# Bijective Composite Mean Value Mappings 

Kai Hormann<br>Università della Svizzera italiana, Lugano

joint work with
Michael S. Floater \& Teseo Schneider

## Introduction

- special bivariate interpolation problem
find mapping $f$ between two simple polygons
- bijective
- linear along edges


Università

## Motivation

## image warping


original image

mask

warped image

## Barycentric coordinates

functions $b_{i}: \Omega \rightarrow \mathbb{R}$ with
partition of unity

$$
\begin{aligned}
& \sum_{i=1}^{n} b_{i}(v)=1 \\
& \sum_{i=1}^{n} b_{i}(v) v_{i}=v
\end{aligned}
$$



- Lagrange property $\quad b_{i}\left(v_{j}\right)=\delta_{i j}$
interpolation of data $f_{i}$ given at $v_{i}$

$$
f(v)=\sum_{i=1}^{n} b_{i}(v) f_{i}
$$



## Barycentric coordinates

special case $n=3$

$$
b_{i}(v)=\frac{A_{i}(v)}{A_{1}(v)+A_{2}(v)+A_{3}(v)}
$$

general case


- homogeneous weight functions $w_{i}: \Omega \rightarrow \mathbb{R}$ with

$$
\sum_{i=1}^{n} w_{i}(v)\left(v_{i}-v\right)=0
$$

- barycentric coordinates

$$
b_{i}(v)=\frac{w_{i}(v)}{w_{1}(v)+\cdots+w_{n}(v)}
$$

## Examples

- Wachspress (WP) coordinates

$$
w_{i}=\frac{\cot \gamma_{i-1}+\cot \beta_{i}}{r_{i}^{2}}
$$


mean value (MV) coordinates

$$
w_{i}=\frac{\tan \left(\alpha_{i-1} / 2\right)+\tan \left(\alpha_{i} / 2\right)}{r_{i}}
$$


discrete harmonic (DH) coordinates

$$
w_{i}=\cot \beta_{i-1}+\cot \gamma_{i}
$$



Università

## Barycentric mappings

source polygon


$$
\Omega^{0}=\left[v_{1}^{0}, \ldots, v_{n}^{0}\right]
$$

target polygon

$$
f(v)=\sum_{j=1}^{n} b_{j}^{0}(v) v_{j}^{1}
$$


$\Omega^{1}=\left[v_{1}^{1}, \ldots, v_{n}^{1}\right]$

## Wachspress mappings

- based on WP coordinates
- bijective for convex polygons
[Wachspress 1975]
[Floater \& Kosinka 2010]

- based on WP coordinates
- bijective for convex polygons not bijective for non-convex target
not well-defined for non-convex source

[Wachspress 1975]
[Floater \& Kosinka 2010]

Mean value mappings

- based on MV coordinates
[Floater 2003]
well-defined for non-convex source not bijective



## Mean value mappings

- based on MV coordinates
well-defined for non-convex source
not bijective, even for convex polygons



## Barycentric mappings

## WP

convex $\rightarrow$ convex
convex $\rightarrow$ non-convex
non-convex $\rightarrow$ convex
non-convex $\rightarrow$ non-convex
general barycentric mappings

Università

## Composite barycentric mappings

$\Omega^{0}$
$\Omega^{1}$



## Sufficient condition

$f: \Omega^{0} \rightarrow \Omega^{1}$ is bijective, if
[Meisters \& Olech 1963]

- $\Omega^{0}$ and $\Omega^{1}$ without self-intersection
$f$ bijective on the boundary

$$
=J_{f}=\left|\begin{array}{ll}
\partial_{1} f^{1} & \partial_{2} f^{1} \\
\partial_{1} f^{2} & \partial_{2} f^{2}
\end{array}\right|>0
$$



## Perturbation bounds

move one $v_{i}^{0}$ to $v_{i}^{1}=v_{i}^{0}+u_{i}$
= $f$ bijective, if

$$
\left\|u_{i}\right\|<\frac{1}{M_{i}}
$$

with

$$
M_{i}=\sup _{v \in \Omega^{0}}\left\|\nabla b_{i}(v)\right\|
$$

move all $v_{i}^{0}$ to $v_{i}^{1}=v_{i}^{0}+u_{i}$

- $f$ bijective, if

$$
\max _{1 \leq i \leq n}\left\|u_{i}\right\|<\frac{\sqrt{5}-1}{2 M}
$$

with

$$
M=M_{1}+\cdots+M_{n}
$$



## with



## Composite barycentric mappings

continuous vertex paths $\varphi_{i}:[0,1] \rightarrow \mathbb{R}^{2}$

- intermediate polygons $\Omega^{t_{k}}=\left[\varphi_{1}\left(t_{k}\right), \ldots, \varphi_{n}\left(t_{k}\right)\right]$
barycentric mappings $f_{k}: \Omega^{t_{k}} \rightarrow \Omega^{t_{k+1}}$



## Composite barycentric mappings

partition $\tau=\left(t_{0}, t_{1}, \ldots, t_{m}\right)$ of $[0,1]$
composite barycentric mapping

$$
f_{\tau}=f_{m-1} \circ f_{m-2} \circ \cdots \circ f_{1} \circ f_{0}
$$

$f_{\tau}$ bijective, if
max displacement

$$
\max _{0 \leq k<m} \max _{1 \leq i \leq n}\left\|v_{i}^{t_{k}}-v_{i}^{t_{k+1}}\right\|<\frac{\sqrt{5}-1}{2 n M^{*}}
$$

with

$$
M^{*}=\max _{1 \leq i \leq n} \max _{t \in[0,1]} \sup _{v \in \Omega^{t}}\left\|\nabla b_{i}^{t}(v)\right\|
$$

max gradient

Faculty
$\Omega^{0}$

$f_{0}(v)=\sum_{j=1}^{n} b_{j}^{0}(v) v_{j}^{0.5}$

$$
\tau=(0,0.5,1)
$$

$$
f_{\tau}=f_{0.5} \circ f_{0}
$$


$\Omega^{1}$

## Composite mean value mappings

## use mean value coordinates to define mappings $f_{k}$

- well-defined, as long as $\Omega^{t_{k}}$ without self-intersections
- $\left\|\nabla b_{i}^{t}(v)\right\|$ bounded for $v \in \Omega^{t}$
- if $\Omega^{t}$ is convex
[Rand et al. 2012]
- if $\Omega^{t}$ is non-convex $\Rightarrow$ future work
constant $M^{*}$ is finite
$f_{\tau}$ bijective for uniform steps $t_{i}=i / m$
continuous vertex paths $\varphi_{i}$
- $m$ sufficiently large


## Vertex paths

$\Omega^{t}$ by linearly interpolating

- edges lengths
- signed turning angles
- barycentre
- orientation of one edge

$t=0$

$t=0.25$

$t=0.5$
$t=0.75 \quad t=1$


## Adaptive binary partition

## checkInterval $(0,1)$

$$
J_{\min }=\text { computeJmin }(, ~)
$$

if $J_{\text {min }} \leq 0$ then
$c=(+\quad) / 2$
$\tau=\tau \cup c$
checkInterval ( , c) checkInterval ( $c$, ) end
end

$$
\tau=\{0,1\}
$$


checkInterval $(0,1)$

$$
J_{\min }=\text { computeJmin }(0,1)
$$

if $J_{\text {min }} \leq 0$ then
$c=(\quad+\quad) / 2$
$\tau=\tau \cup c$
checkInterval $(, c)$ checkInterval ( $c, \quad$ ) end

end

$$
\tau=\{0,1\}
$$



## Adaptive binary partition

checkInterval $(0,1)$ $J_{\min }=$ computeJmin $(0,1)$
if $J_{\text {min }} \leq 0$ then $c=(0+1) / 2$ $\tau=\tau \cup c$ checkInterval ( $0, c$ ) checkInterval $(c, 1)$ end

$>1.5$
1.5
1
0.5
0
0
0
end

$$
\tau=\{0,0.5,1\}
$$


checkInterval ( $0,0.5$ ) $J_{\text {min }}=$ computeJmin $(0,0.5)$ if $J_{\text {min }} \leq 0$ then $c=(\quad+\quad) / 2$ $\tau=\tau \cup c$ checkInterval $(, c)$ checkInterval ( $c$, ) end

end
$\tau=\{0,0.5,1\}$


## Adaptive binary partition

checkInterval ( $0,0.5$ ) $J_{\text {min }}=$ computeJmin ( $0,0.5$ ) if $J_{\text {min }} \leq 0$ then $c=(+\quad) / 2$ $\tau=\tau \cup c$ checkInterval ( , c) checkInterval ( $c$, ) end

$\Rightarrow$ end

$$
\tau=\{0,0.5,1\}
$$



## checkInterval $(0.5,1)$

$$
J_{\min }=\text { computeJmin }(0.5,1)
$$

$$
\text { if } J_{\min } \leq 0 \text { then }
$$

$$
c=(+\quad) / 2
$$

$$
\tau=\tau \cup c
$$

checkInterval $(, c)$ checkInterval ( $c$, ) end

end

$$
\tau=\{0,0.5,1\}
$$


checkInterval $(0.5,1)$
checkInterval $(0.5, c)$ checkInterval $(c, 1)$ end
end

$$
\tau=\{0,0.5,0.75,1\}
$$

## Adaptive binary partition

$$
\begin{aligned}
& J_{\min }=\text { computeJmin }(0.5,1) \\
& \text { if } \begin{aligned}
J_{\min } & \leq 0 \text { then } \\
\qquad c & =(0.5+1) / 2 \\
\tau & =\tau \cup c
\end{aligned}
\end{aligned}
$$



## Adaptive binary partition

checkInterval $(0.5,1)$

$$
J_{\min }=\text { computeJmin }(0.5,1)
$$

if $J_{\text {min }} \leq 0$ then
$c=(0.5+1) / 2$ $\tau=\tau \cup c$
checkInterval $(0.5, c)$ checkInterval $(c, 1)$
end
$\Rightarrow$ end

$$
\tau=\{0,0.5,0.75, \ldots, 1\}
$$



## Composite barycentric mapping



Università


Università

composite mean value

## Infinite barycentric mappings


$\Omega^{0}$

$\Omega^{1}$

## Infinite barycentric mappings


$\Omega^{0}$

$\Omega^{1}$

## Infinite barycentric mappings

$$
g_{\tau_{m}} \circ f_{\tau_{m}}
$$


$m=100$

$m=200$


$$
m=400
$$

Università

## Infinite barycentric mappings



## Infinite barycentric mappings

infinite barycentric mapping: $f_{\infty}=\lim _{m \rightarrow \infty} f_{\tau_{m}}$

$\Omega^{0}$
$f_{\infty}$

$g_{\infty}=\left(f_{\infty}\right)^{-1}$

## Conclusion

- construction of bijective barycentric mappings
- composition of intermediate mappings
- theoretical bounds on the displacement
real-time composite mean value mappings
- construction of the adaptive binary partition
- real-time GPU implementation
- infinite composite mappings
- natural inverse
- empiric result of convergence

