Kernel Interpolation and Quadrature with Localized Bases

Thomas Hangelbroek University of Hawaii

joint work with:

うして 山田 マイボット ボット シックション

Fran Narcowich and Joe Ward Texas A&M Xingping Sun Missouri State Grady Wright Boise State Ed Fuselier High Point University

Localized kernel bases

- Desired to treat large problems where standard basis is inadequate – often used as a pre-conditioner
- Local elements obtained by a difference operator applied to kernel – considered by Dyn-Levin-Rippa, Rabut, Buhmann-Dai, Beatson & Powell
- We consider local Lagrange functions of Beatson and Powell – showing rapid decay and L_p stability & most of all that this method scales: decay of basis elements is stationary & construction is nearly stationary.

Kernel based quadrature

- High performance quadrature rules for a variety of manifolds – based on an idea for spheres by Sommariva and Womersley
- Weights can be easily calculated
- In conjunction with localized bases calculation of weights is fast and scales appropriately

Positive definite kernels

• For any set of centers Ξ , the collocation matrix

$$C_{\Xi} := (k(\xi,\zeta))_{(\xi,\zeta)\in\Xi imes\Xi}$$

is symmetric, positive definite.

- Interpolation: For any $f \in C(\mathbb{M})$ there is a unique $l_{\Xi}f \in S(\Xi)$ so that $l_{\Xi}f|_{\Xi} = f|_{\Xi}$. In this case: $l_{\Xi}f = \sum_{\xi \in \Xi} c_{\xi}k(\cdot, \xi)$ with $C_{\Xi}\vec{c} = f|_{\Xi}$
- Native space: There is a Hilbert space of continuous functions N with k as its reproducing kernel:
 f(x) = ⟨f, k(x, ⋅)⟩_N
- The interpolant *I*_≡*f* to *f* is the best interpolant from *N* in the sense that any *s* ∈ *N* for which *s* |_≡ = *f* |_≡ has

$$\|I_{\Xi}f\|_{\mathcal{N}} \leq \|S\|_{\mathcal{N}}.$$

Positive definite kernels

• $(k(\cdot,\xi))_{\xi\in\Xi}$ forms a basis for the space

$$S(\Xi) = \operatorname{span}_{\xi \in \Xi} k(\cdot, \xi)$$

- So does the Lagrange basis $(\chi_{\xi})_{\xi \in \Xi}$, where $\chi_{\xi} = \sum_{\eta \in \Xi} A_{\xi,\eta} k(\cdot, \eta)$ and for all $\zeta \in \Xi$, $\chi_{\xi}(\zeta) = \delta(\xi, \zeta)$.
- The matrix of Lagrange coefficients (A_{ξ,ζ})_{(ξ,ζ)∈Ξ×Ξ} is the inverse of the collocation matrix C_Ξ.
- The Lagrange function coefficients satisfy $A_{\xi,\eta} = \langle \chi_{\xi}, \chi_{\zeta} \rangle_{\mathcal{N}}$.

$$\langle \chi_{\xi}, \chi_{\zeta} \rangle_{\mathcal{N}} = \sum_{\eta \in \Xi} \mathcal{A}_{\zeta,\eta} \langle \chi_{\xi}, \mathcal{K}(\cdot, \eta) \rangle_{\mathcal{N}} = \sum_{\eta \in \Xi} \mathcal{A}_{\zeta,\eta} \delta(\xi, \eta) = \mathcal{A}_{\xi,\eta}.$$

Assume \mathbb{M} is a *d* dimensional, compact Riemannian manifold without boundary.

- \mathbb{M} is a metric space. Basic characteristics of Ξ apply:
 - fill distance $h := \max_{x \in \mathbb{M}} \operatorname{dist}(x, \Xi)$,
 - separation radius $q := \min_{\xi \in \Xi} \operatorname{dist}(\xi, \Xi \setminus \{\xi\})$,
 - mesh-ratio $\rho = h/q$.
- \mathbb{M} is also a measure space, with $|B(x, r)| \sim r^d$ (for small r).
- Sobolev spaces W^τ₂(M) can also be defined easily either via partition of unity and charts or by way of an elliptic differential operator (like the Laplace–Beltrami operator).
- If τ > d/2, then W^τ₂(M) is a reproducing kernel Hilbert space. Its kernel is positive definite and N = W^τ₂(M).
- [Fuselier-Wright, '11] If $\mathbb{M} \subset \mathbb{R}^{d+n}$ and $\phi \in C(\mathbb{R}^{d+n})$ is an RBF with native space $W_2^N(\mathbb{R}^d)$, then $k : (x, y) \mapsto \phi(x y)$ has native space $W_2^{\tau}(\mathbb{M}), \tau = N \frac{n}{2}$.

Kernels with $\mathcal{N} = W_2^{\tau}(\mathbb{M})$

- If $k : \mathbb{M} \times \mathbb{M} \to \mathbb{R}$ has native space $W_2^{\tau}(\mathbb{M})$
 - Lagrange function is bounded in native space norm

 $\|\chi_{\xi}\|_{\mathcal{N}} \leq Cq^{d/2-\tau}$

This is a bump estimate – compare χ_{ξ} to an interpolant with support in $B(\xi, q)$.

• Lagrange coefficients are uniformly bounded:

$$|\mathbf{A}_{\xi,\zeta}| = |\langle \chi_{\xi}, \chi_{\zeta} \rangle_{\mathcal{N}}| \le Cq^{d-2\tau}$$
$$\longrightarrow \|(\mathbf{C}_{\Xi})^{-1}\|_{\infty} \le Cq^{d-2\tau}(\#\Xi)$$

 [De Marchi-Schaback, '10] If Ξ is sufficiently dense in M, then a zeros lemma ensures that the Lagrange function is bounded, independent of #Ξ:

$$|\chi_{\xi}(\boldsymbol{x})| \leq C q^{d/2- au} h^{ au-d/2} = C
ho^{ au-d/2}$$

Sobolev kernels (or Sobolev-Matérn kernels)

For open Ω ⊂ M, m ∈ N and m > d/2 define the W^m₂(Ω) inner product as

$$\langle f, g \rangle_{W_2^m(\Omega)} = \sum_{j=0}^m \int_{\Omega} \langle \nabla^j f, \nabla^j g \rangle_X \mathrm{d}x$$

- For Ω = M, this is the same as the other definitions of W₂^m(M).
- The Sobolev kernel κ_m is the reproducing kernel for $\mathcal{N} = W_2^m(\mathbb{M})$.
- Equivalently, κ_m is the fundamental solution for the elliptic differential operator $\mathcal{L}_m = \sum_{j=0}^m (\nabla^j)^* \nabla^j$.

Lagrange function bounds

 For sufficiently dense Ξ, we have the energy bound for R > 0:

For R > 0, $\|\chi_{\xi}\|_{W_2^m(\mathbb{M} \setminus B(\xi,R))} \leq Cq^{d/2-m}e^{-\nu \frac{R}{h}}$

• Lagrange functions have pointwise bounds

 $|\chi_{\xi}(\mathbf{x})| \leq C \rho^{m-d/2} e^{-\nu \frac{\operatorname{dist}(\xi, \mathbf{x})}{\hbar}} \quad (\mathrm{H-Narcowich-Ward}, `10)$

- (H-N-W, '10) Boundedness of Lebesgue constant,
- (H-N-Sun-W, '11) Stability: $\|\sum_{\xi \in \Xi} a_{\xi} \chi_{\xi}\|_{\rho} \sim q^{\frac{d}{\rho}} \|\vec{a}\|_{\ell_{\rho}(\Xi)}$,
- (H-N-S-W, '11) L_p boundedness of L₂ projector.
- Lagrange coefficients are bounded by

$$|\mathsf{A}_{\xi,\zeta}| = |\langle \chi_{\xi}, \chi_{\zeta}
angle_{\mathsf{W}_2^m(\mathbb{M})}| \leq Cq^{d-2m} e^{-rac{
u}{2h} \mathrm{dist}(\xi,\zeta)}$$

• Centers more than $Kh | \log h |$ away from ξ :

$$|A_{\xi,\zeta}| \leq Cq^{d-2m}h^{rac{
u K}{2}} \leq C_{
ho}h^{rac{
u K}{2}+d-2m}$$

Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, '13]

- Let $\Upsilon_{\xi} := \Xi \cap B(\xi, Kh | \log h |)$.
- Consider the truncated Lagrange basis $(\chi_{\xi})_{\xi \in \Xi}$

$$\widetilde{\chi_{\xi}} := \sum_{\zeta \in \Upsilon_{\xi}} A_{\xi,\zeta} \kappa_{m}(\cdot,\zeta)$$

$$\longrightarrow \|\widetilde{\chi_{\xi}} - \chi_{\xi}\|_{\infty} \leq C_{\rho} h^{(\frac{K\nu}{2}-2m)}$$

シック・ヨー (ヨ・ (ヨ・ (日・

(Because there are at most $N \leq |\mathbb{M}|q^{-d}$ centers)

• Uses only a fraction of the total centers. but requires calculating all coefficients.

Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, '13]

- Let $\Upsilon_{\xi} := \Xi \cap B(\xi, Kh | \log h |)$.
- Consider the truncated Lagrange basis $(\chi_{\xi})_{\xi \in \Xi}$

$$\widetilde{\chi_{\xi}} := \sum_{\zeta \in \Upsilon_{\xi}} A_{\xi,\zeta} \kappa_{m}(\cdot,\zeta)$$

$$\longrightarrow \|\widetilde{\chi_{\xi}} - \chi_{\xi}\|_{\infty} \leq C_{\rho} h^{(\frac{K\nu}{2}-2m)}$$

(Because there are at most $N \leq |\mathbb{M}|q^{-d}$ centers)

- Uses only a fraction of the total centers. but requires calculating all coefficients.
- Use instead b_ξ ∈ S(Υ_ξ), the local Lagrange functions:
 b_ξ(ζ) = δ(ξ, ζ) for all ζ ∈ Υ_ξ.
- Complexity of constructing each b_{ξ} is $\mathcal{O}(K^{3d} | \log N |^{3d})$. The full family $(b_{\xi})_{\xi \in \Xi}$ costs $\mathcal{O}(K^{3d} N | \log N |^{3d})$.

Local Lagrange bounds: $\|\chi_{\xi} - b_{\xi}\|_{\infty} \leq C_{\rho}h^{J}$

• Since
$$r = (\widetilde{\chi_{\xi}} - b_{\xi}) \in S(\Upsilon_{\xi}),$$

 $(\widetilde{\chi_{\xi}} - b_{\xi}) = \sum_{\xi \in \Upsilon_{\xi}} c_{\xi} \kappa_m(\cdot, \xi),$ where $C_{\Upsilon_{\xi}} \vec{c} = r |_{\Upsilon_{\xi}}$

At the nodes, the error is small:

$$\max_{\zeta\in\Upsilon_{\xi}}|r(\zeta)|\leq C_{\rho}h^{\frac{\nu K}{2}-2m}$$

The inverse collocation matrix (C_{Υ_ξ})⁻¹ = (A_{η,ζ})_{(η,ζ)∈Υ_ξ×Υ_ξ} has ℓ_∞ → ℓ_∞ norm

$$\|(\mathsf{C}_{\Upsilon_{\xi}})^{-1}\|_{\infty} \leq Cq^{d-2m}(\#(\Upsilon_{\xi})) \leq Cq^{-2m}$$

• Coefficients are small:

$$\|ec{c}\|_{\infty}\leq C_{
ho}q^{-2m}h^{rac{
u K}{2}-2m}\leq C_{
ho}h^{rac{
u K}{2}-4m}$$

• The uniform error is small:

$$\|\widetilde{\chi_{\xi}} - b_{\xi}\|_{\infty} \leq \sum_{\xi \in \Upsilon_{\xi}} |c_{\xi}| \|\kappa_{m}(\cdot, \xi)\|_{\infty} \leq C_{\rho} h^{\frac{\nu K}{2} - 4m - d}$$

Local Lagrange basis summary

- Each element uses $K |\log N|^d$ centers
- For sufficiently large K, (b_ξ)_{ξ∈Ξ} is an L_p-stable, rapidly decaying basis for S(Ξ):

$$\|b_{\xi}-\chi_{\xi}\|_{\infty}\leq C_{
ho}h^{J}$$
 when $K=rac{2}{
u}(J+4m)$

- Drawback: ν is not known.
- Can be used as a preconditioner for interpolation:

$$C_{\Xi}\mathcal{A}\vec{c}=f\mid_{\Xi}$$
.

• For sufficiently large *K*, $Q_{\equiv}f = \sum_{\xi \in \Xi} f(\xi)b_{\xi}$ behaves like $l_{\equiv}f = \sum_{\xi \in \Xi} f(\xi)\chi_{\xi}$. Namely,

$$\|Q_{\Xi}f - f\|_{\infty} \leq \operatorname{Adist}(f, S(\Xi))_{\infty} + C_{\rho}h^{J-d}\|f\|_{\infty}$$

(日) (日) (日) (日) (日) (日) (日)

• Drawback: κ_m is hard to compute.

Quadrature on homogeneous spaces

From [Fuselier - H - Narcowich - Ward - Wright, to appear]

• *G* is a Lie group of isometries of \mathbb{M} acting transitively $\forall x, y \in \mathbb{M}, \exists g \in G \quad y = gx.$

$$\forall g \in G, \int_{\mathbb{M}} f(gx) \mathrm{d}x = \int_{\mathbb{M}} f(x) \mathrm{d}x.$$

• *G*-invariant, positive definite kernel: k(gx, gy) = k(x, y)

$$\longrightarrow \forall y \in \mathbb{M}, \ \int_{\mathbb{M}} k(x, y) \mathrm{d}x = J_0$$

• For $s \in S(\Xi)$, $s = \sum_{\xi \in \Xi} a_{\xi} k(\cdot, \xi)$ $\int_{\mathbb{M}} s(x) dx = \sum_{\xi} a_{\xi} \int_{\mathbb{M}} k(x, \xi) dx$ $= J_0(\mathbf{1}^T) \mathbf{a}$ $= J_0 \mathbf{1}^T \left\{ \mathbf{C}_{\Xi}^{-1} s | \Xi \right\}$ $= J_0 \left\{ \mathbf{C}_{\Xi}^{-1} \mathbf{1} \right\}^T s | \Xi = \mathbf{C}_{\xi}^T s | \Xi \rangle \quad \exists z \in \mathbb{R}^{+}$

Quadrature error decays rapidly if $\mathcal{N} = W_2^{\tau}(\mathbb{M})$.

• Let
$$k$$
 have $\mathcal{N}=\textit{W}_2^{ au}(\mathbb{M}).$ For every $\pmb{s}\in\textit{S}(\Xi)$

$$\left| \int_{\mathbb{M}} f(x) \mathrm{d}x - \sum_{\xi \in \Xi} c_{\xi} f(\xi) \right| \leq \int_{\mathbb{M}} |f(x) - s(x)| \mathrm{d}x \\ + \sum_{\xi \in \Xi} |c_{\xi}| |f(\xi) - s(\xi)|$$

Choose
$$s = I_{\Xi} f$$
:
$$\left| \int_{\mathbb{M}} f(x) \mathrm{d}x - \sum_{\xi \in \Xi} c_{\xi} f(\xi) \right| \le \| f - I_{\Xi} f \|_{L_1(\mathbb{M})} \le h^{\tau} \| f \|_{W_2^{\tau}(\mathbb{M})}$$

Using Sobolev kernel κ_m: Preconditioner solves interpolation problem and

$$\left| \int_{\mathbb{M}} f(x) \mathrm{d}x - \sum_{\xi \in \Xi} c_{\xi} f(\xi) \right| \leq C \begin{cases} h^{\sigma} \|f\|_{C^{\sigma}(\mathbb{M})} & 0 < \sigma \leq 2m \\ h^{\sigma} \|f\|_{W_{2}^{\sigma}(\mathbb{M})} & \frac{d}{2} < \sigma \leq m \\ \alpha \leq \sigma \leq \infty \end{cases}$$

Polyharmonic (and related) kernels

- $Q \in \Pi_m(\mathbb{R})$ with $\lim_{\lambda \to -\infty} Q(\lambda) = +\infty$.
- Fundamental solution to $\mathcal{L}_m = \sum_{j=0}^m a_j \Delta^j = Q(\Delta)$

$$f(x) = \int_{\mathbb{M}} [\mathcal{L}_m(f - p_f)](\alpha) k(x, \alpha) d\alpha + p_f(x)$$

 $p_f \in \Pi_{\mathcal{J}} = \operatorname{span}_{j \in \mathcal{J}}(\psi_j)$ with $\# \mathcal{J} < \infty$

• ψ_j eigenfunctions of Δ

$$k(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{\infty} \alpha_j \psi_j(\mathbf{x}) \psi_j(\mathbf{y}) \quad \left(\alpha_j = \left(\mathbf{Q}(\lambda_j)\right)^{-1} \text{for } j \notin \mathcal{J}\right)$$

- \mathcal{L}_m is positive on the eigenfunctions not in $\Pi_{\mathcal{J}}$.
- Conditionally positive definite w.r.t. $\Pi_{\mathcal{J}}$
- Reproducing kernel semi-Hilbert space $\mathcal{H}_{k} := \{ f = \sum_{j=0}^{\infty} \hat{f}_{j} \psi_{j} \mid \sum_{j \notin \mathcal{J}} |\hat{f}_{j}|^{2} Q(\lambda_{j}) < \infty \}$

2-point homogeneous spaces

• Restricted surface splines on \mathbb{S}^d : $k(x, \alpha) = \phi(x \cdot \alpha)$

$$\phi(t) = \begin{cases} (1-t)^{m-d/2} & \text{for } d \text{ odd} \\ (1-t)^{m-d/2} \log(1-t) & \text{for } d \text{ even} \end{cases}$$

(Baxter & Hubbert, Levesley & Odell)

• Surface splines on SO(3): $k(x, \alpha) = \phi(\omega(\alpha^{-1}x))$

$$\phi(t) = \left(\sin(t/2)\right)^{m-3/2}$$

(H. & Schmid)

On two point homogeneous spaces,

$$\mathcal{L}_m = \sum_{j=0}^m a_j \Delta^j = \sum_{j=0}^m \tilde{a}_j (
abla^j)^*
abla^j$$

(ロマネロマネリア・コー うくの)

• Special case: sometimes $\mathcal{L}_m \Pi_{\mathcal{J}} = \{0\},\$

2-point homogeneous spaces

• Restricted surface splines on \mathbb{S}^d : $k(\mathbf{x}, \alpha) = \phi(\mathbf{x} \cdot \alpha)$

$$\phi(t) = \begin{cases} (1-t)^{m-d/2} & \text{for } d \text{ odd} \\ (1-t)^{m-d/2} \log(1-t) & \text{for } d \text{ even} \end{cases}$$

(Baxter & Hubbert, Levesley & Odell)

• Surface splines on SO(3): $k(x, \alpha) = \phi(\omega(\alpha^{-1}x))$

$$\phi(t) = \left(\sin(t/2)\right)^{m-3/2}$$

(H. & Schmid)

On two point homogeneous spaces,

$$\mathcal{L}_m = \sum_{j=0}^m a_j \Delta^j = \sum_{j=0}^m \tilde{a}_j (
abla^j)^*
abla^j$$

• Special case: sometimes $\mathcal{L}_m \Pi_{\mathcal{J}} = \{0\},$

When $\mathcal{L}_m \Pi_{\mathcal{J}} = \{0\}...$

Lagrange basis is local [H-N-W, '12]:

$$|\chi_{\xi}(\mathbf{x})| \leq C_{
ho} \exp\left[-
u\left(rac{\operatorname{dist}(\xi,\mathbf{x})}{h}
ight)
ight].$$

The Lagrange basis is stable [H-N-W,'12]:

$$c_1 q^{d/
ho} \|a\|_{\ell_
ho} \leq \|\sum_{\xi\in\Xi}a_\xi\chi_\xi\|_
ho \leq c_2 q^{d/
ho} \|a\|_{\ell_
ho}$$

Solution The local Lagrange function $b_{\xi} \in S(\Upsilon_{\xi})$ using $\Upsilon_{\xi} \subset B(\xi, Kh | \log h |)$ is local and stable:

$$\|\boldsymbol{b}_{\xi} - \chi_{\xi}\|_{\infty} \leq \boldsymbol{C}_{\rho} \boldsymbol{h}^{J}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ●豆 ● のへで

• Use as a preconditioner for interpolation, $I_{\Xi}f = \sum_{\xi \in \Xi} a_{\xi} b_{\xi}$:

$$\begin{bmatrix} \mathsf{C}_{\Xi} & \Psi \end{bmatrix} \begin{bmatrix} \mathcal{A} \\ \mathcal{B} \end{bmatrix} \begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} \mathbf{f} \end{bmatrix}.$$

 $A = (A_{\xi,\eta})$ and $B = (B_{\xi,j})$ matrices of coefficients for each b_{ξ} . (A is sparse.)

- Basis collocation matrix (b_ξ(ζ))_{(ξ,ζ)∈Ξ×Ξ} = (C_ΞA + ΨB) has nice decay.
- Quasi-interpolation $Q_{\Xi}f = \sum_{\xi \in \Xi} f(\xi)b_{\xi}$ performs like I_{Ξ}

$$\| oldsymbol{Q}_{\Xi} f - f \|_{\infty} \leq C h^s \| f \|_{C^s}, ext{ for } s \leq 2m$$

Quadrature on S²

Quadrature with $k(x, \alpha) = (1 - x \cdot \alpha)^{m-1} \log(1 - x \cdot \alpha)$

$$\int_{\mathbb{S}^2} f(x) \mathrm{d}x \sim \sum_{\xi \in \Xi} c_{\xi} f(\xi)$$

correct for $f \in S(\Xi)$

- Need to know $J_0 := \int_{\mathbb{S}^2} k(x, y) dx$ independent of y
- Need to know moment vector $J = (J_1, \dots, J_m)$ where $J_j = \int_{\mathbb{S}^2} \psi_j(x) dx$

• Weights are obtained from

$$\mathbf{K}_{\Xi} \begin{pmatrix} \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} \mathbf{C}_{\Xi} & \Psi \\ \Psi^{T} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} J_0 \mathbf{1} \\ \mathbf{J} \end{pmatrix}$$

うして 山田 マイボット ボット シックション

Quadrature with $k(x, \alpha) = (1 - x \cdot \alpha)^{m-1} \log(1 - x \cdot \alpha)$

For
$$s \in S(k, \Xi)$$
, $s = \sum a_{\xi}k(\cdot, \xi) + \sum b_{j}\psi_{j}$,

$$\int_{\mathbb{S}^{2}} s(x)dx = \sum_{\xi} a_{\xi} \int_{\mathbb{S}^{2}} k(x, \xi)dx + \sum b_{j} \int_{\mathbb{S}^{2}} \psi_{j}(x)dx$$

$$= \begin{pmatrix} J_{0}\mathbf{1} \\ \mathbf{J} \end{pmatrix}^{T} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix}$$

$$= \begin{cases} K_{\Xi}^{-1} \begin{pmatrix} J_{0}\mathbf{1} \\ \mathbf{J} \end{pmatrix} \end{cases}^{T} \begin{pmatrix} s|_{\Xi} \\ \mathbf{0} \end{pmatrix} = \mathbf{c}^{T}s|_{\Xi}$$

•
$$\mathbf{K}_{\Xi} \begin{pmatrix} \mathbf{c} \\ \mathbf{d} \end{pmatrix} = \begin{pmatrix} J_0 \mathbf{1} \\ \mathbf{J} \end{pmatrix}$$
 not directly solvable – need to decompose **c** into ran Ψ and ker Ψ^T .

• Each c_{ξ} can be obtained as $\int_{\mathbb{S}^2} \chi_{\xi}(x) dx = B_{\xi,1} \operatorname{vol}(\mathbb{S}^2)$ where

$$\chi_{\xi} = \sum_{\zeta} A_{\xi,\zeta} k(\cdot,\zeta) + \sum B_{\xi,j} \psi_j$$

Using the first coefficient from b_{ξ} may be faster.

Quadrature weights for 23042 icosahedral nodes

◆ロト ◆課 ト ◆ 語 ト ◆ 語 ト ◆ 回 ト ◆ の へ ()

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

