Analysis of Geometric Subdivision Schemes

Ulrich Reif

Technische Universität Darmstadt
Erice, September 27, 2013

Joint work with Malcolm Sabin and Tobias Ewald

Standard schemes

- binary
- linear
- local
- uniform
- real-valued
- periodic grid

$$
p_{2 i+\sigma}^{\ell+1}=\sum_{j \leq n} a_{\sigma}^{j} p_{i+j}^{\ell}, \quad \sigma \in\{0,1\}, \quad i \in \mathbb{Z}, p_{i}^{\ell} \in \mathbb{R}
$$

Non-standard schemes

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

$$
p_{2 i+\sigma}^{\ell+1}=\sum_{|j| \leq n} a_{\sigma}^{j}(\ell) p_{i+j}^{\ell}, \quad \sigma \in\{0,1\}^{d}, i \in \mathbb{Z}^{d}, \quad p_{i}^{\ell} \in \mathbb{R}
$$

Non-standard schemes

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin

$$
p_{2 i+\sigma}^{\ell+1}=\sum_{|j| \leq n} a_{\sigma}^{j}(i) p_{i+j}^{\ell}, \quad \sigma \in\{0,1\}^{d}, i \in \mathbb{Z}^{d}, \quad p_{i}^{\ell} \in \mathbb{R} .
$$

Non-standard schemes

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

$$
p_{2 i+\sigma}^{\ell+1}=\sum_{|j|<n} a_{\sigma}^{j}(i) p_{i+j}^{\ell}, \quad \sigma \in\{0,1\}^{2}, i \in \mathbb{N}^{2} \times \mathbb{Z}_{n}, p_{i}^{\ell} \in \mathbb{R}^{3}
$$

Non-standard schemes

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

$$
p_{2 i+\sigma}^{\ell+1}=a_{\sigma}\left(p_{i}^{\ell}, \ldots, p_{i+n}^{\ell}\right), \quad \sigma \in\{0,1\}^{d}, i \in \mathbb{Z}^{d}, p_{i}^{\ell} \in \mathbb{R}
$$

Non-standard schemes

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu
- non-local: Kobbelt, Unser, Warren, Weimer

$$
p_{2 i+\sigma}^{\ell+1}=\sum_{j \in \mathbb{Z}^{d}} a_{\sigma}^{j} p_{i+j}^{\ell}, \quad \sigma \in\{0,1\}^{d}, i \in \mathbb{Z}^{d}, p_{i}^{\ell} \in \mathbb{R}
$$

Non-standard schemes

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu
- non-local: Kobbelt, Unser, Warren, Weimer
- vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

$$
p_{2 i+\sigma}^{\ell+1}=\sum_{|j|<n} a_{\sigma}^{j} p_{i+j}^{\ell}, \quad \sigma \in\{0,1\}^{d}, i \in \mathbb{Z}^{d}, p_{i}^{\ell} \in \mathbb{R}^{d} .
$$

Non-standard schemes

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu
- non-local: Kobbelt, Unser, Warren, Weimer
- vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann
- manifold-valued: Dyn, Grohs, Wallner, Weinmann

$$
p_{2 i+\sigma}^{\ell+1}=a_{\sigma}\left(p_{i}^{\ell}, \ldots, p_{i+n}^{\ell}\right), \quad \sigma \in\{0,1\}^{d}, \quad i \in \mathbb{Z}^{d}, p_{i}^{\ell} \in M
$$

Non-standard schemes

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu
- non-local: Kobbelt, Unser, Warren, Weimer
- vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann
- manifold-valued: Dyn, Grohs, Wallner, Weinmann
- geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

$$
p_{2 i+\sigma}^{\ell+1}=g_{\sigma}\left(p_{i}^{\ell}, \ldots, p_{i+n}^{\ell}\right), \quad \sigma \in\{0,1\}^{d}, i \in \mathbb{Z}^{d}, p_{i}^{\ell} \in \mathbb{R}^{d}
$$

Sabin's Circle-preserving subdivision

GLUE-schemes

Definition

Let $\mathbf{P}=\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in \mathbb{E}:=\mathbb{R}^{d}$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G}: \mathbf{P}^{\ell} \rightarrow \mathbf{P}^{\ell+1}$ is characterized by:

GLUE-schemes

Definition

Let $\mathbf{P}=\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in \mathbb{E}:=\mathbb{R}^{d}$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G}: \mathbf{P}^{\ell} \rightarrow \mathbf{P}^{\ell+1}$ is characterized by:
G : The scheme \mathbf{G} commutates with similarities,

$$
\mathbf{G} \circ S=S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E})
$$

GLUE-schemes

Definition

Let $\mathbf{P}=\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in \mathbb{E}:=\mathbb{R}^{d}$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G}: \mathbf{P}^{\ell} \rightarrow \mathbf{P}^{\ell+1}$ is characterized by:
G : The scheme \mathbf{G} commutates with similarities,

$$
\mathbf{G} \circ S=S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E})
$$

L: New points depend on finitely many old points.

GLUE-schemes

Definition

Let $\mathbf{P}=\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in \mathbb{E}:=\mathbb{R}^{d}$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G}: \mathbf{P}^{\ell} \rightarrow \mathbf{P}^{\ell+1}$ is characterized by:
G : The scheme \mathbf{G} commutates with similarities,

$$
\mathbf{G} \circ S=S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E})
$$

L: New points depend on finitely many old points.
U: The same two rules (even/odd) apply everywhere,

$$
p_{2 i+\sigma}^{\ell+1}=g_{\sigma}\left(p_{i}^{\ell}, \ldots, p_{i+m}^{\ell}\right), \quad \sigma \in\{0,1\} .
$$

The functions g_{σ} are $C^{1,1}$ in a neighborhood of linear data.

GLUE-schemes

Definition

Let $\mathbf{P}=\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in \mathbb{E}:=\mathbb{R}^{d}$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G}: \mathbf{P}^{\ell} \rightarrow \mathbf{P}^{\ell+1}$ is characterized by:
G : The scheme \mathbf{G} commutates with similarities,

$$
\mathbf{G} \circ S=S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E})
$$

L: New points depend on finitely many old points.
U: The same two rules (even/odd) apply everywhere,

$$
p_{2 i+\sigma}^{\ell+1}=g_{\sigma}\left(p_{i}^{\ell}, \ldots, p_{i+m}^{\ell}\right), \quad \sigma \in\{0,1\} .
$$

The functions g_{σ} are $C^{1,1}$ in a neighborhood of linear data.
E : The standard linear chain $\mathbf{E}=(i e)_{i \in \mathbb{Z}}$ is dilated by the factor $1 / 2$,

$$
\mathbf{G}(\mathbf{E})=\mathbf{E} / 2
$$

GLUE-schemes

Definition

Let $\mathbf{P}=\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in \mathbb{E}:=\mathbb{R}^{d}$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G}: \mathbf{P}^{\ell} \rightarrow \mathbf{P}^{\ell+1}$ is characterized by:
G : The scheme \mathbf{G} commutates with similarities,

$$
\mathbf{G} \circ S=S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E})
$$

L: New points depend on finitely many old points.
U: The same two rules (even/odd) apply everywhere,

$$
p_{2 i+\sigma}^{\ell+1}=g_{\sigma}\left(p_{i}^{\ell}, \ldots, p_{i+m}^{\ell}\right), \quad \sigma \in\{0,1\} .
$$

The functions g_{σ} are $C^{1,1}$ in a neighborhood of linear data.
E : The standard linear chain $\mathbf{E}=(i e)_{i \in \mathbb{Z}}$ is dilated by the factor $1 / 2$,

$$
\mathbf{G}(\mathbf{E})=\mathbf{E} / 2
$$

GLUE-schemes

Definition

Let $\mathbf{P}=\left(p_{i}\right)_{i \in \mathbb{Z}}, p_{i} \in \mathbb{E}:=\mathbb{R}^{d}$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G}: \mathbf{P}^{\ell} \rightarrow \mathbf{P}^{\ell+1}$ is characterized by:
G : The scheme \mathbf{G} commutates with similarities,

$$
\mathbf{G} \circ S=S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E})
$$

L: New points depend on finitely many old points.
U: The same two rules (even/odd) apply everywhere,

$$
p_{2 i+\sigma}^{\ell+1}=g_{\sigma}\left(p_{i}^{\ell}, \ldots, p_{i+m}^{\ell}\right), \quad \sigma \in\{0,1\} .
$$

The functions g_{σ} are $C^{1,1}$ in a neighborhood of linear data.
E : The standard linear chain $\mathbf{E}=(i e)_{i \in \mathbb{Z}}$ is dilated by the factor $1 / 2$,

$$
\mathbf{G}(\mathbf{E})=\mathbf{E} / 2+\tau e .
$$

Basics: matrix-like formalism

- Analogous to the representation of linear schemes in terms of pairs of matrices, there exist functions \mathbf{g}_{σ} such that

$$
\mathbf{p}_{2 i+\sigma}^{\ell+1}=\mathbf{g}_{\sigma}\left(\mathbf{p}_{i}^{\ell}\right)
$$

where $\mathbf{p}_{i}^{\ell}=\left[p_{i}^{\ell} ; \ldots ; p_{i+n-1}^{\ell}\right]$ are subchains of \mathbf{P}^{ℓ} of length n.

- Constant chains are fixed points,

$$
\mathbf{g}_{\sigma}(\mathbf{p})=\mathbf{p} \quad \text { if } \quad \Delta \mathbf{p}=0
$$

- Composition of functions \mathbf{g}_{σ} is denoted by

$$
\mathbf{g}_{\Sigma}=\mathbf{g}_{\sigma_{\ell}} \circ \cdots \circ \mathbf{g}_{\sigma_{1}}, \quad \Sigma=\left[\sigma_{1}, \ldots, \sigma_{\ell}\right],|\Sigma|=\ell
$$

- Let $\mathbf{e}:=[e ; \ldots ; n e]$. Then

$$
\mathbf{g}_{\Sigma}(\mathbf{e})=2^{-|\Sigma|} \mathbf{e}+\tau_{\Sigma} e
$$

Basics: spaces of chains

- $\mathbb{E}^{\mathbb{Z}}:=\mathbb{R}^{d \times \mathbb{Z}}$ is the space of infinite chains in \mathbb{R}^{d}.
- $\mathbb{E}^{n}:=\mathbb{R}^{d \times n}$ is the space of chains with n vertices in \mathbb{R}^{d}.
- $\mathbb{L}^{n}:=\left\{\mathbf{p} \in \mathbb{E}^{n}: \Delta^{2} \mathbf{p}=0\right\}$ is the space of linear chains.
- $\Pi: \mathbb{E}^{n} \rightarrow \mathbb{L}^{n}$ is the orthogonal projector onto \mathbb{L}^{n}.
- For $\mathbf{P} \in \mathbb{E}^{\mathbb{Z}}$, let

$$
\|\mathbf{P}\|:=\sup _{i}\left\|p_{i}\right\|_{2}, \quad|\mathbf{P}|_{1}:=\|\Delta \mathbf{P}\|, \quad|\mathbf{P}|_{2}:=\left\|\Delta^{2} \mathbf{P}\right\|
$$

Basics: spaces of chains

- $\mathbb{E}^{\mathbb{Z}}:=\mathbb{R}^{d \times \mathbb{Z}}$ is the space of infinite chains in \mathbb{R}^{d}.
- $\mathbb{E}^{n}:=\mathbb{R}^{d \times n}$ is the space of chains with n vertices in \mathbb{R}^{d}.
- $\mathbb{L}^{n}:=\left\{\mathbf{p} \in \mathbb{E}^{n}: \Delta^{2} \mathbf{p}=0\right\}$ is the space of linear chains.
- $\Pi: \mathbb{E}^{n} \rightarrow \mathbb{L}^{n}$ is the orthogonal projector onto \mathbb{L}^{n}.
- For $\mathbf{p} \in \mathbb{E}^{n}$, let

$$
\|\mathbf{p}\|:=\sup _{i}\left\|p_{i}\right\|_{2}, \quad|\mathbf{p}|_{1}:=\|\Delta \mathbf{p}\|, \quad|\mathbf{p}|_{2}:=\left\|\Delta^{2} \mathbf{p}\right\|
$$

Basics: relative distortion

- The relative distortion of some chain $\mathbf{p} \in \mathbb{E}^{n}$ is defined by

$$
\kappa(\mathbf{p}):= \begin{cases}\frac{|\mathbf{p}|_{2}}{|\Pi \mathbf{p}|_{1}} & \text { if }|\Pi \mathbf{p}|_{1} \neq 0 \\ \infty & \text { if }|\Pi \mathbf{p}|_{1}=0\end{cases}
$$

- Invariance under similarities,

$$
\kappa(\mathbf{p})=\kappa(S(\mathbf{p})), \quad S \in \mathcal{S}(\mathbb{E})
$$

- Distortion of infinite chain,

$$
\kappa(\mathbf{P}):=\sup _{i \in \mathbb{Z}} \kappa\left(\mathbf{p}_{i}\right), \quad \mathbf{p}_{i}=\left[p_{i} ; \ldots ; p_{i+n-1}\right] .
$$

- Distortion sequence generated by subdivision,

$$
\kappa_{\ell}:=\kappa\left(\mathbf{P}^{\ell}\right), \quad \mathbf{P}^{\ell}:=\mathbf{G}^{\ell}(\mathbf{P})
$$

Straightening

Definition

The chain \mathbf{P} is

- straightened by \mathbf{G} if κ_{ℓ} is a null sequence;
- strongly straightened by \mathbf{G} if κ_{ℓ} is summable;
- straightened by \mathbf{G} at rate α if $2^{\ell \alpha} \kappa_{\ell}$ is bounded.

Straightening

Definition

The chain \mathbf{P} is

- straightened by \mathbf{G} if κ_{ℓ} is a null sequence;
- strongly straightened by \mathbf{G} if κ_{ℓ} is summable;
- straightened by \mathbf{G} at rate α if $2^{\ell \alpha} \kappa_{\ell}$ is bounded.

Lemma

Let \mathbf{G} be a GLUE-scheme. If the chain \mathbf{P} is

- straightened by \mathbf{G}, then $|\mathbf{P}|_{1} \leq C q^{\ell}$ for any $q>1 / 2$;
- strongly straightened by \mathbf{G}, then $|\mathbf{P}|_{1} \leq C q^{\ell}$ for any $q=1 / 2$;
- straightened by \mathbf{G} at rate α, then $|\mathbf{P}|_{2} \leq C 2^{-\ell(1+\alpha)}$.

Straightening

Definition

The chain \mathbf{P} is

- straightened by \mathbf{G} if κ_{ℓ} is a null sequence;
- strongly straightened by \mathbf{G} if κ_{ℓ} is summable;
- straightened by \mathbf{G} at rate α if $2^{\ell \alpha} \kappa_{\ell}$ is bounded.

Lemma

Let \mathbf{G} be a GLUE-scheme. If the chain \mathbf{P} is

- straightened by \mathbf{G}, then $|\mathbf{P}|_{1} \leq C q^{\ell}$ for any $q>1 / 2$;
- strongly straightened by \mathbf{G}, then $|\mathbf{P}|_{1} \leq C q^{\ell}$ for any $q=1 / 2$;
- straightened by \mathbf{G} at rate α, then $|\mathbf{P}|_{2} \leq C 2^{-\ell(1+\alpha)}$.

Proof:

- induction on $|\Sigma|$
- q-Pochhammer symbol

Straightening

Definition

The chain \mathbf{P} is

- straightened by \mathbf{G} if κ_{ℓ} is a null sequence;
- strongly straightened by \mathbf{G} if κ_{ℓ} is summable;
- straightened by \mathbf{G} at rate α if $2^{\ell \alpha} \kappa_{\ell}$ is bounded.

Theorem (R. 2013)
Let \mathbf{G} be a GLUE-scheme. If the chain \mathbf{P} is

- straightened by \mathbf{G}, then \mathbf{P}^{ℓ} converges to a continuous limit curve;
- strongly straightened by \mathbf{G}, then the limit curve is C^{1} and regular;
- straightened by \mathbf{G} at rate α, then the limit curve is $C^{1, \alpha}$ and regular.

Convergence

- Let φ be a C^{k}-function which
- has compact support;
- constitues a partition of unity, $\sum_{j} \varphi(\cdot-j)=1$.
- Associate a curve Φ^{ℓ} to the chain \mathbf{P}^{ℓ} at stage ℓ by

$$
\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]:=\sum_{\ell \in \mathbb{Z}} p_{j}^{\ell} \varphi\left(2^{\ell} \cdot-j\right)
$$

Convergence

- Let φ be a C^{k}-function which
- has compact support;
- constitues a partition of unity, $\sum_{j} \varphi(\cdot-j)=1$.
- Associate a curve Φ^{ℓ} to the chain \mathbf{P}^{ℓ} at stage ℓ by

$$
\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]:=\sum_{\ell \in \mathbb{Z}} p_{j}^{\ell} \varphi\left(2^{\ell} \cdot-j\right)
$$

- If $\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]$ is Cauchy in C^{0}, then the limit curve

$$
\Phi[\mathbf{P}]:=\lim _{\ell \rightarrow \infty} \Phi^{\ell}\left[\mathbf{P}^{\ell}\right]
$$

is well defined, continuous, and independent of φ.

Convergence

- Let φ be a C^{k}-function which
- has compact support;
- constitues a partition of unity, $\sum_{j} \varphi(\cdot-j)=1$.
- Associate a curve Φ^{ℓ} to the chain \mathbf{P}^{ℓ} at stage ℓ by

$$
\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]:=\sum_{\ell \in \mathbb{Z}} p_{j}^{\ell} \varphi\left(2^{\ell} \cdot-j\right)
$$

- If $\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]$ is Cauchy in C^{0}, then the limit curve

$$
\Phi[\mathbf{P}]:=\lim _{\ell \rightarrow \infty} \Phi^{\ell}\left[\mathbf{P}^{\ell}\right]
$$

is well defined, continuous, and independent of φ.

- If $\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]$ is Cauchy in C^{k}, then the limit curve $\Phi[\mathbf{P}]$ is C^{k}.

Convergence

- Let φ be a C^{k}-function which
- has compact support;
- constitues a partition of unity, $\sum_{j} \varphi(\cdot-j)=1$.
- Associate a curve Φ^{ℓ} to the chain \mathbf{P}^{ℓ} at stage ℓ by

$$
\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]:=\sum_{\ell \in \mathbb{Z}} p_{j}^{\ell} \varphi\left(2^{\ell} \cdot-j\right)
$$

- If $\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]$ is Cauchy in C^{0}, then the limit curve

$$
\Phi[\mathbf{P}]:=\lim _{\ell \rightarrow \infty} \Phi^{\ell}\left[\mathbf{P}^{\ell}\right]
$$

is well defined, continuous, and independent of φ.

- If $\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]$ is Cauchy in C^{k}, then the limit curve $\Phi[\mathbf{P}]$ is C^{k}.
- Use modulus of continuity to establish Hölder exponent.

Proximity

- Given a GLUE-schem G, choose a linear subdivision scheme \mathbf{A} with equal shift, i.e., $\mathbf{G}(\mathbf{E})=\mathbf{A E}=(\mathbf{E}+\tau e) / 2$.
- Schemes \mathbf{G} and \mathbf{A} differ by remainder \mathbf{R},

$$
\mathbf{R}(\mathbf{P}):=\mathbf{G}(\mathbf{P})-\mathbf{A} \mathbf{P}
$$

Proximity

- Given a GLUE-schem G, choose a linear subdivision scheme A with equal shift, i.e., $\mathbf{G}(\mathbf{E})=\mathbf{A E}=(\mathbf{E}+\tau e) / 2$.
- Schemes \mathbf{G} and \mathbf{A} differ by remainder \mathbf{R},

$$
\mathbf{R}(\mathbf{P}):=\mathbf{G}(\mathbf{P})-\mathbf{A} \mathbf{P} .
$$

- Choose φ as limit function of \mathbf{A} correspondig to

Proximity

Proximity

- Given a GLUE-schem G, choose a linear subdivision scheme A with equal shift, i.e., $\mathbf{G}(\mathbf{E})=\mathbf{A E}=(\mathbf{E}+\tau e) / 2$.
- Schemes \mathbf{G} and \mathbf{A} differ by remainder \mathbf{R},

$$
\mathbf{R}(\mathbf{P}):=\mathbf{G}(\mathbf{P})-\mathbf{A} \mathbf{P} .
$$

- Choose φ as limit function of \mathbf{A} correspondig to Dirac data $\delta_{j, 0}$ to define curves $\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]$ at level ℓ.
- Curves at levels ℓ and $\ell+r$ differ by

$$
\left|\partial^{j}\left(\Phi^{\ell+r}\left[\mathbf{P}^{\ell+r}\right]-\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]\right)\right|_{\infty} \leq c \sum_{i=\ell}^{\infty} 2^{i j}\left|\mathbf{R}\left(\mathbf{P}^{i}\right)\right| 0
$$

Proximity

- Given a GLUE-schem G, choose a linear subdivision scheme \mathbf{A} with equal shift, i.e., $\mathbf{G}(\mathbf{E})=\mathbf{A E}=(\mathbf{E}+\tau e) / 2$.
- Schemes \mathbf{G} and \mathbf{A} differ by remainder \mathbf{R},

$$
\mathbf{R}(\mathbf{P}):=\mathbf{G}(\mathbf{P})-\mathbf{A} \mathbf{P} .
$$

- Choose φ as limit function of \mathbf{A} correspondig to Dirac data $\delta_{j, 0}$ to define curves $\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]$ at level ℓ.
- Curves at levels ℓ and $\ell+r$ differ by

$$
\left|\partial^{j}\left(\Phi^{\ell+r}\left[\mathbf{P}^{\ell+r}\right]-\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]\right)\right|_{\infty} \leq c \sum_{i=\ell}^{\infty} 2^{i j}\left|\mathbf{R}\left(\mathbf{P}^{i}\right)\right| 0
$$

- Use bound

$$
\left|\mathbf{R}\left(\mathbf{P}^{i}\right)\right|_{0} \leq c \kappa_{i} q^{i}
$$

with $q=1 / 2$ in case of strong straightening, and $q=2 / 3$ otherwise.

Checks for straightening

For applications, we need explicit values α, δ such that \mathbf{P} is straightened by \mathbf{G} at rate α whenever $\kappa(\mathbf{P}) \leq \delta$.

Checks for straightening

Lemma
Let

$$
\Gamma_{\ell}[\delta]:=\sup _{0<|\mathbf{d}|_{2} \leq \delta} \frac{\kappa_{\ell}(\mathbf{e}+\mathbf{d})}{|\mathbf{d}|_{2}}
$$

If $\Gamma_{\ell}[\delta]<1$ for some $\ell \in N$, then \mathbf{P} is straightened by \mathbf{G} at rate

$$
\alpha=-\frac{\log _{2} \Gamma_{\ell}[\delta]}{\ell}
$$

whenever $\kappa(\mathbf{P}) \leq \delta$.

Checks for straightening

Lemma

Let

$$
\Gamma_{\ell}[\delta]:=\sup _{0<|\mathbf{d}|_{2} \leq \delta} \frac{\kappa_{\ell}(\mathbf{e}+\mathbf{d})}{|\mathbf{d}|_{2}} .
$$

If $\Gamma_{\ell}[\delta]<1$ for some $\ell \in N$, then \mathbf{P} is straightened by \mathbf{G} at rate
$\alpha=-\frac{\log _{2} \Gamma_{\ell}[\delta]}{\ell}$
whenever $\kappa(\mathbf{P}) \leq \delta$.

+ A rigorous upper bound on $\Gamma_{\ell}[\delta]$ can be established using mean value theorem and interval arithmetics.
- The larger δ, the poorer α.

Checks for straightening

Theorem (R. 2012)
Let

$$
\Gamma_{\ell}[\delta]:=\sup _{0<|\mathbf{d}|_{2} \leq \delta} \frac{\kappa_{\ell}(\mathbf{e}+\mathbf{d})}{|\mathbf{d}|_{2}} \quad \text { and } \quad \Gamma_{k}[\delta, \gamma]:=\max _{\delta \leq|\mathbf{d}|_{2} \leq \gamma} \frac{\kappa_{k}(\mathbf{e}+\mathbf{d})}{|\mathbf{d}|_{2}} .
$$

If $\Gamma_{\ell}[\delta]<1$ for some $\ell \in N$, and $\Gamma_{k}[\delta, \gamma]<1$ for some $k \in \mathbb{N}$, then \mathbf{P} is straightened by \mathbf{G} at rate

$$
\alpha=-\frac{\log _{2} \Gamma_{\ell}[\delta]}{\ell}
$$

whenever $\kappa(\mathbf{P}) \leq \gamma$.

Checks for straightening

Theorem (R. 2012)
Let

$$
\Gamma_{\ell}[\delta]:=\sup _{0<|\mathbf{d}|_{2} \leq \delta} \frac{\kappa_{\ell}(\mathbf{e}+\mathbf{d})}{|\mathbf{d}|_{2}} \quad \text { and } \quad \Gamma_{k}[\delta, \gamma]:=\max _{\delta \leq|\mathbf{d}|_{2} \leq \gamma} \frac{\kappa_{k}(\mathbf{e}+\mathbf{d})}{|\mathbf{d}|_{2}} .
$$

If $\Gamma_{\ell}[\delta]<1$ for some $\ell \in N$, and $\Gamma_{k}[\delta, \gamma]<1$ for some $k \in \mathbb{N}$, then \mathbf{P} is straightened by \mathbf{G} at rate

$$
\alpha=-\frac{\log _{2} \Gamma_{\ell}[\delta]}{\ell}
$$

whenever $\kappa(\mathbf{P}) \leq \gamma$.

+ Rigorous upper bounds on $\Gamma_{\ell}[\delta]$ and $\Gamma_{k}[\delta, \gamma]$ via interval arithmetics.
+ Choose δ as small as possible to get good α.
+ Choose γ as large as possible to get good range of applicability.

Differentiation

- In general, the derivative of a function $\mathbf{g}: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ is represented by $n \times n$ matrices of dimension $d \times d$, each.

Differentiation

- In general, the derivative of a function $\mathbf{g}: \mathbb{E}^{n} \rightarrow \mathbb{E}^{n}$ is represented by $n \times n$ matrices of dimension $d \times d$, each.
- By property G, the derivative of \mathbf{g}_{σ} at \mathbf{e} has the special form

$$
D \mathbf{g}_{\sigma}(\mathbf{e}) \cdot \mathbf{q}=A_{\sigma} \mathbf{q} \Pi^{n}+B_{\sigma} \mathbf{q} \Pi^{t}, \quad \sigma \in\{0,1\}
$$

where A_{σ}, B_{σ} are $(n \times n)$-matrices, and

$$
\Pi^{t}:=\operatorname{diag}[1,0, \ldots, 0], \quad \Pi^{n}:=\operatorname{diag}[0,1, \ldots, 1]
$$

are $(d \times d)$-matrices representing orthogonal projection onto the x-axis and its orthogonal complement.

- Let $\mathbf{A}=\left(A_{0}, A_{1}\right)$ and $\mathbf{B}=\left(B_{0}, B_{1}\right)$ denote the linear subdivision schemes corresponding to normal and tangential direction.

Inheritance of $C^{1, \alpha}$-regularity

Theorem (R. 2013)
Let the linear schemes \mathbf{A} and \mathbf{B} be $C^{1, \alpha}$ and $C^{1, \beta}$, resp. If \mathbf{P} is straightened by \mathbf{G}, then the limit curve $\Phi[\mathbf{P}]$ is $C^{1, \min (\alpha, \beta)}$.

Proof: Show that

$$
\lim _{\delta \rightarrow 0} \liminf _{\ell \rightarrow \infty}\left(\Gamma_{\ell}[\delta]\right)^{1 / \ell} \leq \max \left(\operatorname{jsr}\left(A_{0}^{2}, A_{1}^{2}\right), \operatorname{jsr}\left(B_{0}^{2}, B_{1}^{2}\right)\right) .
$$

Locally linear schemes

Definition

A GLUE-scheme \mathbf{G} is called locally linear if there exist $(n \times n)$-matrices A_{0}, A_{1} such that

$$
D \mathbf{g}_{\sigma}(\mathbf{e}) \cdot \mathbf{q}=A_{\sigma} \mathbf{q} \Pi^{n}+B_{\sigma} \mathbf{q} \Pi^{t}
$$

Locally linear schemes

Definition

A GLUE-scheme \mathbf{G} is called locally linear if there exist $(n \times n)$-matrices A_{0}, A_{1} such that

$$
D \mathbf{g}_{\sigma}(\mathbf{e}) \cdot \mathbf{q}=A_{\sigma} \mathbf{q} .
$$

In this case the linear scheme $\mathbf{A}=\left(A_{0}, A_{1}\right)$ is called the linear companion of G.

Locally linear schemes

Definition

A GLUE-scheme \mathbf{G} is called locally linear if there exist $(n \times n)$-matrices A_{0}, A_{1} such that

$$
D \mathbf{g}_{\sigma}(\mathbf{e}) \cdot \mathbf{q}=A_{\sigma} \mathbf{q}
$$

In this case the linear scheme $\mathbf{A}=\left(A_{0}, A_{1}\right)$ is called the linear companion of G.

- For $d=1$, any GLUE-scheme \mathbf{G} is locally linear.
- For $d \geq 2$, the scheme \mathbf{G} is locally linear if $\mathbf{A}=\mathbf{B}$.
- Circle-preserving subvdivion is locally linear, and the standard four-point scheme is its linear companion.

Inheritance of $C^{2, \alpha}$-regularity

Theorem (R. 2013)
Let \mathbf{G} be locally linear, and let the linear companion \mathbf{A} be $C^{2, \alpha}$. If \mathbf{P} is straightened by \mathbf{G}, then the limit curve $\Phi[\mathbf{P}]$ is $\mathrm{C}^{2, \alpha}$.

Proof:

- Use basic limit function φ of \mathbf{A} to define curves $\Phi^{\ell}\left[\mathbf{P}^{\ell}\right]$.
- Use bound

$$
|\mathbf{R}(\mathbf{P})|_{0} \leq c \kappa(\mathbf{P})|\mathbf{P}|_{2}
$$

on the remainder $R(\mathbf{P}):=\mathbf{G}(\mathbf{P})-\mathbf{A P}$.

Inheritance of $C^{3, \alpha}$-regularity

Inheritance of $C^{3, \alpha}$-regularity

...cannot be expected!

A counter-example

Consider

$$
\begin{aligned}
& g_{0}\left(p_{i}^{\ell}, \ldots, p_{i+3}^{\ell}\right)=\frac{6}{32} p_{i}^{\ell}+\frac{20}{32} p_{i+1}^{\ell}+\frac{6}{32} p_{i+2}^{\ell}+\frac{\left\|\Delta^{2} p_{i}^{\ell}\right\|}{\left\|\Delta p_{i}^{\ell}\right\|} \Delta^{2} p_{i}^{\ell} \\
& g_{1}\left(p_{i}^{\ell}, \ldots, p_{i+3}^{\ell}\right)=\frac{1}{32} p_{i}^{\ell}+\frac{15}{32} p_{i+1}^{\ell}+\frac{15}{32} p_{i+2}^{\ell}+\frac{1}{32} p_{i+3}^{\ell}
\end{aligned}
$$

The scheme is locally linear with A_{0}, A_{1} representing quintic B -spline subdivision. However, limit curves $\Phi^{\infty}[\mathbf{P}]$ are not C^{4}, and not even C^{3}.

Conclusion

- Geometric subdivision schemes deserve attention.
- Results apply to a wide range of algorithms.
- Hölder continuity of first order can be established rigorously by means of a universal computer program (at least in principle, runtime may be a problem).
- For locally linear schemes, Hölder-regularity of second order can be derived from a linear scheme, defined by the Jacobians at linear data.
- Regularity of higher order requires new concepts.

