation matrix from before, σ^{2} is the process variance.

Maximum Likelihood Estimation (MLE)

Usually we minimize the negative (concentrated) log-likelihood:

$$
\widetilde{L}(\boldsymbol{\theta} ; \boldsymbol{y})=\frac{1}{N} \log \operatorname{det}(\mathrm{~K})+\log \underbrace{\left(\boldsymbol{y}^{\top} \mathrm{K}^{-1} \boldsymbol{y}\right)}_{=Q(\boldsymbol{y})} .
$$

This requires evaluating $\log \operatorname{det}(\mathrm{K})$ and $\log Q(\boldsymbol{y})$, which, given the ill-conditioning of K are both bound to cause trouble.

Maximum Likelihood Estimation (MLE)

Usually we minimize the negative (concentrated) log-likelihood:

$$
\widetilde{L}(\boldsymbol{\theta} ; \boldsymbol{y})=\frac{1}{N} \log \operatorname{det}(\mathrm{~K})+\log \underbrace{\left(\boldsymbol{y}^{\top} \mathrm{K}^{-1} \boldsymbol{y}\right)}_{=Q(\boldsymbol{y})} .
$$

This requires evaluating $\log \operatorname{det}(\mathrm{K})$ and $\log Q(\boldsymbol{y})$, which, given the ill-conditioning of K are both bound to cause trouble.

Luckily, we have developed the Hilbert-Schmidt SVD

$$
\mathrm{K}=\Psi \Lambda_{1} \Phi_{1}^{T}
$$

to help in both cases.

Computing log $\operatorname{det}(\mathrm{K})$

We use the Hilbert-Schmidt SVD to write

$$
\operatorname{det}(\mathrm{K})=\operatorname{det}\left(\Psi \Lambda_{1} \Phi_{1}^{T}\right)=\operatorname{det}(\Psi) \operatorname{det}\left(\Lambda_{1}\right) \operatorname{det}\left(\Phi_{1}\right)
$$

Evaluating $\operatorname{det}\left(\Lambda_{1}\right)$ can be done analytically and $\operatorname{det}(\Psi)$ and $\operatorname{det}\left(\Phi_{1}\right)$ can be computed stably using standard techniques.

Computing log $\operatorname{det}(\mathrm{K})$

We use the Hilbert-Schmidt SVD to write

$$
\operatorname{det}(\mathrm{K})=\operatorname{det}\left(\Psi \Lambda_{1} \Phi_{1}^{T}\right)=\operatorname{det}(\Psi) \operatorname{det}\left(\Lambda_{1}\right) \operatorname{det}\left(\Phi_{1}\right)
$$

Evaluating $\operatorname{det}\left(\Lambda_{1}\right)$ can be done analytically and $\operatorname{det}(\Psi)$ and $\operatorname{det}\left(\Phi_{1}\right)$ can be computed stably using standard techniques.

Computing $\log Q(y)$

We remember that the Hilbert-Schmidt SVD K $=\Psi \Lambda_{1} \Phi_{1}^{T}$ gives us

$$
\begin{equation*}
\mathrm{K} \boldsymbol{c}=\boldsymbol{y} \Longleftrightarrow \Psi \underbrace{\Lambda_{1} \Phi_{1}^{T} \boldsymbol{c}}_{=\boldsymbol{b}}=\boldsymbol{y} \tag{2}
\end{equation*}
$$

Computing $\log Q(\boldsymbol{y})$

We remember that the Hilbert-Schmidt SVD $K=\Psi \Lambda_{1} \Phi_{1}^{T}$ gives us

$$
\begin{equation*}
K \boldsymbol{c}=\boldsymbol{y} \Longleftrightarrow \Psi \underbrace{\Lambda_{1} \Phi_{1}^{\top} \boldsymbol{c}}_{=\boldsymbol{b}}=\boldsymbol{y} . \tag{2}
\end{equation*}
$$

Straightforward computation shows that

$$
Q(\boldsymbol{y})=\boldsymbol{y}^{T} \mathrm{~K}^{-1} \boldsymbol{y}=\boldsymbol{b}^{T} \mathrm{~A} \boldsymbol{b}
$$

where

$$
\mathrm{A}=\Lambda_{1}^{-1}+\mathrm{B}^{T} \Lambda_{2} \mathrm{~B}, \quad \mathrm{~B}=\Phi_{2}^{T} \Phi_{1}^{-T} \Lambda_{1}^{-1}
$$

so that A is clearly symmetric and positive definite.
In particular,

$$
Q(\boldsymbol{y})=\boldsymbol{b}^{\top} \Lambda_{1}^{-1} \boldsymbol{b}+\boldsymbol{b}^{\top} \mathrm{B}^{\top} \Lambda_{2} \mathrm{~B} \boldsymbol{b} \geq \boldsymbol{b}^{\top} \Lambda_{1}^{-1} \boldsymbol{b},
$$

where \boldsymbol{b} is computed stably via (2) and Λ_{1}^{-1} is given analytically.

Note that $Q(\boldsymbol{y})=\boldsymbol{y}^{\top} \mathrm{K}^{-1} \boldsymbol{y}=\boldsymbol{c}^{\top} \mathrm{K} \boldsymbol{c}=\boldsymbol{b}^{T} \mathrm{~A} \boldsymbol{b}$ is the native space norm of the interpolant.
To statisticians this is known as the Mahalanobis distance.

$$
Q(\boldsymbol{y})=\boldsymbol{b}^{T} \mathrm{~A} \boldsymbol{b}=\boldsymbol{b}^{T} \Lambda_{1}^{-1} \boldsymbol{b}+\boldsymbol{b}^{T} \mathrm{~B}^{T} \Lambda_{2} \mathrm{~B} \boldsymbol{b}
$$

Note that $Q(\boldsymbol{y})=\boldsymbol{y}^{T} \mathrm{~K}^{-1} \boldsymbol{y}=\boldsymbol{c}^{T} \mathrm{~K} \boldsymbol{c}=\boldsymbol{b}^{T} \mathrm{~A} \boldsymbol{b}$ is the native space norm of the interpolant.
To statisticians this is known as the Mahalanobis distance.

Stable MLE for Gaussian Interpolation in 1D

Figure: $N=15$ Chebyshev points for $f(x)=x+\frac{1}{1+x^{2}}$ on $[-1,1]$.

$$
\widetilde{L}(\varepsilon ; \boldsymbol{y})=\frac{1}{N} \log \operatorname{det}(\mathrm{~K})+\log \left(\boldsymbol{y}^{\top} \mathrm{K}^{-1} \boldsymbol{y}\right)
$$

Stable MLE for Gaussian Interpolation in 5D

$y(\boldsymbol{x})=\sin (\operatorname{mean}(\boldsymbol{x}))$, using N Halton points solid lines for HS-SVD, dashed lines for direct solve

MLE as a consistent predictor of "optimal" ε

True solution: $y(x)=x+1 /\left(1+x^{2}\right)$

MLE: $y(x)=x+1 /\left(1+x^{2}\right)$

True solution (left): overall optimal values (red dot):

$$
\varepsilon=1.333521, \quad N=140, \quad \text { Error }=5.8378 \times 10^{-17}
$$

MLE (right): overall "optimal" values (red dot):

$$
\varepsilon=1.778279, \quad N=60, \quad \text { Error }=6.29907 \times 10^{-16}
$$

MLE and flat polynomial limits

Figure: $N=15$ Chebyshev points for $y(x)=x^{3}-3 x^{2}+2 x+1$ and $y(x)=x^{3}-3 x^{2}+2 x+1+10^{-10} \cos (10 x)$ on $[-1,1]$. In both cases, the MLE predicts an ε-value that leads to optimal accuracy.
However, the MLE does not "allow" the (polynomial) flat limit since polynomials are not in the native space of Gaussians.

Summary

- Hilbert-Schmidt/Mercer expansion and Hilbert-Schmidt SVD provide a general and transparent framework for stable kernel computation
- Implementation depends on availability of Mercer series for specific kernels
- some eigenfunctions are easier to obtain than others
- some eigenfunctions are easier to handle than others
- Vast applications
- function interpolation/approximation
- parameter estimation (MLE, GCV)
- numerical solution of PDEs (collocation, MFS, MPS)
- ...
- Future outlook
- implement for anisotropic Gaussians
- HS-SVD for other kernels
- MLE for low-rank approximation

References I

Rasmussen，C．E．and Williams，C．K．I．
Gaussian Processes for Machine Learning．
MIT Press，Cambridge，MA， 2006.
Cavoretto，R．，Fasshauer，G．E．and McCourt，M．J．
Compact Matérn kernels and piecewise polynomial splines viewed from a Hilbert－Schmidt perspective．

submitted．

E
Fasshauer，G．E．，Hickernell，F．J．and Woźniakowski，H．
Rate of convergence and tractability of the radial function approximation problem．
SIAM J．Numer．Anal．50／1（2012），247－271．
目 Fasshauer，G．E．and McCourt，M．J．
Stable evaluation of Gaussian RBF interpolants．
SIAM J．Scient．Comput．34／2（2012），pp．A737－A762．
畋 Fornberg，B．and Piret，C．
A stable algorithm for flat radial basis functions on a sphere．
SIAM J．Scient．Comput．30／1（2008），pp．60－80．

