Connections of Wavelet Frames to Algebraic Geometry and Multidimensional Systems

Joachim Stöckler
TU Dortmund

joint work with Maria Charina, Mihai Putinar, Claus Scheiderer

Research supported by "Research in Pairs" Program at Oberwolfach

1. Construction of tight wavelet frames: UEP
2. Positivity vs. sum of squares (sos)
3. Connections to semi-definite programming
4. Connection to multidimensional systems
5. Conclusion

Notations for Laurent polynomials:

$$
\begin{aligned}
\mathbb{T}^{d} & =\left\{z \in \mathbb{C}^{d}:\left|z_{1}\right|=\cdots=\left|z_{d}\right|=1\right\} \\
p & =\sum_{\alpha \in \mathbb{Z}^{d}} p_{\alpha} z^{\alpha} \in \mathbb{R}\left[\mathbb{T}^{d}\right] \\
p^{*} & =\sum_{\alpha \in \mathbb{Z}^{d}} p_{\alpha} z^{-\alpha}
\end{aligned}
$$

Ex: $p\left(z_{1}, z_{2}\right)=2^{-k-l-m}\left(1+z_{1}\right)^{k}\left(1+z_{2}\right)^{l}\left(1+z_{1} z_{2}\right)^{m}$
two-scale symbol of 3-directional box-spline

$$
B(x)=4 \sum_{\alpha} p_{\alpha} B(2 x-\alpha), \quad x \in \mathbb{R}^{2}
$$

$$
\begin{aligned}
M & \in \mathbb{Z}^{d \times d} \\
G & =M^{-1} \mathbb{Z}^{d} / \mathbb{Z}^{d}
\end{aligned}
$$

defines a group action on $\mathbb{R}\left[\mathbb{T}^{d}\right]$:

$$
p \mapsto p^{\sigma}\left(z_{1}, \ldots, z_{d}\right):=p\left(e^{2 \pi i \sigma_{1}} z_{1}, \ldots, e^{2 \pi i \sigma_{d}} z_{d}\right), \quad \sigma \in G .
$$

Ex: $M=2 I_{2}$

$$
\begin{aligned}
& p^{(0,0)}\left(z_{1}, z_{2}\right)=2^{-k-I-m}\left(1+z_{1}\right)^{k}\left(1+z_{2}\right)^{\prime}\left(1+z_{1} z_{2}\right)^{m} \\
& p^{(1,0)}\left(z_{1}, z_{2}\right)=2^{-k-I-m}\left(1-z_{1}\right)^{k}\left(1+z_{2}\right)^{\prime}\left(1-z_{1} z_{2}\right)^{m} \\
& p^{(0,1)}\left(z_{1}, z_{2}\right)=2^{-k-I-m}\left(1+z_{1}\right)^{k}\left(1-z_{2}\right)^{\prime}\left(1-z_{1} z_{2}\right)^{m} \\
& p^{(1,1)}\left(z_{1}, z_{2}\right)=2^{-k-I-m}\left(1-z_{1}\right)^{k}\left(1-z_{2}\right)^{\prime}\left(1+z_{1} z_{2}\right)^{m}
\end{aligned}
$$

Unitary Extension Principle (Ron, Shen (1997)): Construction of tight

 wavelet framesLet $p \in \mathbb{R}\left[\mathbb{T}^{d}\right]$, with $p(1, \ldots, 1)=1$, be the two-scale symbol of a refinable function $\phi \in L_{2}\left(\mathbb{R}^{d}\right)$. Find $q_{j} \in \mathbb{R}\left[\mathbb{T}^{d}\right], 1 \leq j \leq N$, such that

$$
I-\left(p^{\sigma}\right)_{\sigma \in G}\left(p^{\sigma}\right)_{\sigma \in G}^{*}=\sum_{j=1}^{N}\left(q_{j}^{\sigma}\right)_{\sigma \in G}\left(q_{j}^{\sigma}\right)_{\sigma \in G}^{*}
$$

Then the functions

$$
\psi_{j}(x)=\sum_{\alpha \in \mathbb{Z}^{d}} q_{j, \alpha} \phi\left(M^{T} x-\alpha\right), \quad j=1, \ldots, N
$$

generate a tight wavelet frame of $L_{2}\left(\mathbb{R}^{d}\right)$.

Questions for given $p \in \mathbb{R}\left[\mathbb{T}^{d}\right]$:
(1) Do $q_{1}, \ldots, q_{N} \in \mathbb{R}\left[\mathbb{T}^{d}\right]$ exist?
(2) What is the smallest number N (number of frame generators)?
(3) What is the smallest degree of q_{j} 's (support of frame generators)?

Find ways of construction or parameterization of all/some q_{j} 's.

Background on UEP

- $I-\left(p^{\sigma}\right)\left(p^{\sigma}\right)^{*}=Q Q^{*}$ implies the "sub-QMF" condition

$$
\begin{equation*}
f_{p}:=1-\sum_{\sigma \in G} p^{\sigma *} p^{\sigma} \geq 0 \tag{1}
\end{equation*}
$$

- Necessary and sufficient for the existence of q_{j} is the sum-of-squares (sos) decomposition

$$
\begin{equation*}
f_{p}=1-\sum_{\sigma \in G} p^{\sigma *} p^{\sigma}=\sum_{j=1}^{r} h_{j}^{*} h_{j} \tag{2}
\end{equation*}
$$

with suitable $h_{j} \in \mathbb{R}\left[\mathbb{T}^{d}\right]$.
necessary: Cauchy-Binet formula for $\operatorname{det} Q Q^{*}$
sufficient: Lai, St. (2006) with G-invariant h_{j}, Charina et al. (2013)
Remark: Additional steps are required to pass from h_{j} in (2) to q_{j} in UEP.

Positivity vs. Sum of Squares

General result requires strict positivity:

- Schmüdgen's Positivstellensatz (1991): Let $g_{1}, \ldots, g_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ and define $K:=\left\{x \in \mathbb{R}^{d}: g_{j}(x) \geq 0, j=1, \ldots, n\right\}$.

If K is compact, then any $f \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ with $f>0$ on K can be written as

$$
f=\sum_{\beta \in\{0,1\}^{n}} h_{\beta} g_{1}^{\beta_{1}} \cdots g_{n}^{\beta_{n}}, \quad \text { with } h_{\beta} \text { sos. }
$$

Does not apply to UEP : $f_{p}(1, \ldots, 1)=0$

For non-negative $f \in \mathbb{R}\left[\mathbb{T}^{d}\right]$, the dimension d is crucial:
$d=1$ Riesz-Fejer lemma:

$$
f \geq 0 \Longleftrightarrow f=h^{*} h \text { with } h \in \mathbb{R}[\mathbb{T}] \quad \text { (same degree) }
$$

$d=2$ Scheiderer's result in Manuscripta Math. 2006:
Let V be a non-singular affine variety over \mathbb{R} of dimension 2 , whose real points $V(\mathbb{R})$ are compact. Then every $f \in \mathbb{R}[V]$ with $f \geq 0$ on $V(\mathbb{R})$ is a sum of squares in $\mathbb{R}[V]$.

Ex: For 2-d butterfly scheme by Dyn, Gregory, Levin, we find $N=13$ and degree $\left(q_{j}\right) \leq \operatorname{degree}(p)$.
$d \geq 3$

- There exists $f \in \mathbb{R}\left[\mathbb{T}^{d}\right]$ which is not sos

Construction with homogeneous Motzkin polynomial in $\mathbb{R}\left[\mathbb{R}^{3}\right]$, which is

$$
p(x, y, z)=x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2}
$$

- For scaling matrix $M=2 I$, there exists $p \in \mathbb{R}\left[\mathbb{T}^{d}\right]$ with $p(1, \ldots, 1)=1$ such that

$$
f_{p}=1-\sum_{\sigma \in G} p^{\sigma *} p^{\sigma} \quad \text { is not sos }
$$

There are sufficient conditions also for $d \geq 3$.

- Scheiderer (2003): Let V be a nonsingular affine variety over \mathbb{R} for which $V(\mathbb{R})$ is compact. If $f \geq 0$ on $V(\mathbb{R})$ and for every $\xi \in V(\mathbb{R})$ with $f(\xi)=0$, the Hessian of f at ξ is positive definite, then f is a sum of squares in $\mathbb{R}[V]$.

Ex:

- If p is the two-scale symbol of a box-spline, f_{p} satisfies the condition on its Hessian; UEP constructions were known before, Gröchenig, Ron (1998), Chui, He (2001), Charina, St. (2008)
- The condition on the Hessian is not necessary:

For a 3-d interpolatory subdivision scheme by Chang et al. (2003), the function f_{p} has zero Hessian at some zero. We construct q_{j} 's for UEP with $N=31$.

Connections to semi-definite programming

1. Polynomials are written with the monomial vector $t(z)=\left(z^{\alpha}\right)_{\alpha \in I}$

$$
p=t(z)^{T} \mathbf{p}, \quad \mathbf{p}=\left(p_{\alpha}\right)_{\alpha \in I}
$$

2. Due to $z^{\alpha}\left(z^{\beta}\right)^{*}=z^{\alpha-\beta}$ and $\sum_{\alpha} p_{\alpha}=1$ we have

$$
1-p p^{*}=t(z)^{T}(\underbrace{\operatorname{diag}(\mathbf{p})-\mathbf{p} \mathbf{p}^{T}}_{=: R}) t\left(z^{*}\right)
$$

R is called a Gram-matrix of $1-p p^{*}$.

Connections to semi-definite programming

1. Polynomials are written with the monomial vector $t(z)=\left(z^{\alpha}\right)_{\alpha \in I}$

$$
p=t(z)^{T} \mathbf{p}, \quad \mathbf{p}=\left(p_{\alpha}\right)_{\alpha \in I}
$$

2. Due to $z^{\alpha}\left(z^{\beta}\right)^{*}=z^{\alpha-\beta}$ and $\sum_{\alpha} p_{\alpha}=1$ we have

$$
1-p p^{*}=t(z)^{T}(\underbrace{\operatorname{diag}(\mathbf{p})-\mathbf{p} \mathbf{p}^{T}}_{=: R}) t\left(z^{*}\right)
$$

R is called a Gram-matrix of $1-p p^{*}$.
3. Find a symmetric matrix $S \in \mathbb{R}^{|I| \times|I|}$ such that

$$
R+S \quad \text { is positive semi-definite }
$$

and

$$
\sum_{\alpha \in I} S_{\alpha, \alpha+\beta}=0 \quad \text { for all } \quad \beta
$$

4. By

$$
1-p p^{*}=t(z)^{T}(\underbrace{R+S}_{\text {semidef. }}) t\left(z^{*}\right)
$$

any decomposition $R+S=\sum_{j=1}^{N} \mathbf{h}_{j} \mathbf{h}_{j}^{T}$ gives polynomials $h_{j}=t(z)^{T} \mathbf{h}_{j}$ with

$$
1-p p^{*}=\sum_{j=1}^{N} h_{j} h_{j}^{*}
$$

Note: Semi-definiteness of $R+S$ requires extra care in SDP standard routines.

By the "sum rules"

$$
\frac{1}{|\operatorname{det} M|}=\sum_{\beta} p_{\gamma+M^{T} \beta}, \quad \gamma \in \mathbb{Z}^{d} / M^{T} \mathbb{Z}^{d}
$$

we can obtain solutions q_{j} to UEP by stronger constraints:
3'. Find a symmetric matrix $S \in \mathbb{R}^{|I| \times|I|}$ such that
$R+S$ is positive semi-definite
and

$$
\sum_{\left(\gamma+M^{T} \mathbb{Z}^{d}\right)} S_{\alpha, \alpha+\beta}=0 \quad \text { for all } \quad \beta, \quad \gamma \in \mathbb{Z}^{d} / M^{T} \mathbb{Z}^{d}
$$

4. $R+S=\sum_{j=1}^{N} \mathbf{q}_{j} \mathbf{q}_{j}^{T}$ gives polynomials $q_{j}=t(z)^{T} \mathbf{q}_{j}$ with

$$
I-\left(p^{\sigma}\right)\left(p^{\sigma}\right)^{*}=\sum_{j=1}^{N}\left(q_{j}^{\sigma}\right)\left(q_{j}^{\sigma}\right)^{*}
$$

Connection to multidimensional systems

Let p be a polynomial, $\mathbb{D}^{d}=\left\{\left|z_{1}\right|<1, \ldots,\left|z_{d}\right|<1\right\}$ the open polydisk in \mathbb{C}^{d}, and

$$
|p(z)|<1 \quad \text { for all } \quad z \in \mathbb{D}^{d}
$$

Results by Agler (1990), Ball, Trent (1998), Agler, McCarthy (1999):

The following are equivalent:
(a) p satisfies a von Neumann inequality; i.e., for every family
$T_{1}, \ldots, T_{d} \in \mathcal{L}(H)$ of commuting contractions on a Hilbert space H,

$$
\left\|p\left(T_{1}, \ldots, T_{d}\right)\right\|_{\mathrm{op}} \leq 1
$$

(b) There exist $n_{1}, \ldots, n_{d} \in \mathbb{N}$ and a matrix

$$
V=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \mathbb{R}^{(1+N) \times(1+N)}, \text { with } N=\sum_{j} n_{j} \text { and } I-V^{*} V \geq 0
$$

such that

$$
p(z)=A+B E(z)(I-D E(z))^{-1} C
$$

where $E(z)=\left(\begin{array}{ccc}z_{1} I_{n_{1}} & & \\ & \ddots & \\ & & z_{d} I_{n_{d}}\end{array}\right)$.

The matrix $V=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \mathbb{R}^{(1+N) \times(1+N)}$ is called a transfer function realization for p.

To obtain an sos-decomposition of $1-|p|^{2}$:

- Take $I-V^{*} V=X^{*} X$, with $X=[Q, Y] \in \mathbb{R}^{n_{0} \times(1+N)}$ and first column Q.
- Then $\left(\begin{array}{ll}Q & Y \\ A & B \\ C & D\end{array}\right)$ is an isometry,
the polynomial vector

$$
q(z)=Q+Y E(z)(I-D E(z))^{-1} C
$$

gives

$$
1-|p(z)|^{2}=\sum_{j=1}^{n_{0}}\left|q_{j}(z)\right|^{2}, \quad z \in \mathbb{D}^{d}
$$

Application to UEP requires:

- operator version of the transfer "function" realization to vectors $\left(p^{\sigma}(z)\right)_{\sigma \in G}$
- extension of the sub-QMF condition to the polydisk:

$$
1-\sum_{\sigma \in G}\left|p^{\sigma}(z)\right|^{2} \geq 0 \quad \text { for all } \quad z \in \mathbb{D}^{d} .
$$

In return, we obtain a parameterization of families of frame generators, and of suitable two-scale symbols p.

Results and algorithms:

- $d=1$: system theory is completely developed
- $d=2$: every 2-d polynomial p with $|p|^{2} \leq 1$ on the polydisk has a transfer function realization (consequence of Ando's dilation theorem)
Algorithm by Kummert (1989)
- $d \geq 3$: examples of polynomials which do not have a transfer function realization, (Varopoulas)

Conclusion

UEP construction of tight wavelet frames

- is closely connected with sos-decomposition of non-negative trigonometric polynomials,
- profits from recent results in real algebraic geometry and multidimensional systems,
- can be automated by semi-definite programming or transfer function representation.

