Analysis of Geometric Subdivision Schemes

Ulrich Reif

Technische Universität Darmstadt

Erice, September 27, 2013

Joint work with Malcolm Sabin and Tobias Ewald

Standard schemes

- binary
- linear
- local
- uniform
- real-valued
- periodic grid

$$p_{2i+\sigma}^{\ell+1}=\sum_{j\leq n}a_{\sigma}^{j}p_{i+j}^{\ell},\quad \sigma\in\{0,1\},\,\,i\in\mathbb{Z},\,\,p_{i}^{\ell}\in\mathbb{R}.$$

- ∢ ≣ →

Image: A math a math

• non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

$$p_{2i+\sigma}^{\ell+1} = \sum_{|j| \le n} a_{\sigma}^{j}(\ell) p_{i+j}^{\ell}, \quad \sigma \in \{0,1\}^{d}, \ i \in \mathbb{Z}^{d}, \ p_{i}^{\ell} \in \mathbb{R}.$$

(日) (同) (三) (三)

• non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren

• non-uniform: Floater, Cashman, Hormann, Levin, Levin

$$p_{2i+\sigma}^{\ell+1}=\sum_{|j|\leq n}a_{\sigma}^{j}(i)p_{i+j}^{\ell},\quad \sigma\in\{0,1\}^{d},\,\,i\in\mathbb{Z}^{d},\,\,p_{i}^{\ell}\in\mathbb{R}.$$

(日) (同) (三) (三)

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin

$$p_{2i+\sigma}^{\ell+1} = \sum_{|j| < n} a_{\sigma}^j(i) p_{i+j}^{\ell}, \quad \sigma \in \{0,1\}^2, \ i \in \mathbb{N}^2 \times \mathbb{Z}_n, \ p_i^{\ell} \in \mathbb{R}^3.$$

イロト イ押ト イヨト イヨト

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu

$$p_{2i+\sigma}^{\ell+1}=a_{\sigma}(p_i^\ell,\ldots,p_{i+n}^\ell), \quad \sigma\in\{0,1\}^d, \ i\in\mathbb{Z}^d, \ p_i^\ell\in\mathbb{R}.$$

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu
- non-local: Kobbelt, Unser, Warren, Weimer

$$p_{2i+\sigma}^{\ell+1} = \sum_{j\in\mathbb{Z}^d} a_\sigma^j p_{i+j}^\ell, \quad \sigma\in\{0,1\}^d, \ i\in\mathbb{Z}^d, \ p_i^\ell\in\mathbb{R}.$$

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu
- non-local: Kobbelt, Unser, Warren, Weimer
- vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann

$$p_{2i+\sigma}^{\ell+1} = \sum_{|j| < n} a_{\sigma}^{j} p_{i+j}^{\ell}, \quad \sigma \in \{0,1\}^{d}, \ i \in \mathbb{Z}^{d}, \ p_{i}^{\ell} \in \mathbb{R}^{d}.$$

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu
- non-local: Kobbelt, Unser, Warren, Weimer
- vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann
- manifold-valued: Dyn, Grohs, Wallner, Weinmann

$$p_{2i+\sigma}^{\ell+1} = a_{\sigma}(p_i^{\ell}, \ldots, p_{i+n}^{\ell}), \quad \sigma \in \{0,1\}^d, \ i \in \mathbb{Z}^d, \ p_i^{\ell} \in M.$$

- non-stationary: Beccari, de Boor, Casciola, Dyn, Levin, Romani, Warren
- non-uniform: Floater, Cashman, Hormann, Levin, Levin
- arbitrary topology: Peters, Prautzsch, R., Sabin, Zorin
- non-linear: Donoho, Floater, Kuijt, Oswald, Schaefer, Yu
- non-local: Kobbelt, Unser, Warren, Weimer
- vector-valued: Conti, Han, Jia, Merrien, Micchelli, Sauer, Zimmermann
- manifold-valued: Dyn, Grohs, Wallner, Weinmann
- geometric: Albrecht, Cashman, Dyn, Hormann, Levin, Romani, Sabin

$$p_{2i+\sigma}^{\ell+1} = g_{\sigma}(p_i^{\ell}, \dots, p_{i+n}^{\ell}), \quad \sigma \in \{0,1\}^d, \ i \in \mathbb{Z}^d, \ p_i^{\ell} \in \mathbb{R}^d.$$

・ロト ・ 日 ト ・ 田 ト ・

æ

æ

<ロ> (日) (日) (日) (日) (日)

æ

<ロ> (日) (日) (日) (日) (日)

æ

<ロ> (日) (日) (日) (日) (日)

A 🖓

A 🖓

Definition

Let $\mathbf{P} = (p_i)_{i \in \mathbb{Z}}, p_i \in \mathbb{E} := \mathbb{R}^d$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G} : \mathbf{P}^\ell \to \mathbf{P}^{\ell+1}$ is characterized by:

Definition

Let $\mathbf{P} = (p_i)_{i \in \mathbb{Z}}, p_i \in \mathbb{E} := \mathbb{R}^d$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G} : \mathbf{P}^\ell \to \mathbf{P}^{\ell+1}$ is characterized by:

G: The scheme G commutates with similarities,

 $\mathbf{G} \circ S = S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E}).$

Definition

Let $\mathbf{P} = (p_i)_{i \in \mathbb{Z}}, p_i \in \mathbb{E} := \mathbb{R}^d$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G} : \mathbf{P}^\ell \to \mathbf{P}^{\ell+1}$ is characterized by:

G: The scheme G commutates with similarities,

 $\mathbf{G} \circ S = S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E}).$

L: New points depend on finitely many old points.

Definition

Let $\mathbf{P} = (p_i)_{i \in \mathbb{Z}}, p_i \in \mathbb{E} := \mathbb{R}^d$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G} : \mathbf{P}^\ell \to \mathbf{P}^{\ell+1}$ is characterized by:

G: The scheme G commutates with similarities,

 $\mathbf{G} \circ S = S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E}).$

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

$$p_{2i+\sigma}^{\ell+1} = g_{\sigma}(p_i^{\ell},\ldots,p_{i+m}^{\ell}), \quad \sigma \in \{0,1\}.$$

The functions g_{σ} are $C^{1,1}$ in a neighborhood of linear data.

Definition

Let $\mathbf{P} = (p_i)_{i \in \mathbb{Z}}, p_i \in \mathbb{E} := \mathbb{R}^d$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G} : \mathbf{P}^\ell \to \mathbf{P}^{\ell+1}$ is characterized by:

G: The scheme G commutates with similarities,

 $\mathbf{G} \circ S = S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E}).$

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

$$p_{2i+\sigma}^{\ell+1}=g_{\sigma}(p_i^\ell,\ldots,p_{i+m}^\ell),\quad \sigma\in\{0,1\}.$$

The functions g_{σ} are $C^{1,1}$ in a neighborhood of linear data. E: The standard linear chain $\mathbf{E} = (ie)_{i \in \mathbb{Z}}$ is dilated by the factor 1/2,

$$G(E) = E/2$$

Ulrich Reif

27.09.2013 12 / 29

Definition

Let $\mathbf{P} = (p_i)_{i \in \mathbb{Z}}, p_i \in \mathbb{E} := \mathbb{R}^d$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G} : \mathbf{P}^\ell \to \mathbf{P}^{\ell+1}$ is characterized by:

G: The scheme G commutates with similarities,

 $\mathbf{G} \circ S = S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E}).$

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

$$p_{2i+\sigma}^{\ell+1} = g_{\sigma}(p_i^{\ell},\ldots,p_{i+m}^{\ell}), \quad \sigma \in \{0,1\}.$$

The functions g_{σ} are $C^{1,1}$ in a neighborhood of linear data.

E: The standard linear chain $\mathbf{E} = (ie)_{i \in \mathbb{Z}}$ is dilated by the factor 1/2,

$$G(E) = E/2$$
 —•-•-•-•-•

Ulrich Reif

Definition

Let $\mathbf{P} = (p_i)_{i \in \mathbb{Z}}, p_i \in \mathbb{E} := \mathbb{R}^d$. A geometric, local, uniform, equilinear subdivision scheme $\mathbf{G} : \mathbf{P}^\ell \to \mathbf{P}^{\ell+1}$ is characterized by:

G: The scheme G commutates with similarities,

 $\mathbf{G} \circ S = S \circ \mathbf{G}, \quad S \in \mathcal{S}(\mathbb{E}).$

L: New points depend on finitely many old points.

U: The same two rules (even/odd) apply everywhere,

$$p_{2i+\sigma}^{\ell+1}=g_{\sigma}(p_i^\ell,\ldots,p_{i+m}^\ell),\quad \sigma\in\{0,1\}.$$

The functions g_{σ} are $C^{1,1}$ in a neighborhood of linear data. E: The standard linear chain $\mathbf{E} = (ie)_{i \in \mathbb{Z}}$ is dilated by the factor 1/2,

Ulrich Reif

Basics: matrix-like formalism

• Analogous to the representation of linear schemes in terms of pairs of matrices, there exist functions g_{σ} such that

$$\mathbf{p}_{2i+\sigma}^{\ell+1} = \mathbf{g}_{\sigma}(\mathbf{p}_i^{\ell}),$$

where $\mathbf{p}_i^{\ell} = [p_i^{\ell}; \dots; p_{i+n-1}^{\ell}]$ are subchains of \mathbf{P}^{ℓ} of length *n*. • Constant chains are fixed points,

$$\mathbf{g}_{\sigma}(\mathbf{p}) = \mathbf{p}$$
 if $\Delta \mathbf{p} = 0$.

• Composition of functions \mathbf{g}_{σ} is denoted by

$$\mathbf{g}_{\boldsymbol{\Sigma}} = \mathbf{g}_{\sigma_{\ell}} \circ \cdots \circ \mathbf{g}_{\sigma_{1}}, \quad \boldsymbol{\Sigma} = [\sigma_{1}, \ldots, \sigma_{\ell}], \ |\boldsymbol{\Sigma}| = \ell.$$

• Let e := [e; ...; ne]. Then

$$\mathbf{g}_{\Sigma}(\mathbf{e}) = 2^{-|\Sigma|}\mathbf{e} + \tau_{\Sigma} \mathbf{e}.$$

Ulrich Reif

(日) (同) (三) (三) (三)

- $\mathbb{E}^{\mathbb{Z}} := \mathbb{R}^{d \times \mathbb{Z}}$ is the space of infinite chains in \mathbb{R}^d .
- $\mathbb{E}^n := \mathbb{R}^{d \times n}$ is the space of chains with *n* vertices in \mathbb{R}^d .
- $\mathbb{L}^n := \{ \mathbf{p} \in \mathbb{E}^n : \Delta^2 \mathbf{p} = 0 \}$ is the space of linear chains.
- $\Pi : \mathbb{E}^n \to \mathbb{L}^n$ is the orthogonal projector onto \mathbb{L}^n .
- $\bullet~\mathsf{For}~\mathbf{P}\in\mathbb{E}^{\mathbb{Z}},$ let

$$\|\mathbf{P}\| := \sup_{i} \|p_{i}\|_{2}, \quad |\mathbf{P}|_{1} := \|\Delta\mathbf{P}\|, \quad |\mathbf{P}|_{2} := \|\Delta^{2}\mathbf{P}\|.$$

(人間) トイヨト イヨト

- $\mathbb{E}^{\mathbb{Z}} := \mathbb{R}^{d \times \mathbb{Z}}$ is the space of infinite chains in \mathbb{R}^d .
- $\mathbb{E}^n := \mathbb{R}^{d \times n}$ is the space of chains with *n* vertices in \mathbb{R}^d .
- $\mathbb{L}^n := \{ \mathbf{p} \in \mathbb{E}^n : \Delta^2 \mathbf{p} = 0 \}$ is the space of linear chains.
- $\Pi : \mathbb{E}^n \to \mathbb{L}^n$ is the orthogonal projector onto \mathbb{L}^n .

• For $\mathbf{p} \in \mathbb{E}^n$, let

$$\|\mathbf{p}\| := \sup_{i} \|p_{i}\|_{2}, \quad |\mathbf{p}|_{1} := \|\Delta \mathbf{p}\|, \quad |\mathbf{p}|_{2} := \|\Delta^{2} \mathbf{p}\|.$$

Basics: relative distortion

• The relative distortion of some chain $\mathbf{p} \in \mathbb{E}^n$ is defined by

$$\kappa(\mathbf{p}) := \begin{cases} \frac{|\mathbf{p}|_2}{|\Pi \mathbf{p}|_1} & \text{if } |\Pi \mathbf{p}|_1 \neq 0\\ \infty & \text{if } |\Pi \mathbf{p}|_1 = 0. \end{cases}$$

• Invariance under similarities,

$$\kappa(\mathbf{p}) = \kappa(S(\mathbf{p})), \quad S \in \mathcal{S}(\mathbb{E}).$$

• Distortion of infinite chain,

$$\kappa(\mathbf{P}) := \sup_{i \in \mathbb{Z}} \kappa(\mathbf{p}_i), \quad \mathbf{p}_i = [p_i; \ldots; p_{i+n-1}].$$

• Distortion sequence generated by subdivision,

$$\kappa_{\ell} := \kappa(\mathbf{P}^{\ell}), \quad \mathbf{P}^{\ell} := \mathbf{G}^{\ell}(\mathbf{P}).$$

Ulrich Reif

Definition

The chain **P** is

- straightened by **G** if κ_{ℓ} is a null sequence;
- strongly straightened by **G** if κ_{ℓ} is summable;
- straightened by **G** at rate α if $2^{\ell \alpha} \kappa_{\ell}$ is bounded.

A D A D A D A

Straightening

Definition

The chain **P** is

- straightened by **G** if κ_{ℓ} is a null sequence;
- strongly straightened by **G** if κ_{ℓ} is summable;
- straightened by **G** at rate α if $2^{\ell \alpha} \kappa_{\ell}$ is bounded.

Lemma

Let \mathbf{G} be a GLUE-scheme. If the chain \mathbf{P} is

- straightened by **G**, then $|\mathbf{P}|_1 \leq Cq^{\ell}$ for any q > 1/2;
- strongly straightened by **G**, then $|\mathbf{P}|_1 \leq Cq^{\ell}$ for any q = 1/2;
- straightened by **G** at rate α , then $|\mathbf{P}|_2 \leq C2^{-\ell(1+\alpha)}$.

Straightening

Definition

The chain **P** is

- straightened by **G** if κ_{ℓ} is a null sequence;
- strongly straightened by **G** if κ_{ℓ} is summable;
- straightened by **G** at rate α if $2^{\ell \alpha} \kappa_{\ell}$ is bounded.

Lemma

Let ${\bf G}$ be a GLUE-scheme. If the chain ${\bf P}$ is

- straightened by **G**, then $|\mathbf{P}|_1 \leq Cq^{\ell}$ for any q > 1/2;
- strongly straightened by **G**, then $|\mathbf{P}|_1 \leq Cq^{\ell}$ for any q = 1/2;

27.09.2013

16 / 29

• straightened by **G** at rate α , then $|\mathbf{P}|_2 \leq C2^{-\ell(1+\alpha)}$.

Proof:

- induction on $|\Sigma|$
- q-Pochhammer symbol

Ulrich Reif

Straightening

Definition

The chain **P** is

- straightened by **G** if κ_{ℓ} is a null sequence;
- strongly straightened by **G** if κ_{ℓ} is summable;
- straightened by **G** at rate α if $2^{\ell \alpha} \kappa_{\ell}$ is bounded.

Theorem (R. 2013)

Let ${\bf G}$ be a GLUE-scheme. If the chain ${\bf P}$ is

- straightened by **G**, then P^{ℓ} converges to a continuous limit curve;
- strongly straightened by **G**, then the limit curve is C^1 and regular;
- straightened by **G** at rate α , then the limit curve is $C^{1,\alpha}$ and regular.

- 4 週 1 - 4 三 1 - 4 三 1

Convergence

- Let φ be a C^k -function which
 - has compact support;
 - constitues a partition of unity, $\sum_{j} \varphi(\cdot j) = 1$.
- \bullet Associate a curve Φ^ℓ to the chain \textbf{P}^ℓ at stage ℓ by

$$\Phi^{\ell}[\mathbf{P}^{\ell}] := \sum_{\ell \in \mathbb{Z}} p_j^{\ell} \varphi(2^{\ell} \cdot -j)$$

Convergence

- Let φ be a C^k -function which
 - has compact support;
 - constitues a partition of unity, $\sum_{j} \varphi(\cdot j) = 1$.
- \bullet Associate a curve Φ^ℓ to the chain \textbf{P}^ℓ at stage ℓ by

$$\Phi^{\ell}[\mathbf{P}^{\ell}] := \sum_{\ell \in \mathbb{Z}} p_j^{\ell} \varphi(2^{\ell} \cdot -j)$$

• If $\Phi^{\ell}[\mathbf{P}^{\ell}]$ is Cauchy in C^0 , then the limit curve

$$\Phi[\mathbf{P}] := \lim_{\ell \to \infty} \Phi^{\ell}[\mathbf{P}^{\ell}]$$

is well defined, continuous, and independent of φ .

17 / 29

27.09.2013

Convergence

- Let φ be a C^k -function which
 - has compact support;
 - constitues a partition of unity, $\sum_{j} \varphi(\cdot j) = 1$.
- \bullet Associate a curve Φ^ℓ to the chain P^ℓ at stage ℓ by

$$\Phi^{\ell}[\mathbf{P}^{\ell}] := \sum_{\ell \in \mathbb{Z}} p_j^{\ell} \varphi(2^{\ell} \cdot -j)$$

• If $\Phi^{\ell}[\mathbf{P}^{\ell}]$ is Cauchy in C^0 , then the limit curve

$$\Phi[\mathbf{P}] := \lim_{\ell \to \infty} \Phi^{\ell}[\mathbf{P}^{\ell}]$$

is well defined, continuous, and independent of $\varphi.$

• If $\Phi^{\ell}[\mathbf{P}^{\ell}]$ is Cauchy in C^{k} , then the limit curve $\Phi[\mathbf{P}]$ is C^{k} .

17 / 29

Convergence

- Let φ be a C^k -function which
 - has compact support;
 - constitues a partition of unity, $\sum_{j} \varphi(\cdot j) = 1$.
- \bullet Associate a curve Φ^ℓ to the chain P^ℓ at stage ℓ by

$$\Phi^{\ell}[\mathbf{P}^{\ell}] := \sum_{\ell \in \mathbb{Z}} p_j^{\ell} \varphi(2^{\ell} \cdot -j)$$

• If $\Phi^{\ell}[\mathbf{P}^{\ell}]$ is Cauchy in C^0 , then the limit curve

$$\Phi[\mathbf{P}] := \lim_{\ell \to \infty} \Phi^{\ell}[\mathbf{P}^{\ell}]$$

is well defined, continuous, and independent of $\boldsymbol{\varphi}.$

- If $\Phi^{\ell}[\mathbf{P}^{\ell}]$ is Cauchy in C^{k} , then the limit curve $\Phi[\mathbf{P}]$ is C^{k} .
- Use modulus of continuity to establish Hölder exponent.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

17 / 29

- Given a GLUE-schem **G**, choose a linear subdivision scheme **A** with equal shift, i.e., $G(E) = AE = (E + \tau e)/2$.
- Schemes G and A differ by remainder R,

 $\mathbf{R}(\mathbf{P}) := \mathbf{G}(\mathbf{P}) - \mathbf{A}\mathbf{P}.$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Given a GLUE-schem **G**, choose a linear subdivision scheme **A** with equal shift, i.e., $G(E) = AE = (E + \tau e)/2$.
- Schemes G and A differ by remainder R,

 $\mathsf{R}(\mathsf{P}) := \mathsf{G}(\mathsf{P}) - \mathsf{A}\mathsf{P}.$

• Choose φ as limit function of **A** correspondig to

イロト 人間ト イヨト イヨト

- Given a GLUE-schem **G**, choose a linear subdivision scheme **A** with equal shift, i.e., $G(E) = AE = (E + \tau e)/2$.
- Schemes G and A differ by remainder R,

R(P) := G(P) - AP.

- Choose φ as limit function of A correspondig to Dirac data δ_{j,0} to define curves Φ^ℓ[P^ℓ] at level ℓ.
- Curves at levels ℓ and $\ell + r$ differ by

$$\left|\partial^{j} \left(\Phi^{\ell+r} [\mathbf{P}^{\ell+r}] - \Phi^{\ell} [\mathbf{P}^{\ell}]
ight) \right|_{\infty} \leq c \sum_{i=\ell}^{\infty} 2^{ij} |\mathbf{R}(\mathbf{P}^{i})|_{0}.$$

- Given a GLUE-schem **G**, choose a linear subdivision scheme **A** with equal shift, i.e., $G(E) = AE = (E + \tau e)/2$.
- Schemes G and A differ by remainder R,

 $\mathsf{R}(\mathsf{P}) := \mathsf{G}(\mathsf{P}) - \mathsf{A}\mathsf{P}.$

- Choose φ as limit function of A correspondig to Dirac data δ_{j,0} to define curves Φ^ℓ[P^ℓ] at level ℓ.
- Curves at levels ℓ and $\ell + r$ differ by

$$\left|\partial^j \left(\Phi^{\ell+r}[\mathbf{P}^{\ell+r}] - \Phi^\ell[\mathbf{P}^\ell]
ight)
ight|_\infty \leq c\sum_{i=\ell}^\infty 2^{ij}|\mathbf{R}(\mathbf{P}^i)|_0.$$

Use bound

$$|\mathbf{R}(\mathbf{P}^i)|_0 \leq c\kappa_i q^i$$

with q = 1/2 in case of strong straightening, and q = 2/3 otherwise.

For applications, we need explicit values α, δ such that **P** is straightened by **G** at rate α whenever $\kappa(\mathbf{P}) \leq \delta$.

Lemma

Let

$$\Gamma_{\ell}[\delta] := \sup_{0 < |\mathbf{d}|_2 \le \delta} \frac{\kappa_{\ell}(\mathbf{e} + \mathbf{d})}{|\mathbf{d}|_2}.$$

If $\Gamma_\ell[\delta] < 1$ for some $\ell \in N,$ then ${\bf P}$ is straightened by ${\bf G}$ at rate

$$\alpha = -\frac{\log_2 \Gamma_\ell[\delta]}{\ell}$$

whenever $\kappa(\mathbf{P}) \leq \delta$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Lemma

Let

$${\sf F}_\ell[\delta] := \sup_{0 < |{f d}|_2 \leq \delta} rac{\kappa_\ell({f e} + {f d})}{|{f d}|_2}.$$

If $\Gamma_\ell[\delta] < 1$ for some $\ell \in N,$ then ${\bf P}$ is straightened by ${\bf G}$ at rate

$$\alpha = -\frac{\log_2 \Gamma_\ell[\delta]}{\ell}$$

whenever $\kappa(\mathbf{P}) \leq \delta$.

- + A rigorous upper bound on $\Gamma_{\ell}[\delta]$ can be established using mean value theorem and interval arithmetics.
- The larger $\delta,$ the poorer $\alpha.$

▲ □ ► ▲ □ ► ▲

Theorem (R. 2012)

Let

$$\Gamma_{\ell}[\delta] := \sup_{0 < |\mathbf{d}|_2 \le \delta} \frac{\kappa_{\ell}(\mathbf{e} + \mathbf{d})}{|\mathbf{d}|_2} \quad and \quad \Gamma_k[\delta, \gamma] := \max_{\delta \le |\mathbf{d}|_2 \le \gamma} \frac{\kappa_k(\mathbf{e} + \mathbf{d})}{|\mathbf{d}|_2}$$

If $\Gamma_{\ell}[\delta] < 1$ for some $\ell \in N$, and $\Gamma_{k}[\delta, \gamma] < 1$ for some $k \in \mathbb{N}$, then **P** is straightened by **G** at rate

$$\alpha = -\frac{\log_2 \Gamma_{\ell}[\delta]}{\ell}$$
whenever $\kappa(\mathbf{P}) < \gamma$

イロン 不聞と 不同と 不同と

Theorem (R. 2012)

Let

$$\mathsf{\Gamma}_{\ell}[\delta] := \sup_{0 < |\mathbf{d}|_2 \leq \delta} \frac{\kappa_{\ell}(\mathbf{e} + \mathbf{d})}{|\mathbf{d}|_2} \quad \text{and} \quad \mathsf{\Gamma}_{k}[\delta, \gamma] := \max_{\delta \leq |\mathbf{d}|_2 \leq \gamma} \frac{\kappa_{k}(\mathbf{e} + \mathbf{d})}{|\mathbf{d}|_2}.$$

If $\Gamma_{\ell}[\delta] < 1$ for some $\ell \in N$, and $\Gamma_{k}[\delta, \gamma] < 1$ for some $k \in \mathbb{N}$, then **P** is straightened by **G** at rate

$$\alpha = -\frac{\log_2 \Gamma_\ell[\delta]}{\ell}$$

whenever $\kappa(\mathbf{P}) \leq \gamma$.

- + Rigorous upper bounds on $\Gamma_{\ell}[\delta]$ and $\Gamma_{k}[\delta, \gamma]$ via interval arithmetics.
- + Choose δ as small as possible to get good α .
- + Choose γ as large as possible to get good range of applicability.

Differentiation

• In general, the derivative of a function $\mathbf{g} : \mathbb{E}^n \to \mathbb{E}^n$ is represented by $n \times n$ matrices of dimension $d \times d$, each.

Differentiation

- In general, the derivative of a function $\mathbf{g} : \mathbb{E}^n \to \mathbb{E}^n$ is represented by $n \times n$ matrices of dimension $d \times d$, each.
- By property G, the derivative of \mathbf{g}_{σ} at \mathbf{e} has the special form

$$D\mathbf{g}_{\sigma}(\mathbf{e})\cdot\mathbf{q} = A_{\sigma}\mathbf{q}\,\Pi^{n} + B_{\sigma}\,\mathbf{q}\,\Pi^{t}, \quad \sigma \in \{0,1\},$$

where A_{σ} , B_{σ} are $(n \times n)$ -matrices, and

 $\Pi^t := \operatorname{diag}[1, 0, \dots, 0], \quad \Pi^n := \operatorname{diag}[0, 1, \dots, 1]$

are $(d \times d)$ -matrices representing orthogonal projection onto the x-axis and its orthogonal complement.

• Let $\mathbf{A} = (A_0, A_1)$ and $\mathbf{B} = (B_0, B_1)$ denote the linear subdivision schemes corresponding to normal and tangential direction.

イロト 不得下 イヨト イヨト 二日

23 / 29

Theorem (R. 2013)

Let the linear schemes **A** and **B** be $C^{1,\alpha}$ and $C^{1,\beta}$, resp. If **P** is straightened by **G**, then the limit curve $\Phi[\mathbf{P}]$ is $C^{1,\min(\alpha,\beta)}$.

Proof: Show that

$$\lim_{\delta \to 0} \liminf_{\ell \to \infty} \left(\mathsf{\Gamma}_{\ell}[\delta] \right)^{1/\ell} \leq \max \left(\mathsf{jsr}(A_0^2, A_1^2), \mathsf{jsr}(B_0^2, B_1^2) \right).$$

イロト 人間ト イヨト イヨト

Locally linear schemes

Definition

A GLUE-scheme **G** is called **locally linear** if there exist $(n \times n)$ -matrices A_0, A_1 such that

 $D\mathbf{g}_{\sigma}(\mathbf{e})\cdot\mathbf{q}=A_{\sigma}\mathbf{q}\,\Pi^{n}+B_{\sigma}\,\mathbf{q}\,\Pi^{t}.$

・ 何 ト ・ ヨ ト ・ ヨ ト

Locally linear schemes

Definition

A GLUE-scheme **G** is called **locally linear** if there exist $(n \times n)$ -matrices A_0, A_1 such that

 $D\mathbf{g}_{\sigma}(\mathbf{e})\cdot\mathbf{q}=A_{\sigma}\mathbf{q}.$

In this case the linear scheme $\mathbf{A} = (A_0, A_1)$ is called the **linear** companion of **G**.

(本間)と 本語(と)本語()

Locally linear schemes

Definition

A GLUE-scheme **G** is called **locally linear** if there exist $(n \times n)$ -matrices A_0, A_1 such that

 $D\mathbf{g}_{\sigma}(\mathbf{e})\cdot\mathbf{q}=A_{\sigma}\mathbf{q}.$

In this case the linear scheme $\mathbf{A} = (A_0, A_1)$ is called the **linear** companion of **G**.

- For d = 1, any GLUE-scheme **G** is locally linear.
- For $d \ge 2$, the scheme **G** is locally linear if $\mathbf{A} = \mathbf{B}$.
- Circle-preserving subvdivion is locally linear, and the standard four-point scheme is its linear companion.

Inheritance of $C^{2,\alpha}$ -regularity

Theorem (R. 2013)

Let **G** be locally linear, and let the linear companion **A** be $C^{2,\alpha}$. If **P** is straightened by **G**, then the limit curve $\Phi[\mathbf{P}]$ is $C^{2,\alpha}$.

Proof:

- Use basic limit function φ of **A** to define curves $\Phi^{\ell}[\mathbf{P}^{\ell}]$.
- Use bound

 $|\mathbf{R}(\mathbf{P})|_0 \leq c\kappa(\mathbf{P})|\mathbf{P}|_2$

on the remainder $R(\mathbf{P}) := \mathbf{G}(\mathbf{P}) - \mathbf{AP}$.

< 回 > < 三 > < 三 >

Inheritance of $C^{3,\alpha}$ -regularity

27.09.2013 27 / 29

イロト イ団ト イヨト イヨト 三日

Inheritance of $C^{3,\alpha}$ -regularity

... cannot be expected!

3

ヘロト 人間 ト くほ ト くほ トー

Consider

$$g_0(p_i^{\ell}, \dots, p_{i+3}^{\ell}) = \frac{6}{32} p_i^{\ell} + \frac{20}{32} p_{i+1}^{\ell} + \frac{6}{32} p_{i+2}^{\ell} + \frac{\|\Delta^2 p_i^{\ell}\|}{\|\Delta p_i^{\ell}\|} \Delta^2 p_i^{\ell}$$
$$g_1(p_i^{\ell}, \dots, p_{i+3}^{\ell}) = \frac{1}{32} p_i^{\ell} + \frac{15}{32} p_{i+1}^{\ell} + \frac{15}{32} p_{i+2}^{\ell} + \frac{1}{32} p_{i+3}^{\ell}$$

The scheme is locally linear with A_0 , A_1 representing quintic B-spline subdivision. However, limit curves $\Phi^{\infty}[\mathbf{P}]$ are not C^4 , and not even C^3 .

28 / 29

- 4 @ > - 4 @ > - 4 @ >

- Geometric subdivision schemes deserve attention.
- Results apply to a wide range of algorithms.
- Hölder continuity of first order can be established rigorously by means of a universal computer program (at least in principle, runtime may be a problem).
- For locally linear schemes, Hölder-regularity of second order can be derived from a linear scheme, defined by the Jacobians at linear data.
- Regularity of higher order requires new concepts.

29 / 29