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what is supersmoothness

A C r -differentiable piecewise polynomial function on a
n-dimensional simplicial complex ∆ ⊆ Rn is called a spline. Let
S r
d(∆) denote the vector space of C r splines on a fixed ∆.

Let σ ∈ ∆ be a k-dimensional simplex in ∆, k < n. If for any
s ∈ S r

d(∆), it follows that s ∈ Cµ(σ), where µ > r , then we say
that S r

d(∆) has supersmoothness µ at σ.
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what is supersmoothness: Clough-Tocher example
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s ∈ S1
d (∆) → s ∈ C 2(v0)

dim S1
2 (∆) = dim P2 = 6

s ∈ S3
d (∆) → s ∈ C 5(v0)

dim S3
5 (∆) = dim P5 = 21

BUT there is a big difference between these two examples

C 2(v0) is true C 2 differentiability at v0, while C 5(v0), for d > 5, is
equality of all partial derivatives of order five at v0.

Why?

Because if s were order five differentiable at v0 then it would have
been order four differentiable in a neighborhood of v0.
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what is supersmoothness: example

s(x , y) =

{
0 if x ≥ 0,
y2 if x < 0,

Such s(x , y) is not even continuous on R2. However,
s ∈ C 0

(
(0, 0)

)
and, moreover,

∂s

∂x
(0, 0) =

∂s

∂y
(0, 0) = 0.

Thus, s has supersmoothness one at the origin but not
differentiability of order one at the origin.

Continuity of this C−1(R2) spline at the origin is of course the true
continuity.



what is supersmoothness

A C r -differentiable piecewise polynomial function on a
n-dimensional simplicial complex ∆ ⊆ Rn is called a spline. Let
S r
d(∆) denote the vector space of C r splines on a fixed ∆.

Let σ ∈ ∆ be a k-dimensional simplex in ∆, k < n. If for any
s ∈ S r

d(∆), it follows that s ∈ Cµ(σ), where µ > r , then we say
that S r

d(∆) has supersmoothness µ at σ.

• µ does NOT depend on d , it depends on ∆ and r

• univariate splines have no supersmoothness

• supersmoothness is not always “superdifferentiability”
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computing dimensions: dim S1
2 (∆n) =?
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bivariate splines: more toy examples
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can we do better than algebraic geometers?



S r
d(∆) for r ≤ 2d

dim S r
d(∆) =?

Then supersmoothness implies ....



S r
d(∆) for r ≤ 2d

dim S r
d(∆) =?

Then supersmoothness implies ....



s ∈ S r
d(left blue pentagon)

implies s has supersmoothness
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Then supersmoothness implies ....
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at (3, 1) across

the red edge ONLY

Then the overlap implies ....
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the true partition emerges.....
there has never been a red edge

Then we apply the usual Bernstein-Bézier techniques and ....
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• red smoothness conditions in
the corners can be considered
independently of those in the
white area
• since d ≤ 2r , the smoothness
conditions inside the white area
are so tight that it is just one
polynomial.

Then we simply count the domain points (too boring to present it
here) and get the exact dimension.
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sometimes one has to use algebraic geometry

Theorem
For all integers d ≥ 0 and n ≥ 1,

dim S1
d (An) =

(
d + n

n

)
+ n

(
d − 1

n

)
,

where An is the Alfeld split of a simplex in Rn with one interior
split point into n + 1 subsimplices.

A. Kolesnikov and T. Sorokina, Multivariate C 1-continuous splines
on the Alfeld split of a simplex, submitted, 2013, see my webpage.
The proof would have been impossible without

Theorem
Let s ∈ S1

d (An). Then s ∈ Cn(v0).



what about non-polynomial splines

B. Shekhtman, T. Sorokina, Intrinsic supersmoothness, 2013,
submitted, arXiv:1302.5102
Using only standard tools from multivariate calculus, we show that
if we continuously glue two smooth functions along a curve with a
“corner”, the resulting continuous function must be differentiable
at the corner, as if to compensate for the singularity of the curve.
Moreover, locally, this property characterizes non-smooth curves.
We also generalize this phenomenon to higher order derivatives. In
particular, this shows that supersmoothness has little to do with
properties of polynomials.
T. Sorokina, Supersmoothness of bivariate splines and geometry of
the underlying partition, 2013, submitted
Using only standard Bernstein-Bézier tools, we show that many
types of supersmoothness have everything to do with polynomial
nature of splines.



supersmoothness at singular point

Theorem (2012)

Let γ ⊂ R2 be the trace of a Jordan arc that divides the open disk
Ω into two subsets Ω1 and Ω2. Let γ is not smooth at P ∈ γ. Let
f1, f2 be C 1 functions on Ω continuously glued along γ, that is, let

F (x , y) :=

{
f1(x , y) if (x , y) ∈ Ω1,
f2(x , y) if (x , y) ∈ Ω2,

be a continuous function on Ω. Then the piecewise function F is
differentiable at P, that is, ∇f1(P) = ∇f2(P).
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Figure : dim S1
2 (∆1) = 6



local characterization of non-smooth curves

Theorem (2012)

The trace of a Jordan arc γ is smooth at P if and only if there
exists a neighborhood U of P and a function h continuously
differentiable on U such that

h(x , y) = 0 if (x , y) ∈ γ ∩ U, and ∇h(P) 6= 0.



supersmoothness of higher derivatives

Theorem (2012)

Let functions f1, . . . , fn+2, be n times continuously differentiable on
Ω and let F be defined piecewise on each sector ∆j by F |∆j

:= fj ,
j = 1, . . . , n + 2. If F ∈ Cn(Ω) then F has all derivatives of order
n + 1 at the origin, that is, F ∈ Cn+1(0), n ≥ 0.
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the book on splines

M. J. Lai, L. L. Schumaker, Spline Functions on Triangulations,
Cambridge University Press (Cambridge), 2007.



bivariate splines: dim on a cell

Let a cell 4 have n edges, {ei}ni=1, whose slopes are {ai}ni=1,
respectively. We note that any cell can be rotated so that the
slopes are defined. Given a set T of strongly supported
smoothness functionals associated with 4

dim STd (4) =
n∑

i=1

d∑
j=0

(j − ri ,j) +
d∑

j=0

(j + 1− εj)+,

where

εj :=
n∑

i=1

mi ,j ,

mi ,j :=


0, if there exists l with ai = al and rl ,j < ri ,j ,

0, if there exists l > i with ai = al and rl ,j = ri ,j ,

j − ri ,j , otherwise.



Theorem (2013)

Let STd (4) with strongly supported T be defined on a cell 4 with
n edges. Given µ ∈ {1, . . . , n} and ν ∈ {0, . . . , d}, let rµ,ν < ν be
the smoothness value in T associated with the edge eµ on level ν.

If T ′ := T ∪ τ
rν,µ+1
ν,eµ remains strongly supported, then

STd (4) = ST
′

d (4) if and only if

εν ≤ ν + 1,

and either

(i) eµ has no collinear counterpart or

(ii) eµ has a collinear counterpart with strictly higher smoothness
value on level ν.



bivariate splines: more examples
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Example: r = {(1, 2), (1, 2)}, r = {2, 2}, d = 3, dim = 12

Example: r = {(4, 5), (4, 5), (3, 4)}, r = {5, 5, 4}, d = 6, dim = 33



example dim=48

Two non-collinear edges have smoothness 7 and 6. Three pairs of
collinear edges have pairs of smoothness (7, 7), (5, 7), (6, 7). Then
for d = 8 the two non-collinear edges can be removed.

In fact, the new space S r
8 with r = {(7, 7), (5, 7), (6, 7)} is the

same as S7
8 .



Theorem (2013)

Let 4 be a cell with m slopes and m pairs of collinear edges.
Suppose T is defined by the following smoothness conditions: for
each pair of collinear edges (ei , ẽi ), let (ri , ρi ) be the smoothness
across ei and ẽi , respectively, with the convention ri ≤ ρi ≤ d .
Suppose T ′ is defined by the following smoothness conditions: for
each pair of collinear edges (ei , ẽi ), let ρi be the smoothness across
both of them. Then

STd (4) = ST
′

d (4), whenever d ≤ d∗ :=

⌊∑m
i=1 ri + 1

m − 1

⌋
.



Theorem (2010)

Let ∆ be a cell, and let smoothness r ≥ 1. Suppose the number of
different slopes m ≤ r + 2. Then

S r
r+1(∆) = S r

r+1(∆̃),

where ∆̃ is a cell obtained from ∆ by removing the edges with no
collinear counterparts.

Example: r = 3, d = 4, m = 5. Three black edges can be removed.



mixed derivatives

Theorem (2012)

Let ∆ be a cell with no non-collinear and 2l collinear edges meeting
at v . Then for any s ∈ S l−1

d (∆) any l-th order mixed derivative

∂ls

∂ui1 · · · ∂uil
(v),

where ui1 , . . . , uil are pairwise distinct directions of non-collinear
edges, exists.



one directional derivative

Theorem (2012)

Let 4 be a cell with four non-collinear edges meeting at the
point v . Then there exists a unique straight line passing through v
with the property that for any smooth quadratic spline s on 4, the
restriction of s on this line is a univariate quadratic polynomial.

0 1

2

3
4

5

6

0 1

2

3
4

5

6



conclusions

• supersmoothness can help to compute and explain dimension

• supersmoothness could be a property of every multivariate spline

• the more symmetry the space has the less supersmoothness it
possesses

• symmetry of both the partition and the smoothness functionals
affects supersmoothness

• it appears that non-generic triangulations induce less
supersmoothness

• what about really high values of n....
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