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Standard schemes

binary

linear

local

uniform

real-valued

periodic grid

p`+1
2i+σ =

∑
j≤n

ajσp
`
i+j , σ ∈ {0, 1}, i ∈ Z, p`i ∈ R.
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Non-standard schemes

non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

non-uniform: Floater, Cashman, Hormann, Levin, Levin

arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

non-local: Kobbelt, Unser, Warren, Weimer

vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

manifold-valued: Dyn, Grohs, Wallner, Weinmann

geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

p`+1
2i+σ =

∑
|j |≤n

ajσ(`)p`i+j , σ ∈ {0, 1}d , i ∈ Zd , p`i ∈ R.
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Sabin’s Circle-preserving subdivision
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GLUE-schemes

Definition

Let P = (pi )i∈Z, pi ∈ E := Rd . A geometric, local, uniform, equilinear
subdivision scheme G : P` → P`+1 is characterized by:

G: The scheme G commutates with similarities,

G ◦ S = S ◦ G, S ∈ S(E).

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

p`+1
2i+σ = gσ(p`i , . . . , p

`
i+m), σ ∈ {0, 1}.

The functions gσ are C 1,1 in a neighborhood of linear data.

E: The standard linear chain E = (ie)i∈Z is dilated by the factor 1/2,

G(E) = E/2

+ τe.
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Basics: matrix-like formalism

Analogous to the representation of linear schemes in terms of pairs of
matrices, there exist functions gσ such that

p`+1
2i+σ = gσ(p`i ),

where p`i = [p`i ; . . . ; p`i+n−1] are subchains of P` of length n.

Constant chains are fixed points,

gσ(p) = p if ∆p = 0.

Composition of functions gσ is denoted by

gΣ = gσ` ◦ · · · ◦ gσ1 , Σ = [σ1, . . . , σ`], |Σ| = `.

Let e := [e; . . . ; ne]. Then

gΣ(e) = 2−|Σ|e + τΣe.
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Basics: spaces of chains

EZ := Rd×Z is the space of infinite chains in Rd .

En := Rd×n is the space of chains with n vertices in Rd .

Ln := {p ∈ En : ∆2p = 0} is the space of linear chains.

Π : En → Ln is the orthogonal projector onto Ln.

For P ∈ EZ, let

‖P‖ := sup
i
‖pi‖2, |P|1 := ‖∆P‖, |P|2 := ‖∆2P‖.
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Basics: relative distortion

The relative distortion of some chain p ∈ En is defined by

κ(p) :=


|p|2
|Πp|1

if |Πp|1 6= 0

∞ if |Πp|1 = 0.

Invariance under similarities,

κ(p) = κ(S(p)), S ∈ S(E).

Distortion of infinite chain,

κ(P) := sup
i∈Z

κ(pi ), pi = [pi ; . . . ; pi+n−1].

Distortion sequence generated by subdivision,

κ` := κ(P`), P` := G`(P).
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Straightening

Definition

The chain P is

straightened by G if κ` is a null sequence;

strongly straightened by G if κ` is summable;

straightened by G at rate α if 2`ακ` is bounded.
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Straightening

Definition

The chain P is

straightened by G if κ` is a null sequence;

strongly straightened by G if κ` is summable;

straightened by G at rate α if 2`ακ` is bounded.

Theorem (R. 2013)

Let G be a GLUE-scheme. If the chain P is

straightened by G, then P` converges to a continuous limit curve;

strongly straightened by G, then the limit curve is C 1 and regular;

straightened by G at rate α, then the limit curve is C 1,α and regular.
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Convergence

Let ϕ be a C k -function which
I has compact support;
I constitues a partition of unity,

∑
j ϕ(· − j) = 1.

Associate a curve Φ` to the chain P` at stage ` by

Φ`[P`] :=
∑
`∈Z

p`jϕ(2` · −j)

If Φ`[P`] is Cauchy in C 0, then the limit curve

Φ[P] := lim
`→∞

Φ`[P`]

is well defined, continuous, and independent of ϕ.

If Φ`[P`] is Cauchy in C k , then the limit curve Φ[P] is C k .

Use modulus of continuity to establish Hölder exponent.
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Proximity

Given a GLUE-schem G, choose a linear subdivision scheme A with
equal shift, i.e., G(E) = AE = (E + τe)/2.

Schemes G and A differ by remainder R,

R(P) := G(P)− AP.

Choose ϕ as limit function of A correspondig to Dirac data δj ,0 to
define curves Φ`[P`] at level `.

Curves at levels ` and `+ r differ by∣∣∂j(Φ`+r [P`+r ]− Φ`[P`]
)∣∣
∞ ≤ c

∞∑
i=`

2ij |R(Pi )|0.

Use bound

|R(Pi )|0 ≤ cκiq
i

with q = 1/2 in case of strong straightening, and q = 2/3 otherwise.
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Checks for straightening

For applications, we need explicit values α, δ such that P is straightened
by G at rate α whenever κ(P) ≤ δ.
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Checks for straightening

Lemma

Let

Γ`[δ] := sup
0<|d|2≤δ

κ`(e + d)

|d|2
.

If Γ`[δ] < 1 for some ` ∈ N, then P is straightened by G at rate

α = − log2 Γ`[δ]

`

whenever κ(P) ≤ δ.
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Lemma

Let

Γ`[δ] := sup
0<|d|2≤δ

κ`(e + d)

|d|2
.

If Γ`[δ] < 1 for some ` ∈ N, then P is straightened by G at rate

α = − log2 Γ`[δ]

`

whenever κ(P) ≤ δ.

+ A rigorous upper bound on Γ`[δ] can be established using mean value
theorem and interval arithmetics.

– The larger δ, the poorer α.
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Checks for straightening

Theorem (R. 2012)

Let

Γ`[δ] := sup
0<|d|2≤δ

κ`(e + d)

|d|2
and Γk [δ, γ] := max

δ≤|d|2≤γ

κk(e + d)

|d|2
.

If Γ`[δ] < 1 for some ` ∈ N, and Γk [δ, γ] < 1 for some k ∈ N, then P is
straightened by G at rate

α = − log2 Γ`[δ]

`

whenever κ(P) ≤ γ.

+ Rigorous upper bounds on Γ`[δ] and Γk [δ, γ] via interval arithmetics.

+ Choose δ as small as possible to get good α.

+ Choose γ as large as possible to get good range of applicability.
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Differentiation

In general, the derivative of a function g : En → En is represented by
n × n matrices of dimension d × d , each.

By property G, the derivative of gσ at e has the special form

Dgσ(e) · q = AσqΠn + Bσ qΠt , σ ∈ {0, 1},

where Aσ,Bσ are (n × n)-matrices, and

Πt := diag[1, 0, . . . , 0], Πn := diag[0, 1, . . . , 1]

are (d × d)-matrices representing orthogonal projection onto the
x-axis and its orthogonal complement.

Let A = (A0,A1) and B = (B0,B1) denote the linear subdivision
schemes corresponding to normal and tangential direction.
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Differentiation
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Inheritance of C 1,α-regularity

Theorem (R. 2013)

Let the linear schemes A and B be C 1,α and C 1,β, resp. If P is
straightened by G, then the limit curve Φ[P] is C 1,min(α,β).

Proof: Show that

lim
δ→0

lim inf
`→∞

(
Γ`[δ]

)1/` ≤ max
(
jsr(A2

0,A
2
1), jsr(B2

0 ,B
2
1 )
)
.
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Locally linear schemes

Definition

A GLUE-scheme G is called locally linear if there exist (n × n)-matrices
A0,A1 such that

Dgσ(e) · q = AσqΠn + Bσ qΠt .

Aσq.

In this case the linear scheme A = (A0,A1) is called the linear
companion of G.

For d = 1, any GLUE-scheme G is locally linear.

For d ≥ 2, the scheme G is locally linear if A = B.

Circle-preserving subvdivion is locally linear, and the standard
four-point scheme is its linear companion.
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Inheritance of C 2,α-regularity

Theorem (R. 2013)

Let G be locally linear, and let the linear companion A be C 2,α. If P is
straightened by G, then the limit curve Φ[P] is C 2,α.

Proof:

Use basic limit function ϕ of A to define curves Φ`[P`].

Use bound

|R(P)|0 ≤ cκ(P)|P|2

on the remainder R(P) := G(P)− AP.
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Inheritance of C 3,α-regularity

. . . cannot be expected!
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A counter-example

Consider

g0(p`i , . . . , p
`
i+3) =

6

32
p`i +

20

32
p`i+1 +

6

32
p`i+2 +

‖∆2p`i ‖
‖∆p`i ‖

∆2p`i

g1(p`i , . . . , p
`
i+3) =

1

32
p`i +

15

32
p`i+1 +

15

32
p`i+2 +

1

32
p`i+3

The scheme is locally linear with A0,A1 representing quintic B-spline
subdivision. However, limit curves Φ∞[P] are not C 4, and not even C 3.
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Conclusion

Geometric subdivision schemes deserve attention.

Results apply to a wide range of algorithms.

Hölder continuity of first order can be established rigorously by means
of a universal computer program (at least in principle, runtime may
be a problem).

For locally linear schemes, Hölder-regularity of second order can be
derived from a linear scheme, defined by the Jacobians at linear data.

Regularity of higher order requires new concepts.
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