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PART I:
simplex splines



Schoenberg’s View of the Bivariate B-Spline
In a letter from Iso Schoenberg to
Phillip Davis from 1965:

“A sketch of the spline function
z = M(x , y ; z0, z1, z2, z3, z4)”



Simplex spline definitions

I geometric

I variational

I recurrence relation



Recurrence Relation

∫
[x0,...,xn]

f :=

∫
∆n

f (v0x
0 + v1x

1 + · · ·+ vnx
n)dv1 · · · dvn



Bivariate simplex spline properties

I Let X be a collection of d + 3 points x1, . . . , xd+3 in R2

I A simplex spline S = S [X] : R2 → R with knots X is a
nonnegative piecewise polynomial

I the degree is d

I the support is the convex hull of X
I the knotlines are the edges in the complete graph of X
I a knot line has multiplicity m if it contains m + 1 of the

points in X
I S ∈ Cd−m across a knotline of multiplicity m



Some simplex spline spaces

I Triangulate a slab, de Boor, 1976.

I Complete Configurations, Hakopian[1981], Dahmen,
Michelli[1983],

I Pull apart, Dahmen, Micchelli[1982], Höllig[1982], Dahmen,
Micchelli,Seidel[Erice 1990],

I Delaunay configurations, Neamtu[2000-2007]



”There is no clever way to implement the recurrence relation
once the standard recipe for constructing spaces of simplex
spline functions has been followed”

Tom Grandine, 1987



What should be the space of Simplex splines on a triangulation?



PART II:

A Simplex spline basis for PS12
on one triangle

Cohen, E., T. Lyche, and R. F. Riesenfeld, A B-spline-like basis for the

Powell-Sabin 12-split based on simplex splines, Math. Comp., 82(2013),

1667-1707



The PS12-split (Powell,Sabin 1977)



The PS12-split



The PS12 spline space

S1
2( ) = {f ∈ C 1( ) : f|∆i

∈ Π2, i = 1, . . . , 12}

dim(S1
2(∆PS12)) = 12



Computing with PS12

I Bernstein-Bézier methods,

I FEM nodal basis, (Oswald)

I minimal determining set (Alfeld, Schumaker, Sorokina)

I subdivision (Dyn, Lyche, Davydov, Yeo)

I quadratic S(implex) - splines (Cohen, Lyche, Riesenfeld)A Hermite Subdivision Scheme for PS-12 3

Initialization 1. subdivision
step

Fig. 2. Subdividing the PS-12 split element. A circle around a vertex
means that both the function value and the gradient are known at that
vertex.

2.1. Initialization.

The �rst step in the computation of such an element involves the computation
of its value and gradient at the midpoints a; b; c of the triangle T , (see, Fig. 1).
Here we use the formula

fb = (fA + fC)=2� (rfA �rfC) � (A � C)=8

for the function value at the midpoint b of AC. For the gradient we �rst
compute the directional derivative in the direction AC at b

(A � C) � rfb = 2(fA � fC) � (rfA +rfC) � (A �C)=2:

Combining this value with the given value of the cross-derivative at b, we can
calculate rfb. For the other midpoints we use similar formulae.

These formulae are obtained from the observation that along each side of
T the PS-12 split element is a piecewise quadratic C1-spline with a knot at
the midpoint.

2.2. The General Subdivision Step.

For the �rst subdivision step (see Fig. 1) we use the following formulae:

fe = (fb + fC)=2� (rfb �rfC) � (b � C)=8

fg = (fa + fC)=2� (rfa �rfC) � (a � C)=8

fd = (fb + fa)=2� (rfb �rfa) � (b � a)=8

rfe = (rfb +rfC)=2

rfg = (rfa +rfC)=2

(a � b) � rfd = 2(fa � fb)� (rfa +rfb) � (a � b)=2

(C � d) � rfd = 2(fC � fd) �rfC � (C � d):

(1)

>From the last two values we can solve for rfd. Similar formulae are used
for the two other corner triangles Abc and Bca and we obtain the values and
gradients at locations shown to the right in Fig. 2. This process can now be
continued for as many levels of re�nement as desired.

Fig. 3 displays a PS-12 split element obtained from random initial data.
The implementation was done using Mathematica.



3 corner S-splines for the quadratic case; support 1/4



6 half support S-splines for the quadratic case



3 trapezoidal support S-splines for the quadratic case



Properties

I Local linear independence,

I nonnegative partition of unity,

I stable recurrence relations,

I fast pyramidal evaluation algorithms,

I differentiation formula,

I Lp stable basis,

I subdivision algorithms of Oslo- and Lane,Riesenfeld type,

I quadratic convergence of control mesh,

I well conditioned collocation matrices for Lagrange and
Hermite interpolation,

I explicit dual functionals,

I dual polynomials and Marsden-like identity.



Marsden-like identity
Univariate quadratic: (1− yx)2 =

∑
j Bj ,2(x)(1− ytj+1)(1− ytj+2)

Quadratic S-splines: x ∈ ∆, y ∈ R2

(1− yTx)2 =
12∑
j=1

Sj ,2(x)(1− yTp∗j ,1)(1− yTp∗j ,2).
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[p∗1,2, . . . ,p
∗
12,2] := [p1,p4,p10,p2,p2,p5,p10,p3,p3,p6,p10,p1],

I 1 =
∑12

j=1 Sj ,2(x), x ∈ ∆,

I x =
∑12

j=1 Sj ,2(x)mj , x ∈ ∆, mj := (p∗j ,1 + p∗j ,2)/2.



domain- and control mesh

The control points are at a distance O(h2) from the surface, where
h is the longest side of the triangle..



Dual functionals

Univariate quadratic:

λj f := 2f (tj+3/2)− 1

2
f (tj+1)− 1

2
f (tj+2), λiBj ,2 = δij

Quadratic S-splines:

λj f := 2f (mj)−
1

2
f (p∗j ,1)− 1

2
f (p∗j ,2) λiSj ,2 = δij



C 1 smoothness is controlled as in the polynomial Bézier
case.
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PART III:

Higher degree splines on the
12-split

Joint work with Georg Muntingh



Smooth splines on triangulation

I Consider a general triangulation in the plane

I consider a subdivided triangulation with the 12-split on each
triangle and a piecewise polynomial of degree d on this
triangulation

I d = 2 necessary and sufficient for C 1

I d = 5 necessary and sufficient for C 2



Dimensions of Srd( )

Srd( ) = {f ∈ C r ( ) : f|∆i
∈ Πd , i = 1, . . . , 12}

Theorem
For any integers d , r with d ≥ 0 and d ≥ r ≥ −1

dimSrd( ) =
1

2
(r + 1)(r + 2) +

9

2
(d − r)(d − r + 1)

+
3

2
(d − 2r − 1)(d − 2r)+ +

d−r∑
j=1

(r − 2j + 1)+,

(1)
where z+ := max{0, z} for any real z.



Proof

One cell and three flaps. Use cell dimension formula in
Lai-Schumaker book.



Dimensions of Srd( )

d/r −1 0 1 2 3 4 5 6 7 8 9 10 11

0 12 1
1 36 10 3
2 72 31 12 6
3 120 64 30 16 10
4 180 109 60 34 21 15
5 252 166 102 61 39 27 21
6 336 235 156 100 66 46 34 28
7 432 316 222 151 102 73 54 42 36
8 540 409 300 214 150 109 81 63 51 45
9 660 514 390 289 210 154 117 91 73 61 55

10 792 631 492 376 282 211 162 127 102 84 72 66
11 936 760 606 475 366 280 216 172 138 114 96 84 78



An interesting family on

I For any positive integer n consider on the spline space
S2n−1

3n−1( ) of splines of smoothness 2n− 1 and degree 3n− 1 .

I n = 1: C 1 quadratics

I n = 2: C 3 quintics

I n = 3: C 5 octic

I dimS2n−1
3n−1( ) = 15

2 n2 + 9
2n.



Hermite degrees of freedom S3
5( )

I dimS3
5( ) = 39

I 10 derivatives at 3 corners

I 3 first order cross boundary derivatives

I 6 second order cross boundary derivatives

I Connects to neighboring triangles with smoothness C 2.



Spline space on triangulation of smoothness C n

I Consider a triangulation in the plane

I use S2n−1
3n−1( ) on each triangle

I get a global spline space of smoothness Cn

I for n = 2 we get a C 2 spline space of dimension 10V + 3E

I for n ≥ 1 we get a Cn spline space of dimension

n(2n + 1)V +
1

2
n(n + 1)E



Simplex spline basis for S3
5( )
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Simplex spline basis for S3
5( )
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Simplex spline basis for S3
5( );

I nonnegative partition of unity

I globally linearly independent

I can be computed recursively

I reduces to univariate quintic B-splines on boundary

I not locally linearly independent

I no simplex spline basis for for S3
5( ) that is locally linearly

independent



Thank you!






