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Notation

– Πn the space of algebraic polynomials of (total) degree at most n ≥ 1.

– X ⊂ R2 with |X| = dim Πn =
`

n+2
2

´

.

General Assumption:

– X is n-poised (n-regular, n-correct), i.e.,

p ∈ Πn and p(x) = 0 , x = (x, y) ∈ X =⇒ p = 0 .

– Equivalently, for any real (or complex) data {cx , x ∈ X}, there is a unique polynomial
p ∈ Πn, interpolating these data:

p(x) = cx , x ∈ X .

– Equivalently, the Vandermonde with respect to X and any basis of Πn is regular.

Here, in case we use the monomial basis, the Vandermonde V = Vn(X) consists of rows

[ · · · xα · · · ]α=(α1,α2)∈N2

0
,α1+α2≤n , for x = (x1, x2) ∈ X , xα = xα1

1 · xα2

2 .
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Fundamental Polynomials

n-poisedness is equivalent to the fact that for any x ∈ X, and the data

ex = (δx,y)y∈X ,

we have a unique (so-called Lagrange) fundamental polynomial px ∈ Πn, determined by

px(y) = δx,y , y ∈ X , (1)

and the polynomial interpolating the data (cx)x∈X may be written (in its Lagrange form) as

p =
X

x∈X

cx px .

Remark. Fundamental polynomials satisfying (1) can be also considered for not necessarily
n-poised sets X, in particular if |X| < dim Πn. In this case, for some point x ∈ X such a
fundamental polynomial may not exist and/or may not be unique.
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The Gasca-Maeztu Conjecture

The Gasca-Maeztu conjecture (for short: GM-conjecture or GMn-conjecture) is based
on the assumption that each fundamental polynomial px, x ∈ X, factors into linear
polynomials.

It states that under this assumption at least n + 1 nodes from the set X must be collinear.

It was first stated in Gasca-Maeztu [2]; see also Carnicer-Gasca [3].

Surprisingly, up to now the conjecture is verified only for n ≤ 5.

n = 1 Here, |X| = dim Π1 = 3, and X is 1-poised iff the three nodes are not collinear.

For each node x ∈ X, the fundamental polynomial px is (the linear polynomial whose
zero set is) the line connecting the two other nodes from X.

n = 2 Here, |X| = dim Π2 = 6. Since px, for each x ∈ X, is the product of two lines
containing five nodes from X, one of these lines must contain 3 nodes.

The assumption of the GM-conjecture leads to sets X of the following type:
The nodes lie on three lines, which are not concurrent, on each line three nodes, and
the intersection points of any two lines belong to X.
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The Gasca-Maeztu Conjecture, Proofs

n = 3 Here, |X| = dim Π3 = 10.

Assuming that GM3 does not hold, we find that for each node x ∈ X, the
fundamental polynomial px factors into three lines each containing three nodes.

Also the fundamental polynomials of two different nodes cannot share a common line.

So, for the ten nodes in X, we need 30 different lines, each one containing three nodes
of X.

This is impossible, since there are at most
`10

2

´

/
`3
2

´

= 15 such lines.

n = 4 The first proof was given by Busch [4].

See also Carnicer and Gasca [3], or HJZ [5].

n = 5 This case is treated here; see HJZ [1].
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The Geometric Condition GCn

Chung and Yao [6] have introduced this notion:

An n-poised set X ⊂ R
2 satisfies the geometric condition GCn, if for each x ∈ X the set

X \ {x} is contained in the union of n lines ℓx1 , . . . , ℓxn, say,

X \ {x} ⊂ Γx := {ℓx1 , . . . , ℓxn} .

This is equivalent to the requirement that X is n-poised, and for each x ∈ X, the
fundamental polynomial is the product of the n linear factors in Γx:

px = γx

n
Y

j=1

ℓxj .

Here, γx 6= 0 is a normalization constant enforcing px(x) = 1.

Since X is assumed to be poised, the set Γx is uniquely determined by x, up to
normalization of the lines equations.
(Here, and in what follows, we identify a line ℓ with the linear (normalized) polynomial
defining the line as its zero set.)
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The Natural Lattices by Chung and Yao

These so-called natural lattices are the most efficient point lattices satisfying GCn.

Take n + 2 lines of R2 in general position, i.e.,

– each pair of lines intersects at a single point, and

– no triple of lines is concurrent.

Then

– the set X of the
`

n+2
2

´

intersection points of all pairs of lines is n-poised, and

– for each x ∈ X, the set Γx consists of those n lines not containing x.

For this Chung-Yao natural lattice, each of the n + 2 lines contains exactly n + 1 nodes from
X.

New Results Concerning the Gasca-Maeztu Conjecture – p. 8/36



Example of a Chung and Yao Natural Lattice (n = 3)
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The Berzolari-Radon Type Sets X

Consider n + 1 different lines ℓ1, . . . , ℓn+1, and a set X of nodes with |X| =
`

n+2
2

´

such
that, for each k = 1, . . . , n + 1,

n + 2 − k nodes of X are on ℓk \
“

∪k−1
j=1 ℓj

”

.

Then X is n-poised, cf. [9], [10].

Such a so-called Berzolari-Radon set X does not necessarily satisfy GCn.

However, at least one point, namely the point x on ℓn+1 not contained in the former n lines,
has a fundamental polynomial which factors according to

px = γx

n
Y

j=1

ℓj .
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Example of a Berzolari-Radon Type Set X (n = 3)

ℓ1

ℓ2

ℓ3

ℓ4
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Point Distribution of a Berzolari-Radon Type Set

In the former example for n = 3, the fundamental polynomial of the last point x ∈ ℓ4 is the
product of the lines ℓ1, ℓ2, ℓ3 which contain the remaining points X \ {x} according to the
distribution sequence (4, 3, 2).

For general n, the last point x ∈ ℓn+1 in the construction of a Berzolari-Radon set uses the
line sequence

(ℓ1, ℓ2, ℓ3, . . . , ℓn)

according to the point distribution sequence

(n + 1, n, n − 1, . . . , 2) .

For the Chung-Yao natural lattices, for any x ∈ X, the used line sequence is the sequence of
those n lines not containing x (in any order), and the corresponding point distribution
sequence is again given by

(n + 1, n, n − 1, . . . , 2) .
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Line Sequences and Distribution Sequences for x ∈ X

Assumption. In what follows, we assume that X is an n-poised GCn -set.

We use the following notations, for given x ∈ X:

– Γx = {ℓx1 , . . . , ℓxn}, the (unordered) set of lines (linear polynomials) used in the
factorization of the fundamental polynomial px.

This set is uniquely determined, up to normalization of the polynomials.

Notation. We say that x uses the lines from Γx.

– (ℓ1, . . . , ℓn) any ordered n-tuple of all lines ℓxj ∈ Γx, is called a line sequence for x.

– (k1, . . . , kn), the corresponding distribution sequence for x ∈ X, is determined by the
following count of the nodes of X \ {x}:

ki =
˛

˛

˛

ℓi ∩
“

(X \ {x}) \ ∪j<iℓj

”

˛

˛

˛

, i = 1, . . . , n .
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Count of Intersection Points in X

So, given a line sequence (ℓ1, . . . , ℓn) for x ∈ X, ki is the number of nodes from X \ {x}

lying on ℓi, but not on the former lines ℓ1, . . . , ℓi−1.

Intersection points of two lines need special consideration:

Notation. If {x} := ℓi ∩ ℓj ∈ X, for some i < j, and if x is counted by ki, then x is called a
primary node for ℓi and a secondary node for ℓj .

Fact.The distribution sequence of a node x ∈ X is uniquely determined when the line
sequence is fixed, but not conversely, and we have

k1 + · · · + kn =
˛

˛X \ {x}
˛

˛ .
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A Point, and the Lines Used by It (n = 5)

A

ℓ1

ℓ2

ℓ3

ℓ4 ℓ5
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Maximal Distribution Sequence for x ∈ X

For given x ∈ X, there are many line sequences and corresponding distribution sequences.

Among the distribution sequences (k1, . . . , kn) for x, there is a unique maximal one (with
respect to lexicographic ordering).

We call this the maximal distribution sequence for x. It is ordered decreasingly according to

n + 1 ≥ k1 ≥ k2 ≥ · · · ≥ kn ≥ 2 .

There may be several line sequences leading to the same maximal distribution sequence of
x.

In the former example, the maximal distribution sequence is given by (5, 5, 4, 3, 3), with
several corresponding line sequences, e.g.,

(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) , or (ℓ3, ℓ1, ℓ2, ℓ5, ℓ4) , or · · ·
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Maximal Lines

Fact 1. For an n-poised set X, at most n + 1 points from X can be collinear.

Otherwise, if a set of nodes Y ⊂ X with |Y | > n + 1 were collinear (lying on a line ℓ), we
could find a polynomial p ∈ Πn−1 vanishing on X \ Y , since

|X \ Y | <
“n + 2

2

”

− (n + 1) =
“n + 1

2

”

= dim Πn−1 .

The polynomial ℓ · p ∈ Πn would then vanish on all of X contradicting the n-poisedness of
the set X.

Notation. (de Boor [8]) If |X ∩ ℓ| = n + 1, then the line ℓ is said to be maximal.

Fact 2. For an n-poised set X, the existence of a maximal line ℓ implies that ℓ is a divisor of
all fundamental polynomials px, for x ∈ X \ ℓ. This means that all those x use ℓ.

The GMn-conjecture can now be put as follows:
For an n-poised set satisfying GCn, there exists a maximal line ℓ and, hence, X \ ℓ is a
GCn−1-set.
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Maximal Curves

The idea of a maximal line extends to maximal curves q of degree at most n. Put

d(n, k) := dim Πn − dim Πn−k =
1

2
k ( 2n + 3 − k ) for k ≤ n .

E.g., d(n, 1) = n + 1, d(n, 2) = 2n + 1 and d(n, 3) = 3n.

Fact. For an n-poised set X, at most d(n, k) points from X can lie on an algebraic curve q of
degree k.

If such a curve q of degree k contains exactly d(n, k) points from X, then it is again said to
be maximal.

Such maximal curves q, again, occur as divisors of the fundamental polynomials px, for
x ∈ X \ q.

But in connection with the GM-Conjecture we only deal with maximal lines (or reducible
maximal curves).
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n-dependent Sets

For a (finite) set Y of points, the Vandermonde matrix Vn(Y ) is defined as above as the
(|Y | × N)-matrix, N = dim Πn, consisting of the rows

[ · · · yα · · · ]0≤|α|≤n , for y ∈ Y .

Here, α = (α1, α2) ∈ N
2
0 and |α| := α1 + α2.

Notation. The set Y is said to be n-dependent, if the rows of the Vandermonde matrix
Vn(Y ) are linearly dependent. Otherwise, Y is said to be n-independent.

A useful result is the following:

Theorem 1.9. (Hakopian and Malinyan [12] ) A set Y consisting of at most 3n nodes is
n-dependent if and only if one of the following holds:

(i) n + 2 = d(n, 1) + 1 nodes are collinear.

(ii) 2n + 2 = d(n, 2) + 1 nodes belong to a (possibly reducible) conic.

(iii) |Y | = 3n = d(n, 3), and there exists a γ ∈ Π3 and σ ∈ Πn such that Y = γ ∩ σ.
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Cayley-Bacharach

The last statement refers to a special case (m=3) of the following so-called
Cayley-Bacharach theorem:

Theorem 1.12. Assume that two algebraic curves of degree m and n, respectively, intersect
at m · n points.

Then the set Y of these intersection points is (m + n − 3)-dependent.

(Moreover, no point of Y has an (m + n − 3)-fundamental polynomial.)

A proof of this can be found in HJZ [13].
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Equivalent Forms of the GM-Conjecture

Theorem. For given n ≥ 1, the following are equivalent:

(i) For k ≤ n and any k-poised set X satisfying GCk, there is a maximal line containing
k + 1 nodes from X.

(ii) (Carnicer-Gasca’s Three-Line-Theorem) For k ≤ n and any k-poised set X

satisfying GCk , there are three (non concurrent) maximal lines ℓ1, ℓ2, ℓ3, each one
containing k + 1 nodes and altogether containing 3k nodes from X. Moreover, for
k ≥ 4, the set X \ {ℓ1 ∪ ℓ2 ∪ ℓ3} satisfies GCk−3.

(iii) For k ≤ n and any k-poised set X satisfying GCk, the maximal sequence of each
node x ∈ X is given by

(k + 1, k, k − 1, . . . , 2) .

(i) ⇒ (ii) was proved by Carnicer and Gasca in [7].

(ii) ⇒ (iii) is verified in the following way:
At step n, each node in X uses a maximal line ℓ and thus has a maximal distribution
sequence of type (n + 1, k2, . . . , kn).
The nodes of X \ ℓ satisfies GCn−1.
Now use induction.
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Equivalent Forms of the GM-Conjecture, Continued

(iii) ⇒ (ii) Each node x ∈ X uses a maximal line ℓx, say.

Fix x, and choose y ∈ ℓx ∩ X with maximal line ℓy. Apparently, ℓx 6= ℓy.
It follows that ℓx ∩ ℓy =: {z} ∈ X, and ℓz is the third maximal line, which must be apparently
different from both, ℓx and ℓy.

The property that the first two lines have to intersect at a single node from X, follows from
the assumption of X being n-poised.

Otherwise the (reducible) conic γ = ℓx · ℓy would vanish at 2(n + 1) points from X, and we
could find a polynomial p ∈ Πn−2 vanishing at all points from X \ γ, since

˛

˛

˛

X \ γ
˛

˛

˛

=
“n + 2

2

”

− 2(n + 1) <
“n

2

”

= dim Πn−2 .

The polynomial γ · p ∈ Πn would vanish at all nodes from X, contradicting the assumption of
X being n-poised.
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General Idea of Proof of the Conjecture for n = 5

The proof uses the structure of possible maximal distribution sequences, and counts the
uses of lines.

Assumption A.
– X is 5-poised and satisfies GC5, and
– no point of x ∈ X has a maximal distribution sequence (k1, k2, k3, k4, k5) with k1 = 6.

Since 6 > k1 ≥ k2 ≥ k3 ≥ k4 ≥ k5 ≥ 2 and k1 + k2 + k3 + k4 + k5 = |X| − 1 = 20, this
leaves the following types of maximal distribution sequences:

(i) (5, 5, 5, 3, 2) ,

(ii) (5, 5, 4, 4, 2) ,

(iii) (5, 5, 4, 3, 3) ,

(iv) (5, 4, 4, 4, 3) ,

(v) (4, 4, 4, 4, 4) .

One has to show that none of these cases is possible. (It turns out that it is sufficient to
exclude the first two possibilities.)
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Count of Used Lines

Actually, the main part of the proof consists in verifying the following table.

maximal # of nodes using eℓ

total # in general no node uses no node uses

of nodes (5, 5, 5, 3, 2) (5, 5, 5, 3, 2)

on eℓ constellation or (5, 5, 4, 4, 2)

constellation

5 6 4 4

4 3 3 2

3 3 1 1

2 1 1 0

The first column distinguishes the possibly used lines ℓ̃ according to the number k of nodes
lying on them:

k :=
˛

˛

˛

X ∩ ℓ̃
˛

˛

˛

∈ {5, 4, 3, 2} .

(Note that k = 6 is excluded by assumption A.)
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Lines Used at Least Twice

We quote some intermediate results from the paper:

Proposition 2.11. Assume that X is a GC5-set without a maximal line, and suppose that
some line ℓ̃ is used by two nodes A, B ∈ X.

Then ℓ̃ passes through at least three nodes of X.

If ℓ̃ passes through exactly three nodes, then there exists a third node C using ℓ̃.
Furthermore, A, B and C share three other lines, each passing through five primary nodes.
For each of the three nodes, the maximal distribution sequence is (5, 5, 5, 3, 2), and the other
two points are the primary points on the respective fifth line.
In particular, ℓ̃ is used exactly three times.
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Lines Used at Least Three Times

Proposition 2.12. Assume that X is a GC5-set without a maximal line, and suppose that
some line ℓ̃ is used by three nodes A, B, C ∈ X.

Then ℓ̃ passes through at least three nodes of X.

If ℓ̃ passes through exactly three nodes then Proposition 2.11 applies, so in particular, it is
used exactly three times.

If ℓ̃ passes through exactly four nodes, then A, B and C share ℓ̃ and three other lines, ℓ2 and
ℓ3 passing through five, and ℓ4 passing through four primary nodes.
For each of the three nodes its maximal distribution sequence is (5, 5, 4, 4, 2) or (5, 5, 5, 3, 2)

where the latter case occurs if ℓ̃ and ℓ4 intersect at a node of X.
In each case, the respective other two nodes are the primary nodes on the respective fifth
line, so ℓ̃ can only be used by A, B and C, i.e., it is used exactly three times.
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Lines Used at Least Four Times

The following result immediately follows from the previous one:

Corollary 2.13. If some line ℓ̃ is used by four nodes in X, then it has to pass through five
nodes of X.
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Lines Used at Least Five Times

Proposition 2.12. Assume that X is a GC5-set without a maximal line, and suppose that
some line ℓ̃ is used by five nodes in X.

Then ℓ̃ passes through five nodes of X, and it is actually used by exactly six nodes in X.
These six nodes form a GC2-set and share two more lines with five primary nodes each, i.e.,
each of these six nodes has the maximal distribution sequence (5, 5, 5, 3, 2).
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Case (5, 5, 5, 3, 2)

The hardest part in the proof of the conjecture for n = 5 is the verification of the following

Proposition 3.12. Assume that X is a GC5-set without a maximal line. Then for no point of
X, the maximal distribution sequence is (5, 5, 5, 3, 2).

Our proof needs 8 pages, plus some additional references to other supplementary results,
including our n = 4 paper in JAT.

A corollary of this result is the following:

Lemma 3.13. Assume that X is a GC5-set without a maximal line. Then the following hold:

(i) No line contains exactly three nodes of X, and for m = 2, 4 and 5, any line containing
exactly m nodes of X is used exactly m − 1 times.

(ii) No two lines used by the same node intersect at a point in X (i.e., there are no
secondary nodes).
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Case (5, 5, 4, 4, 2)

Another 4 pages argument shows

Proposition 3.17. Assume that X is a GC5-set without a maximal line. Then for no point of
X, the maximal distribution sequence is (5, 5, 4, 4, 2).

The proof of this result, and of Proposition 3.12., uses a result from HJZ[5] counting the
maximal possible number Mk1,k2,k3

of lines passing through one point each of three disjoint
subsets X1, X2 and X3 of X satisfying |Xi| = ki, i = 1, 2, 3, subject to the following
additional assumptions:

– X1 and X2 are collinear (not necessarily X3), X1 ⊂ ℓ1 and X2 ⊂ ℓ2, say, with
ℓ1 6= ℓ2.

– The intersection point of ℓ1 and ℓ2 is not in X1 ∪ X2, and none of the points in X3 lies
on one of these two lines.

In [5], we have shown that M4,4,4 = 12 and M5,5,5 = 19.
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Finishing the Proof of the Conjecture for n = 5

Assume that the last column applies for the count of uses of a line ℓ̃.

Fix any point A ∈ X, and consider all lines through A and at least one other point of X.
Let nm(A) be the number of such lines containing exactly m points from X, including A.
This gives

1 · n2(A) + 2 · n3(A) + 3 · n4(A) + 4 · n5(A) =
˛

˛

˛

X \ {A}
˛

˛

˛

= 20 .

The last column in our table tells that the total uses of these lines through A by points from
X \ {A} can be at most

M := 0 · n2(A) + 1 · n3(A) + 2 · n4(A) + 4 · n5(A) ,

while M ≥ 20, since each point from X \ {A} must use at least one such line.

We arrive at the condition n2(A) = n3(A) = n4(A) = 0 and n5(A) = 5.

This tells that the 21 nodes from X are situated on five lines, a contradiction to the
5-poisedness of the set.
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