Kernel Interpolation and Quadrature with Localized Bases

Thomas Hangelbroek University of Hawaii
joint work with:
Fran Narcowich and Joe Ward Texas A\&M
Xingping Sun Missouri State
Grady Wright Boise State
Ed Fuselier High Point University

- Desired to treat large problems where standard basis is inadequate - often used as a pre-conditioner
- Local elements obtained by a difference operator applied to kernel - considered by Dyn-Levin-Rippa, Rabut, Buhmann-Dai, Beatson \& Powell
- We consider local Lagrange functions of Beatson and Powell - showing rapid decay and L_{p} stability \& most of all that this method scales: decay of basis elements is stationary \& construction is nearly stationary.
Kernel based quadrature
- High performance quadrature rules for a variety of manifolds - based on an idea for spheres by Sommariva and Womersley
- Weights can be easily calculated
- In conjunction with localized bases - calculation of weights is fast and scales appropriately

Positive definite kernels

- For any set of centers 三, the collocation matrix

$$
\mathrm{C}_{\equiv}:=(k(\xi, \zeta))_{(\xi, \zeta) \in \equiv \times \equiv}
$$

is symmetric, positive definite.

- Interpolation: For any $f \in C(\mathbb{M})$ there is a unique $\varliminf_{\equiv} f \in S\left(\right.$ 三) so that $\left.\left.\varrho_{\equiv} f\right|_{\equiv=f}\right|_{\equiv}$. In this case:
$I_{\equiv} f=\sum_{\xi \in \equiv} c_{\xi} k(\cdot, \xi)$ with $\mathrm{C}_{\equiv} \vec{c}=\left.f\right|_{\equiv}$
- Native space: There is a Hilbert space of continuous functions \mathcal{N} with k as its reproducing kernel: $f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{N}}$
- The interpolant $I_{\equiv} f$ to f is the best interpolant from \mathcal{N} in the sense that any $s \in \mathcal{N}$ for which $\left.\left.s\right|_{\equiv=f}\right|_{\equiv \text { has }}$

$$
\left\|I I_{\equiv}\right\|_{\mathcal{N}} \leq\|s\|_{\mathcal{N}} .
$$

Positive definite kernels

- $(k(\cdot, \xi))_{\xi \in \equiv}$ forms a basis for the space

$$
S(\text { 三 })=\operatorname{span}_{\xi \in \equiv} k(\cdot, \xi)
$$

- So does the Lagrange basis $\left(\chi_{\xi}\right)_{\xi \in \equiv}$, where

$$
\chi_{\xi}=\sum_{\eta \in \equiv} A_{\xi, \eta} k(\cdot, \eta) \text { and for all } \zeta \in \equiv, \chi_{\xi}(\zeta)=\delta(\xi, \zeta)
$$

- The matrix of Lagrange coefficients $\left(A_{\xi, \zeta}\right)_{(\xi, \zeta) \in \equiv \times \equiv}$ is the inverse of the collocation matrix C_{\equiv}.
- The Lagrange function coefficients satisfy $\boldsymbol{A}_{\xi, \eta}=\left\langle\chi_{\xi}, \chi_{\zeta}\right\rangle_{\mathcal{N}}$.

$$
\left\langle\chi_{\xi}, \chi_{\zeta}\right\rangle_{\mathcal{N}}=\sum_{\eta \in \equiv} A_{\zeta, \eta}\left\langle\chi_{\xi}, k(\cdot, \eta)\right\rangle_{\mathcal{N}}=\sum_{\eta \in \equiv} A_{\zeta, \eta} \delta(\xi, \eta)=A_{\xi, \eta}
$$

Sobolev spaces

Assume \mathbb{M} is a d dimensional, compact Riemannian manifold without boundary.

- \mathbb{M} is a metric space. Basic characteristics of \equiv apply:
- fill distance $h:=\max _{x \in \mathbb{M}} \operatorname{dist}(x, \equiv)$,

- mesh-ratio $\rho=h / q$.
- \mathbb{M} is also a measure space, with $|B(x, r)| \sim r^{d}$ (for small r).
- Sobolev spaces $W_{2}^{\tau}(\mathbb{M})$ can also be defined easily - either via partition of unity and charts or by way of an elliptic differential operator (like the Laplace-Beltrami operator).
- If $\tau>d / 2$, then $W_{2}^{\tau}(\mathbb{M})$ is a reproducing kernel Hilbert space. Its kernel is positive definite and $\mathcal{N}=W_{2}^{\tau}(\mathbb{M})$.
- [Fuselier-Wright, '11] If $\mathbb{M} \subset \mathbb{R}^{d+n}$ and $\phi \in C\left(\mathbb{R}^{d+n}\right)$ is an RBF with native space $W_{2}^{N}\left(\mathbb{R}^{d}\right)$, then $k:(x, y) \mapsto \phi(x-y)$ has native space $W_{2}^{\tau}(\mathbb{M}), \tau=N-\frac{n}{2}$.

Kernels with $\mathcal{N}=W_{2}^{\tau}(\mathbb{M})$

If $k: \mathbb{M} \times \mathbb{M} \rightarrow \mathbb{R}$ has native space $W_{2}^{\tau}(\mathbb{M})$

- Lagrange function is bounded in native space norm

$$
\left\|\chi_{\xi}\right\|_{\mathcal{N}} \leq C q^{d / 2-\tau}
$$

This is a bump estimate - compare χ_{ξ} to an interpolant with support in $B(\xi, q)$.

- Lagrange coefficients are uniformly bounded:

$$
\begin{aligned}
& \left|A_{\xi, \zeta}\right|=\left|\left\langle\chi_{\xi}, \chi_{\zeta}\right\rangle_{\mathcal{N}}\right| \leq C q^{d-2 \tau} \\
& \longrightarrow\left\|\left(\mathrm{C}_{\equiv}\right)^{-1}\right\|_{\infty} \leq C q^{d-2 \tau}(\# \equiv)
\end{aligned}
$$

- [De Marchi-Schaback, '10] If $三$ is sufficiently dense in \mathbb{M}, then a zeros lemma ensures that the Lagrange function is bounded, independent of \#三:

$$
\left|\chi_{\xi}(x)\right| \leq C q^{d / 2-\tau} h^{\tau-d / 2}=C \rho^{\tau-d / 2}
$$

Sobolev kernels (or Sobolev-Matérn kernels)

- For open $\Omega \subset \mathbb{M}, m \in \mathbb{N}$ and $m>d / 2$ define the $W_{2}^{m}(\Omega)$ inner product as

$$
\langle f, g\rangle_{w_{2}^{m}(\Omega)}=\sum_{j=0}^{m} \int_{\Omega}\left\langle\nabla^{j} f, \nabla^{j} g\right\rangle_{x} \mathrm{~d} x
$$

- For $\Omega=\mathbb{M}$, this is the same as the other definitions of $W_{2}^{m}(\mathbb{M})$.
- The Sobolev kernel κ_{m} is the reproducing kernel for $\mathcal{N}=W_{2}^{m}(\mathbb{M})$.
- Equivalently, κ_{m} is the fundamental solution for the elliptic differential operator $\mathcal{L}_{m}=\sum_{j=0}^{m}\left(\nabla^{j}\right)^{*} \nabla^{j}$.

Lagrange function bounds

- For sufficiently dense 三, we have the energy bound for $R>0$:

$$
\text { For } R>0, \quad\left\|\chi_{\xi}\right\| w_{2}^{m}(\mathbb{M} \backslash B(\xi, R)) \leq C q^{d / 2-m} e^{-\nu \frac{R}{h}}
$$

- Lagrange functions have pointwise bounds

$$
\left|\chi_{\xi}(x)\right| \leq C \rho^{m-d / 2} e^{-\nu \frac{\operatorname{dist}(\xi, x)}{h}} \quad(\mathrm{H}-\text { Narcowich - Ward, '10) }
$$

- (H-N-W, '10) Boundedness of Lebesgue constant ,
- (H-N-Sun-W, '11) Stability: $\left\|\sum_{\xi \in \equiv} a_{\xi} \chi_{\xi}\right\|_{p} \sim q^{\frac{d}{p}}\|\vec{a}\|_{\ell_{p}(\equiv)}$,
- (H-N-S-W, '11) L_{p} boundedness of L_{2} projector.
- Lagrange coefficients are bounded by

$$
\left|A_{\xi, \zeta}\right|=\left|\left\langle\chi_{\xi}, \chi_{\zeta}\right\rangle w_{2}^{m}(\mathbb{M})\right| \leq C q^{d-2 m} e^{-\frac{\nu}{2 h} d i s t(\xi, \zeta)}
$$

- Centers more than $K h|\log h|$ away from ξ :

$$
\left|A_{\xi, \zeta}\right| \leq C q^{d-2 m} h^{\frac{\nu K}{2}} \leq C_{\rho} h^{\frac{\nu K}{2}+d-2 m}
$$

Let $\Upsilon_{\xi}:=\equiv \cap B(\xi, K h|\log h|)$. If $N=\#$ 三, then $\# \Upsilon_{\xi} \sim(\log N)^{d}$.

Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, '13]

- Let $\Upsilon_{\xi}:=\equiv \cap B(\xi, K h|\log h|)$.
- Consider the truncated Lagrange basis $\left(\chi_{\xi}\right)_{\xi \in \equiv}$

$$
\begin{aligned}
& \widetilde{\chi_{\xi}}:=\sum_{\zeta \in \Upsilon_{\xi}} A_{\xi, \zeta} \kappa_{m}(\cdot, \zeta) \\
& \longrightarrow\left\|\widetilde{\chi_{\xi}}-\chi_{\xi}\right\|_{\infty} \leq C_{\rho} h^{\left(\frac{K \nu}{2}-2 m\right)}
\end{aligned}
$$

(Because there are at most $N \leq|\mathbb{M}| q^{-d}$ centers)

- Uses only a fraction of the total centers. but requires calculating all coefficients.

Better bases: truncated and local Lagrange bases

From [Fuselier - H - Narcowich - Ward - Wright, '13]

- Let $\Upsilon_{\xi}:=$ ミ $\cap B(\xi, K h|\log h|)$.
- Consider the truncated Lagrange basis $\left(\chi_{\xi}\right)_{\xi \in \equiv}$

$$
\begin{aligned}
& \widetilde{\chi_{\xi}}:=\sum_{\zeta \in \Upsilon_{\xi}} A_{\xi, \zeta} \kappa_{m}(\cdot, \zeta) \\
& \longrightarrow\left\|\widetilde{\chi_{\xi}}-\chi_{\xi}\right\|_{\infty} \leq C_{\rho} h^{\left(\frac{K \nu}{2}-2 m\right)}
\end{aligned}
$$

(Because there are at most $N \leq|\mathbb{M}| q^{-d}$ centers)

- Uses only a fraction of the total centers. but requires calculating all coefficients.
- Use instead $b_{\xi} \in S\left(\Upsilon_{\xi}\right)$, the local Lagrange functions: $b_{\xi}(\zeta)=\delta(\xi, \zeta)$ for all $\zeta \in \Upsilon_{\xi}$.
- Complexity of constructing each b_{ξ} is $\mathcal{O}\left(K^{3 d}|\log N|^{3 d}\right)$. The full family $\left(b_{\xi}\right)_{\xi \in \equiv \operatorname{costs}} \mathcal{O}\left(K^{3 d} N|\log N|^{3 d}\right)$.

Local Lagrange bounds: $\left\|\chi_{\xi}-b_{\xi}\right\|_{\infty} \leq C_{\rho} h^{J}$

- Since $r=\left(\widetilde{\chi_{\xi}}-b_{\xi}\right) \in S\left(\Upsilon_{\xi}\right)$,

$$
\left(\widetilde{\chi_{\xi}}-b_{\xi}\right)=\sum_{\xi \in \Upsilon_{\xi}} c_{\xi} \kappa m(\cdot, \xi), \quad \text { where } \quad \mathrm{C}_{\Upsilon_{\xi}} \vec{c}=\left.r\right|_{\Upsilon_{\xi}}
$$

- At the nodes, the error is small:

$$
\max _{\zeta \in \Upsilon_{\xi}}|r(\zeta)| \leq C_{\rho} h^{\frac{\nu K}{2}-2 m}
$$

- The inverse collocation matrix $\left(\mathrm{C}_{\Upsilon_{\xi}}\right)^{-1}=\left(A_{\eta, \zeta}\right)_{(\eta, \zeta) \in \Upsilon_{\xi} \times \Upsilon_{\xi}}$ has $\ell_{\infty} \rightarrow \ell_{\infty}$ norm

$$
\left\|\left(\mathrm{C}_{\Upsilon_{\xi}}\right)^{-1}\right\|_{\infty} \leq C q^{d-2 m}\left(\#\left(\Upsilon_{\xi}\right)\right) \leq C q^{-2 m}
$$

- Coefficients are small:

$$
\|\vec{C}\|_{\infty} \leq C_{\rho} q^{-2 m} h^{\frac{\nu K}{2}-2 m} \leq C_{\rho} h^{\frac{\nu K}{2}-4 m}
$$

- The uniform error is small:

$$
\left\|\widetilde{\chi_{\xi}}-b_{\xi}\right\|_{\infty} \leq \sum_{\xi \in \Upsilon_{\xi}}\left|c_{\xi}\right|\left\|\kappa_{m}(\cdot, \xi)\right\|_{\infty} \leq C_{\rho} h^{\frac{\nu K}{2}-4 m-d}
$$

Local Lagrange basis summary

- Each element uses $K|\log N|^{d}$ centers
- For sufficiently large $K,\left(b_{\xi}\right)_{\xi \in \equiv}$ is an L_{p}-stable, rapidly decaying basis for $S(\equiv)$:

$$
\left\|b_{\xi}-\chi_{\xi}\right\|_{\infty} \leq C_{\rho} h^{J} \quad \text { when } \quad K=\frac{2}{\nu}(J+4 m)
$$

- Drawback: ν is not known.
- Can be used as a preconditioner for interpolation:

$$
\mathrm{C}_{\equiv} \mathcal{A} \vec{c}=\left.f\right|_{\equiv} .
$$

- For sufficiently large $K, Q_{\equiv} f=\sum_{\xi \in \equiv} f(\xi) b_{\xi}$ behaves like $I_{\equiv} f=\sum_{\xi \in \equiv} f(\xi) \chi_{\xi}$. Namely,

$$
\left\|Q_{\equiv} f-f\right\|_{\infty} \leq \Lambda \operatorname{dist}(f, S(\equiv))_{\infty}+C_{\rho} h^{J-d}\|f\|_{\infty}
$$

- Drawback: κ_{m} is hard to compute.

Quadrature on homogeneous spaces

From [Fuselier - H - Narcowich - Ward - Wright, to appear]

- G is a Lie group of isometries of \mathbb{M} acting transitively $\forall x, y \in \mathbb{M}, \exists g \in G \quad y=g x$.

$$
\forall g \in G, \int_{\mathbb{M}} f(g x) \mathrm{d} x=\int_{\mathbb{M}} f(x) \mathrm{d} x
$$

- G-invariant, positive definite kernel: $k(g x, g y)=k(x, y)$

$$
\longrightarrow \forall y \in \mathbb{M}, \int_{\mathbb{M}} k(x, y) \mathrm{d} x=J_{0}
$$

- For $s \in S(\equiv), s=\sum_{\xi \in \equiv} a_{\xi} k(\cdot, \xi)$

$$
\begin{aligned}
\int_{\mathbb{M}} s(x) d x & =\sum_{\xi} a_{\xi} \int_{\mathbb{M}} k(x, \xi) \mathrm{d} x \\
& =J_{0}\left(\mathbf{1}^{T}\right) \mathbf{a} \\
& =J_{0} \mathbf{1}^{T}\left\{\left.\mathrm{C}_{\equiv}^{-1} s\right|_{\equiv}\right\} \\
& =\left.J_{0}\left\{\mathrm{C}_{\equiv}^{-1} \mathbf{1}\right\}^{T} s\right|_{\equiv}=\left.\mathbf{c}^{T} s\right|_{\equiv}
\end{aligned}
$$

Quadrature error decays rapidly if $\mathcal{N}=W_{2}^{\tau}(\mathbb{M})$.

- Let k have $\mathcal{N}=W_{2}^{\tau}(\mathbb{M})$. For every $s \in S(\equiv)$

$$
\begin{aligned}
\left|\int_{\mathbb{M}} f(x) \mathrm{d} x-\sum_{\xi \in \equiv} c_{\xi} f(\xi)\right| \leq & \int_{\mathbb{M}}|f(x)-s(x)| \mathrm{d} x \\
& +\sum_{\xi \in \equiv}\left|c_{\xi}\right||f(\xi)-s(\xi)|
\end{aligned}
$$

Choose $s=\xlongequal{\text { E }} f$:

$$
\left|\int_{\mathbb{M}} f(x) \mathrm{d} x-\sum_{\xi \in \equiv} c_{\xi} f(\xi)\right| \leq\left\|f-\varrho_{\equiv} f\right\|_{L_{1}(\mathbb{M})} \leq h^{\tau}\|f\|_{W_{2}^{\tau}(\mathbb{M})}
$$

- Using Sobolev kernel κ_{m} : Preconditioner solves interpolation problem and

$$
\left|\int_{\mathbb{M}} f(x) \mathrm{d} x-\sum_{\xi \in \equiv} c_{\xi} f(\xi)\right| \leq C \begin{cases}h^{\sigma}\|f\|_{C^{\sigma}(\mathbb{M})} & 0<\sigma \leq 2 m \\ h^{\sigma}\|f\|_{W_{2}^{\sigma}(\mathbb{M})} & \frac{d}{2}<\sigma \leq m\end{cases}
$$

Polyharmonic (and related) kernels

- $Q \in \Pi_{m}(\mathbb{R})$ with $\lim _{\lambda \rightarrow-\infty} Q(\lambda)=+\infty$.
- Fundamental solution to $\mathcal{L}_{m}=\sum_{j=0}^{m} a_{j} \Delta^{j}=Q(\Delta)$

$$
f(x)=\int_{\mathbb{M}}\left[\mathcal{L}_{m}\left(f-p_{f}\right)\right](\alpha) k(x, \alpha) \mathrm{d} \alpha+p_{f}(x)
$$

$$
p_{f} \in \Pi_{\mathcal{J}}=\operatorname{span}_{j \in \mathcal{J}}\left(\psi_{j}\right) \text { with } \# \mathcal{J}<\infty
$$

- ψ_{j} eigenfunctions of Δ

$$
k(x, y)=\sum_{j=1}^{\infty} \alpha_{j} \psi_{j}(x) \psi_{j}(y) \quad\left(\alpha_{j}=\left(Q\left(\lambda_{j}\right)\right)^{-1} \text { for } j \notin \mathcal{J}\right)
$$

- \mathcal{L}_{m} is positive on the eigenfunctions not in $\Pi_{\mathcal{J}}$.
- Conditionally positive definite w.r.t. $\Pi_{\mathcal{J}}$
- Reproducing kernel semi-Hilbert space

$$
\mathcal{H}_{k}:=\left\{f=\left.\sum_{j=0}^{\infty} \hat{f}_{j} \psi_{j}\left|\sum_{j \notin \mathcal{J}}\right| \hat{f}_{j}\right|^{2} Q\left(\lambda_{j}\right)<\infty\right\}
$$

2-point homogeneous spaces

- Restricted surface splines on $\mathbb{S}^{d}: k(x, \alpha)=\phi(x \cdot \alpha)$

$$
\phi(t)= \begin{cases}(1-t)^{m-d / 2} & \text { for } d \text { odd } \\ (1-t)^{m-d / 2} \log (1-t) & \text { for } d \text { even }\end{cases}
$$

(Baxter \& Hubbert, Levesley \& Odell)

- Surface splines on $\operatorname{SO}(3): k(x, \alpha)=\phi\left(\omega\left(\alpha^{-1} x\right)\right)$

$$
\phi(t)=(\sin (t / 2))^{m-3 / 2}
$$

(H. \& Schmid)

- On two point homogeneous spaces,

$$
\mathcal{L}_{m}=\sum_{j=0}^{m} a_{j} \Delta^{j}=\sum_{j=0}^{m} \tilde{a}_{j}\left(\nabla^{j}\right)^{*} \nabla^{j}
$$

- Special case: sometimes $\mathcal{L}_{m} \Pi_{\mathcal{J}}=\{0\}$,

2-point homogeneous spaces

- Restricted surface splines on $\mathbb{S}^{d}: k(x, \alpha)=\phi(x \cdot \alpha)$

$$
\phi(t)= \begin{cases}(1-t)^{m-d / 2} & \text { for } d \text { odd } \\ (1-t)^{m-d / 2} \log (1-t) & \text { for } d \text { even }\end{cases}
$$

(Baxter \& Hubbert, Levesley \& Odell)

- Surface splines on $\operatorname{SO}(3): k(x, \alpha)=\phi\left(\omega\left(\alpha^{-1} x\right)\right)$

$$
\phi(t)=(\sin (t / 2))^{m-3 / 2}
$$

(H. \& Schmid)

- On two point homogeneous spaces,

$$
\mathcal{L}_{m}=\sum_{j=0}^{m} a_{j} \Delta^{j}=\sum_{j=0}^{m} \tilde{a}_{j}\left(\nabla^{j}\right)^{*} \nabla^{j}
$$

- Special case: sometimes $\mathcal{L}_{m} \Pi_{\mathcal{J}}=\{0\}$,

Lagrange functions for polyharmonic kernels on 2-point homogeneous spaces

When $\mathcal{L}_{m} \Pi_{\mathcal{J}}=\{0\} \ldots$
(1) Lagrange basis is local [H-N-W, '12]:

$$
\left|\chi_{\xi}(x)\right| \leq C_{\rho} \exp \left[-\nu\left(\frac{\operatorname{dist}(\xi, x)}{h}\right)\right]
$$

(2) The Lagrange basis is stable [H-N-W,'12]:

$$
c_{1} q^{d / p}\|a\|_{\ell_{p}} \leq\left\|\sum_{\xi \in \equiv} a_{\xi} \chi_{\xi}\right\|_{p} \leq c_{2} q^{d / p}\|a\|_{\ell_{p}}
$$

(3) The local Lagrange function $b_{\xi} \in S\left(\Upsilon_{\xi}\right)$ using $\Upsilon_{\xi} \subset B(\xi, K h|\log h|)$ is local and stable:

$$
\left\|b_{\xi}-\chi_{\xi}\right\|_{\infty} \leq C_{\rho} h^{J}
$$

Benefits:

- Use as a preconditioner for interpolation, $\Xi_{\equiv} f=\sum_{\xi \in \equiv} a_{\xi} b_{\xi}$:

$$
\left[\begin{array}{ll}
\mathrm{C}_{\equiv} & \Psi
\end{array}\right]\left[\begin{array}{l}
\mathcal{A} \\
\mathcal{B}
\end{array}\right][\mathbf{a}]=[\mathbf{f}]
$$

$\mathcal{A}=\left(A_{\xi, \eta}\right)$ and $\mathcal{B}=\left(B_{\xi, j}\right)$ matrices of coefficients for each b_{ξ}. (\mathcal{A} is sparse.)

- Basis collocation matrix $\left(b_{\xi}(\zeta)\right)_{(\xi, \zeta) \in \equiv \times \equiv}=\left(\mathrm{C}_{\equiv \mathcal{A}}+\Psi \mathcal{B}\right)$ has nice decay.
- Quasi-interpolation $Q_{\equiv} f=\sum_{\xi \in \Xi} f(\xi) b_{\xi}$ performs like I

$$
\left\|Q_{\Xi} f-f\right\|_{\infty} \leq C h^{s}\|f\|_{C^{s}}, \text { for } s \leq 2 m
$$

Quadrature on \mathbb{S}^{2}

Quadrature with $k(x, \alpha)=(1-x \cdot \alpha)^{m-1} \log (1-x \cdot \alpha)$

$$
\int_{\mathbb{S}^{2}} f(x) \mathrm{d} x \sim \sum_{\xi \in \equiv} c_{\xi} f(\xi)
$$

correct for $f \in S($ (三)

- Need to know $J_{0}:=\int_{\mathbb{S}^{2}} k(x, y) \mathrm{d} x$ - independent of y
- Need to know moment vector $J=\left(J_{1}, \ldots J_{m}\right)$ where $J_{j}=\int_{\mathbb{S}^{2}} \psi_{j}(x) \mathrm{d} x$
- Weights are obtained from

$$
\mathrm{K}_{\equiv}\binom{\mathbf{c}}{\mathbf{d}}=\left(\begin{array}{ll}
\mathrm{C}_{\overline{\overline{ }}} & \Psi \\
\Psi^{T} & \mathbf{0}
\end{array}\right)\binom{\mathbf{c}}{\mathbf{d}}=\binom{J_{0} \mathbf{1}}{\mathbf{J}}
$$

Quadrature with $k(x, \alpha)=(1-x \cdot \alpha)^{m-1} \log (1-x \cdot \alpha)$

For $s \in S(k, \equiv), s=\sum a_{\xi} k(\cdot, \xi)+\sum b_{j} \psi_{j}$,

$$
\begin{aligned}
\int_{\mathbb{S}^{2}} s(x) d x & =\sum_{\xi} a_{\xi} \int_{\mathbb{S}^{2}} k(x, \xi) \mathrm{d} x+\sum b_{j} \int_{\mathbb{S}^{2}} \psi_{j}(x) \mathrm{d} x \\
& =\binom{J_{0} \mathbf{1}}{\mathbf{J}}^{T}\binom{\mathbf{a}}{\mathbf{b}} \\
& =\left\{\mathrm{K}_{\equiv}^{-1}\binom{J_{0} \mathbf{1}}{\mathbf{J}}\right\}^{T}\binom{s \mid \equiv}{\mathbf{0}}=\left.\mathbf{c}^{T} \boldsymbol{s}\right|_{\equiv}
\end{aligned}
$$

- $\mathrm{K} \equiv\binom{\mathbf{c}}{\mathbf{d}}=\binom{\mathrm{J}_{0} \mathbf{1}}{\mathbf{J}}$ not directly solvable - need to decompose \mathbf{c} into ran ψ and $\operatorname{ker} \psi^{T}$.
- Each c_{ξ} can be obtained as $\int_{\mathbb{S}^{2}} \chi_{\xi}(x) \mathrm{d} x=B_{\xi, 1} \operatorname{vol}\left(\mathbb{S}^{2}\right)$ where

$$
\chi_{\xi}=\sum_{\zeta} A_{\xi, \zeta} k(\cdot, \zeta)+\sum B_{\xi, j} \psi_{j}
$$

Using the first coefficient from b_{ξ} may be faster.

Quadrature weights for 23042 icosahedral nodes

Quadrature weights for 22501 Fibonacci nodes
$-\left\{\begin{array}{l}x 10^{-4} \\ 5.9 \\ 5.8 \\ 5.7 \\ 5.6 \\ 5.5 \\ 5.4 \\ 5.3\end{array}\right.$

Quadrature weights for 22500 minimal energy nodes

$$
\times 10^{-4}
$$

