
The Method of Fundamental Solutions in Solving
Coupled Boundary Value Problems for EEG/MEG

Salvatore Ganci
salvatore.ganci@unipa.it

DEIM, University of Palermo, Italy

Joint work with G. Ala, G. Fasshauer, E. Francomano and M. McCourt

MAIA 2013
Erice, 25-30 September, 2013

S. Ganci The Method of Fundamental Solutions in Solving Coupled Boundary Value Problems for EEG/MEG 0 / 21



Outline

1 Problem Formulation

2 State of the Art and Motivation

3 Methodology

4 Numerical Results

5 Conclusions

S. Ganci The Method of Fundamental Solutions in Solving Coupled Boundary Value Problems for EEG/MEG 0 / 21



Problem Formulation

Background

What are EEG and MEG?
EEG and MEG are two electromagnetic techniques for brain activity
investigation, i.e. to locate active neural sources

How they work?
Neural sources (location and amplitude) are reconstructed starting from
measurements of electric potential on the scalp (EEG) or magnetic field
near the head (MEG). This is a typical inverse problem.

What is needed to perform them?

1 A data set (measurements)
2 An inverse algorithm
3 An efficient and accurate forward solver
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Problem Formulation

Model for the Head

 

Brain (Ω1) 
Skull (Ω2) 

Scalp (Ω3) 

Figure 1 : Compartment model
for the head

The head can be modeled as a linear,
piecewise homogeneous, volume con-
ductor domain Ω ⊂ R3 formed by L
nested layers.
Let p be a point in Ω.

A model with three layers (L = 3) is
common: brain, skull and scalp.

Let Ω` and ∂Ω` be the `-th layer in the
domain Ω, with known conductivity σ`,
and its boundary, respectively.

The medium surrounding the head is the
air and it can be considered as an un-
bounded region of null electrical conduc-
tivity.
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Problem Formulation

Electromagnetic Modeling of the Brain Activity

The forward problem for the electric potential φ(p) can be formulated
as the following BVP:

σ`(p)∇2φ(p) = S`(p), p ∈ Ω`

φ(p−) = φ(p+), p ∈ ∂Ω` ∩ ∂Ω`+1

σ`n(p) · ∇φ(p−) = σ`+1n(p) · ∇φ(p+), p ∈ ∂Ω` ∩ ∂Ω`+1

where:

S`(p) =

{
∇ · (Qδ(p− p′)) neural source in p′ ∈ Ω`

0 otherwise

n(p) is the outward unit vector normal to the interface ∂Ω` ∩ ∂Ω`+1

at p

p− and p+ are limit points for two spatial sequences converging to p
from inside and from outside the interface, respectively
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Problem Formulation

Electromagnetic Modeling of the Brain Activity

The forward problem for the magnetic field can be formulated starting
from the forward problem for the electric potential.

In fact, the Maxwell’s equations yield:

∇2B(p) = −µ∇× J(p) (1)

where B(p) is the magnetic induction, µ is the permeability of the medium
and the current density J(p) is known once φ(p) is known.

The solution of (1) with condition of null magnetic field at infinite distance
from sources, is known as Ampère-Laplace law [Sarvas (1987)]:

B(p) = − µ

4π

∫
Ω
σ(p∗)∇φ(p∗)× p− p∗

‖p− p∗‖3
dΩ∗
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State of the Art and Motivation

State of the Art

Finite Element Method

Domain method → 3D meshes

Very costly

Boundary Element Method

Boundary method → 2D meshes

Comparable to FEM in accuracy [Adde et al. (2003)]

Implemented in popular toolboxes for EEG/MEG
analysis, e.g. FieldTrip [Oostenveld et al. (2011)],
Brainstorm [Tadel et al. (2011)].

S. Ganci The Method of Fundamental Solutions in Solving Coupled Boundary Value Problems for EEG/MEG 5 / 21



State of the Art and Motivation

Motivation

Drawbacks of the state of the art solvers:

1 High quality meshes are needed to avoid mesh-related artifacts in
reconstructed neural activation patterns

2 Mesh generation is a complex and time consuming pre-processing
task, even with automatic algorithms

3 Numerical integration is required and turns out to be the dominating
computational task in the process

4 Complex computer codes (not flexible).

What could be done to overcome these difficulties?
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State of the Art and Motivation

Motivation

The Method of Particular Solutions (MPS) allows for the application of the
Method of Fundamental Solutions (MFS)

1 Boundary-type method, like BEM

2 No meshing is required: ability to handle complex geometries in an
easy way

3 No numerical integration is required

4 Accuracy: potential for exponential convergence with smooth data and
domains [Cheng (1987); Katsurada (1994); Katsurada and Okamoto
(1996)]

5 Flexibility: easy implementation

S. Ganci The Method of Fundamental Solutions in Solving Coupled Boundary Value Problems for EEG/MEG 7 / 21



Methodology

The underlying idea

The MFS is a kernel-based method, introduced during 60’s [Kupradze and
Aleksidze (1964a,b); Kupradze (1967)]
Let’s consider a homogeneous elliptic PDE of the form:

Lu(p) = 0, p ∈ Ω ⊆ R3 (2)

Like BEM, MFS is applicable when a fundamental solution of the PDE is
known.

Definition – Fundamental solution

A fundamental solution of the PDE (2) a function K(p, q) such that
LK(p, q) = −δ(p− q), p, q ∈ R3

q is called the singularity point (or source point) of the fundamental solution
since K is defined everywhere except there, where it is singular.
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Methodology

The underlying idea

The idea of the MFS is to estimate the solution by means of a linear com-
bination of fundamental solutions of the governing PDE:

u(p) ≈ û(p) =

#Ξ∑
j=1

cjK(p, ξj), p ∈ Ω, ξj ∈ Ξ (3)

were Ξ is a set of source points placed on a fictitious boundary outside
the physical domain.
The coefficients cj have to be determined by imposing (3) to satisfy the
boundary conditions:

T u(p) = f∂Ω(p), p ∈ ∂Ω

at a set P of collocation points:

#Ξ∑
j=1

cjTK(pi, ξj) = f∂Ω(pi) pi ∈ P, ξj ∈ Ξ (4)
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Methodology

Inhomogeneous problems

Let’s consider an inhomogeneous BVP of the form:{
Lu(p) = fΩ(p), p ∈ Ω ⊆ R3

T u(p) = f∂Ω(p), p ∈ ∂Ω
(5)

It can be reduced to a homogeneous problem by the Method of Particular Solutions
(MPS), i.e. by splitting u into a particular solution up and its associated homogeneous
solution uh:

u = uh + up

Definition – Particular solution

A particular solution of the BVP (5) is a function up on Ω ∪ ∂Ω which satisfies the
inhomogeneous PDE but not necessarily the boundary conditions.

Then we get the homogenous BVP:{
Luh(p) = fΩ(p)− Lup(p) = 0, p ∈ Ω

T uh(p) = f∂Ω(p)− T up(p), p ∈ ∂Ω
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Methodology

Application to the EEG potential problem

Let’s apply the MFS, via MPS, to the EEG potential problem.

1 The fundamental solution for the Laplace equation in 3D is:

K(p, q) =
1

4π‖p− q‖

2 An analytical expression for a function φp(p) that satisfies the equation

σ∇2φ(p) = ∇ · (Qδ(p− p′))

in an unbounded domain is known [Sarvas (1987)]:

φp(p) =
1

4πσ

p− p′

‖p− p′‖3
·Q
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Methodology

Application to the EEG potential problem

 

Brain (Ω1) 
Skull (Ω2) 

Scalp (Ω3) 

The EEG potential problem in Ω can be addressed by
considering a number L of coupled BVPs interacting
through the boundary conditions.
By introducing the parameter

α` =

{
1, neural source in Ω`

0, otherwise

the potential function in each layer can be expressed as:

φ`(p) = φh,`(p) + α`φp,`(p)

φh,` is given by the solution of the following homogeneous BVP:
∇2φh,`(p) = 0, p ∈ Ω`

φh,`(p)− φh,`+1(p) = α`+1φp,`+1(p)− α`φp,`(p), p ∈ ∂Ω` ∩ ∂Ω`+1

σ`n(p) · ∇φh,`(p)− σ`+1n(p) · ∇φh,`+1(p) =

= α`+1σ`+1n(p) · ∇φp,`+1(p)− α`σ`n(p) · ∇φp,`(p) p ∈ ∂Ω` ∩ ∂Ω`+1
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Methodology

Application to the EEG potential problem

The homogeneous solution is approximated by:

φ̂h,`(p) =

#Ξ∑̀
j=1

c`jK(p, ξj), p ∈ Ω`, ξj ∈ Ξ` (6)

where Ξ` is the set of source points relative to the layer Ω`.

In order to estimate the L sets of coefficients {c`}L`=1, the collocation
has to be performed on each interface.

Let PD`,`+1 and PN`,`+1 be the sets of collocation points on the interface
between the layer ` and the layer `+ 1 where Dirichlet conditions and
Neumann conditions, respectively, are intended to be imposed.
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Methodology

Application to the EEG potential problem
The collocation yields the following coupled linear system:
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Numerical Results Homogeneous Sphere

Simulation data

Homogeneous sphere
Analytical solution in [Yao (2000)]
Problem data:

Sphere radius: 0.1 m

Conductivity: 0.2 S/m

Source position: (0, 0, 0.06) [m]

Source moment: (1, 0, 0) [Am]

Simulations with different ratios RMFS between the no. source points and
the number of collocation points
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Numerical Results Homogeneous Sphere

Convergence
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Numerical Results Homogeneous Sphere

Cost vs. Relative Error
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Numerical Results Three layered Sphere

Simulation data

Three layered sphere
Semi-analytical solution in [Zhang (1995)]
Problem data:

Sphere radii: R1 = 0.087 m, R2 = 0.092 m, R3 = 0.1 m

Conductivities: σ1 = 0.33 S/m, σ2 = 0.0125 S/m, σ3 = 0.33 S/m

Source position: (0, 0, 0.052) [m]

Source moment: (1, 0, 0) [Am]
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Numerical Results Three layered Sphere

Convergence
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Numerical Results Three layered Sphere

Cost vs. Relative Error
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Conclusions

Conclusions

1 The MFS via MPS has been proposed to address the EEG/MEG forward
problem

2 This permits to get rid of complex and time consuming meshing algo-
rithms, mesh related artifacts and troublesome numerical integration

3 The implementation of the presented method is straightforward: unlike
BEM solvers, the code is very flexible

4 Simulations results for simplified head geometries showed:

very good agreement with (semi)analytic solutions
clear superiority with respect to BEM from a cost vs. accuracy
standpoint
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