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Foreword

In this lecture we will survey a few problems and properties
associated with Ridge Functions. I hope to convince you that this is a
subject worthy of further consideration, especially as regards to
Multivariate Approximation and Interpolation with Applications
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What is a Ridge Function?

• A Ridge Function, in its simplest form, is any multivariate function

F : Rn → R

of the form

F (x) = f (a1x1 + · · ·+ anxn) = f (a · x)

where f : R→ R, x = (x1, . . . , xn), and a = (a1, . . . , an) ∈ Rn\{0}.
• The vector a ∈ Rn\{0} is generally called the direction.

• It is a multivariate function, constant on the hyperplanes a · x = c ,
c ∈ R.

• It is one of the simpler multivariate functions. Namely, a
superposition of a univariate function with one of the simplest
multivariate functions, the inner product.
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Where do we find Ridge Functions?

We see specific Ridge Functions in numerous multivariate settings
without considering them as of interest in and of themselves.

• In multivariate Fourier series where the basic functions are of the
form e i(n·x), for n ∈ Zn, in the Fourier transform e i(w·x), and in the
Radon transform.

• In PDE where, for example, if P is a constant coefficient
polynomial in n variable, then

P

(
∂

∂x1
, . . . ,

∂

∂xn

)
f = 0

has a solution of the form f (x) = ea·x if and only if P(a) = 0.

• The polynomials (a · x)k are used in many settings.
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Where do we use Ridge Functions?

• Approximation Theory – Ridge Functions should be of interest to
researchers and students of approximation theory. The basic concept
is straightforward and simple. Approximate complicated functions by
simpler functions. Among the class of multivariate functions linear
combinations of ridge functions are a class of simpler functions. The
questions one asks are the basic questions of approximation theory.
Can one approximate arbitrarily well (density)? How well can one
approximate (degree of approximation)? How does one approximate
(algorithms)? Etc ....
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Where do we use Ridge Functions?

• Partial Differential Equations – Ridge Functions used to be called
Plane Waves. For example, we see them in the book Plane Waves
and Spherical Means applied to Partial Differential Equations by Fritz
John. In general, linear combinations of ridge functions also appear in
the study of hyperbolic constant coefficient pde’s. As an example,
assume the (ai , bi) are pairwise linearly independent vectors in R2.
Then the general “solution” of the pde

r∏
i=1

(
bi
∂

∂x
− ai

∂

∂y

)
F = 0

are all functions of the form

F (x , y) =
r∑

i=1

fi(aix + biy),

for arbitrary fi .
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Where do we use Ridge Functions?

• Projection Pursuit – This is a topic in Statistics. Projection pursuit
algorithms approximate a functions of n variables by functions of the
form

r∑
i=1

gi(a
i · x),

where both the functions gi and directions ai are variables. The idea
here is to “reduce dimension” and thus bypass the “curse of
dimensionality”.
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Where do we use Ridge Functions?

• Neural Networks – One of the popular neuron models is that of a
multilayer feedforward neural net with input, hidden and output
layers. In its simplest case, and without the terminology used, one is
interested in functions of the form

r∑
i=1

αiσ

(
n∑

j=1

wijxj + θi

)
,

where σ : R→ R is some given fixed univariate function. In this
model, which is just one of many, we vary the wij , θi and αi . For
each θ and w ∈ Rn we are considering linear combinations of

σ(w · x + θ).

Thus, a lower bound on the degree of approximation by such
functions is given by the degree of approximation by ridge functions.
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Where do we use Ridge Functions?

• Computerized Tomography – The term Ridge Function was coined
in a 1975 paper by Logan and Shepp, that was a seminal paper in
computerized tomography. They considered ridge functions in the
unit disk in R2 with equally spaced directions. We will consider some
nice domain K in Rn, and a function G belonging to L2(K ).

Problem: For some fixed directions {ai}ri=1 we are given∫
K∩{ai ·x=λ}

G (x) dx

for each λ and i = 1, . . . , r . That is, we see the “projections” of G
along the hyperplanes K ∩ {ai · x = λ}, λ a.e., i = 1, . . . , r . What is
a good method of reconstructing G based only on this information?
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Answer: The unique best L2(K ) approximation

f ∗(x) =
r∑

i=1

f ∗i (ai · x)

to G from

M(a1, . . . , ar ) =

{
r∑

i=1

fi(a
i · x) : fi vary

}
,

if such exists, necessarily satisfies∫
K∩{ai ·x=λ}

G (x) dx =

∫
K∩{ai ·x=λ}

f ∗(x) dx

for each λ and i = 1, . . . , r , and among all such functions with the
same data as G is the one of minimal L2(K ) norm.
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Properties of Ridge Functions

In the remaining part of this lecture I want to consider various
properties of linear combinations of Ridge Functions. Namely,

• Density

• Representation

• Smoothness

• Uniqueness

• Interpolation
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Density - Fixed Directions

• Ridge functions are dense in C (K ) for every compact K ⊂ Rn.
E.g., span {en·x : n ∈ ZZ n

+} is dense (Stone-Weierstrass).

• Let Ω be any set of vectors in Rn, and

M(Ω) = span{f (a · x) : a ∈ Ω, all f }.

Theorem (Vostrecov, Kreines)

M(Ω) is dense in C (Rn) in the topology of uniform convergence on
compact subsets if and only if no non-trivial homogeneous polynomial
vanishes on Ω.
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Density - Variable Directions

• Let Ωj , j ∈ J , be sets of vectors in Rn, and M(Ωj) be as above.
We ask when, for each given G ∈ C (Rn), compact K ⊂ Rn and
ε > 0, there exists an F ∈M(Ωj), for some j ∈ J , such that

‖G − F‖L∞(K) < ε.

(If Ωj are the totality of all sets of ridge functions with k directions,
then this is the problem of approximating with k arbitrary directions.)

• To each Ωj , let rj be the minimal degree of a non-trivial
homogeneous polynomial vanishes on Ωj . Then (Kroó)⋃

j∈J

M(Ωj)

is dense in C (Rn), as explained above, if and only if

sup
j∈J

r(Ωj) =∞.
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Representation

• As previously, let Ω be any set of vectors in Rn, and

M(Ω) = span{f (a · x) : a ∈ Ω, all f }.

The question we now ask is: What is M(Ω) when it is not all of
C (Rn)?

• Let P(Ω) be the set of all homogeneous polynomials that vanish on
Ω. Let C(Ω) be the set of all polynomials q such that

p(D)q = 0, all p ∈ P(Ω).

p(D) := p

(
∂

∂x1
, . . . ,

∂

∂xn

)
.
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Representation

Theorem
On C (Rn), in the topology of uniform convergence on compact
subsets, we have

M(Ω) = C(Ω).

• Thus, for example, g(b · x) ∈M(Ω) for some b and all continuous
g if and only if all homogeneous polynomials vanishing on Ω also
vanish on b.
• For n = 2, Ω = {(ai , bi)}ri=1 this gives us

F (x , y) =
r∑

i=1

fi(aix + biy),

for arbitrary smooth fi if and only if
r∏

i=1

(
bi
∂

∂x
− ai

∂

∂y

)
F = 0.
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Smoothness

Assume

G (x) =
r∑

i=1

fi(a
i · x),

where r is finite, and the ai are pairwise linearly independent fixed
vectors in Rn. If G is of a certain smoothness class, what can we say
about the smoothness of the fi?
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Smoothness — r = 1, r = 2

• Assume G ∈ C k(Rn). If r = 1 there is nothing to prove. That is,
assume

G (x) = f1(a1 · x)

is in C k(Rn) for some a1 6= 0, then obviously f1 ∈ C k(R).

• Let r = 2. As the a1 and a2 are linearly independent, there exists a
vector c ∈ Rn satisfying a1 · c = 0 and a2 · c = 1. Thus

G (tc) = f1(a1 · tc) + f2(a2 · tc) = f1(0) + f2(t).

As G (tc) is in C k(R), as a function of t, so is f2. The same result
holds for f1.
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Smoothness — r ≥ 3

Recall that the Cauchy Functional Equation

g(x + y) = g(x) + g(y)

has, as proved by Hamel (1905), very badly behaved solutions. As
such, setting f1 = f2 = −f3 = g , we have very badly behaved (and
certainly not in C k(R)) fi , i = 1, 2, 3, that satisfy

0 = f1(x) + f2(y) + f3(x + y)

for all (x , y) ∈ R2. This Cauchy Functional Equation is critical in the
analysis of our problem for all r ≥ 3.
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Smoothness

• Denote by B any class of real-valued functions f defined on R such
that if there is a function r ∈ C (R) such that f − r satisfies the
Cauchy Functional Equation, then f − r is necessarily linear, i.e.
(f − r)(x) = Ax for some constant A, and all x ∈ R.

• B includes, for example, the set of all functions that are continuous
at a point, or monotonic on an interval, or bounded on one side on a
set of positive measure, or Lebesgue measurable.
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Smoothness — Theorem

Theorem
Assume G ∈ C k(Rn) is of the form

G (x) =
r∑

i=1

fi(a
i · x),

where r is finite, and the ai are pairwise linearly independent vectors
in Rn. Assume, in addition, that each fi ∈ B. Then, necessarily,
fi ∈ C k(R) for i = 1, . . . , r .
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Uniqueness

What can we say about the uniqueness of the representation? That
is, when and for which functions {gi}ki=1 and {hi}`i=1 can we have
distinct representations

G (x) =
k∑

i=1

gi(b
i · x) =

∑̀
j=1

hi(c
i · x)

for all x ∈ Rn, where k and ` are finite, and the b1, . . . ,bk , c1, . . . , c`

are k + ` pairwise linearly independent vectors in Rn?
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Uniqueness

From linearity this is, of course, equivalent to the following. Assume

r∑
i=1

fi(a
i · x) = 0

for all x ∈ Rn, where r is finite, and the ai are pairwise linearly
independent vectors in Rn. What does this imply regarding the fi?
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Uniqueness — Theorem

Theorem
Assume

r∑
i=1

fi(a
i · x) = 0

holds where r is finite, and the ai are pairwise linearly independent
vectors in Rn. Assume, in addition, that fi ∈ B, for i = 1, . . . , r .
Then fi ∈ Π1

r−2, i = 1, . . . , r , where Π1
r−2 denotes the set of

polynomials of degree at most r − 2.

• That is, with minor smoothness assumptions we have uniqueness of
representations up to polynomials of degree r − 2.
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Interpolation

Assume a1, . . . , am ∈ Rn are m fixed pairwise linearly independent
directions, and

M(a1, . . . , am) =

{
m∑
i=1

fi(a
i · x) : fi : R→ R

}
.

Interpolation at a finite number of points, for any given data, by
functions from M(a1, . . . , am) was studied is a few papers in the mid
1990’s.

The real question is: for which points can we not interpolate? The
only cases well-understood are m = 2 for all n, and m = 3 if n = 2.
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Interpolation

Recently the following problem was considered. Given arbitrary data
on k straight lines in Rn, can we interpolate from M(a1, . . . , am) to
arbitrary data on these straight lines?

• If m = 1, k = 1 and the line `1 = {tb1 + c1 : t ∈ R}, then one can
interpolate iff a1 · b1 6= 0.

• If m = 1 or m = 2, then for k > m, one cannot interpolate
M(a1, . . . , am) to arbitrary data on these k straight lines.

• If m = 2 and k = 2, one can generally interpolate arbitrary data
except when certain known (too detailed to list here) conditions hold.

• If m = k = n = 2, and the two lines are `j = {tbj + cj : t ∈ R},
j = 1, 2, then these conditions reduce to

(a1 · b1) (a2 · b2) + (a1 · b2) (a2 · b1) 6= 0,

and if the lines `1 and `2 intersect, then the data is consistent at the
intersection point.
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What we did not talk about!!

• In this short talk we touched upon only a few properties of Ridge
Functions.

• Other important properties that have been studied and are being
studied include degree of approximation, the inverse problem
(identifying ridge functions and their directions), closure properties of
M(Ω), ridgelets and algorithms for approximation.
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Thank you for your attention!!
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