
CS 880: Pseudorandomness and Derandomization 3/20/2013

Lecture 17: Randomness Extractors

Instructors: Holger Dell and Dieter van Melkebeek Scribe: Mahnaz Akbari

DRAFT

This lecture is about randomness extractors. Extractors are functions that map samples from
a non-uniform distribution to samples that are close to being uniformly distributed. The length of
the output will in general be smaller than the length of the input of the extractor.

The input distribution of the extractor is called the source. A source is a random variable which
maps text values to bit strings. The goal is to extract randomness from such sources.

Definition 1. Let (Ω, p) be probability space, that is, Ω is a finite set and p ∈ [0, 1]Ω is a vector
with ‖p‖1 = 1. A source X over {0, 1}n is a {0, 1}n-valued random variable over some space (Ω, p),
that is, a function

X : Ω → {0, 1}n .

We recall the definition of an extractor from Lecture 2, where we gave a general overview.

Definition 2 (Extractor). Let C be a class of sources over {0, 1}n. A function E : {0, 1}n →
{0, 1}r is a (deterministic) ε-extractor for C if, for all sources X ∈ C, we have

dstat

(
Ur , E(X)

)
≤ ε .

We give an example of a source an how to extract randomness from it.

Example 1. Let X = X1X2 . . . Xn be a random variable on {0, 1}n so that the bits Xi are identi-
cally and independently distributed with P (Xi = 1) = σ. So the source is not uniform if σ 6= 1

2 To
extract a uniform distribution from this source, one can partition X into strings of length two. Let
us consider the first pair of bits, namely X1 and X2. Then we observe that the events X1X2 = 01
and X1X2 = 10 have the same probability:

X1 X2 Pr E outputs

0 1 σ(1− σ) 1
1 0 σ(1− σ) 0
0 0 σ2 discard
1 1 (1− σ)2 discard

Since the first two events happen with the same probability, they can be used to produce a sin-
gle unbiased bit. In case the bits happen to be 00 or 11, we can’t extract unbiased bits directly,
and we simply move on to the next pair of bits. On average, the number of bits that this procedure
produces is the number of pairs for which one of these two events occurs. Thus, the expected length
of the output of the extractor is E(r) = 2σ(1− σ)n2 .

The example above leads us to the question of how much randomness is contained in a source.
In the extreme case where X is a constant, there is no hope to extract any randomness. On the
other hand, if X is a source on {0, 1}n, we cannot expect to be able to extract more than n uniform
bits. In the example above, the amount of randomness that we could extract was a constant fraction
of n.

1

1 Entropy measures

Entropy measures the amount of randomness contained in a random source. There are various
notions of entropy, two of which we will discuss now.

Definition 3 (Shannon Entropy of X). Let X be a random variable. The Shannon entropy
of X is the number

H(X)
.
= Ex∼X

(
log

1

Pr[X = x]

)
︸ ︷︷ ︸

“amount of information contained in x”

=
∑
x

Pr[X = x] ·
(

log
1

Pr[X = x]

)
.

One way to look at the part that shows the amount of information in the above formula is that it
is, intuitively, the number of bits required to store the information in x, when the distribution X,
from which x was sampled, is know to the receiver. Then the expectation is the average number of
bits needed to store a sample from X. In other words, given a sample from X, how far it can be
compressed. This intuition is made precise in Shannon’s noisy-channel coding theorem.

If X is uniformly distributed, the entropy of X is equal to the dimension of X and the identity
map is a perfect extractor. Furthermore, the closer the Shannon entropy is to the dimension of X,
the closer X must be to the uniform distribution, so it is reasonable to suspect that a high Shannon
entropy allows us to extract randomness that is close to uniform. The following example refutes
this intuition for the Shannon entropy.

Example 2. Let X be a random variable on {0, 1}n with

Pr[X = x] =

{
1
2 if x = 0n,
1
2 ·

1
2n−1 otherwise.

This random variable is equal to 0n with probability half, and it is uniformly distributed on the rest
of the space. Then the Shannon entropy is with H(X) ≈ n

2 fairly close to maximal, but we also
have the following property for all function E:∣∣∣Pr

(
E(X) = E(0n)

)︸ ︷︷ ︸
≥ 1

2

−Pr
(
Ur = E(0n)

)︸ ︷︷ ︸
2−r

∣∣∣ ≈ 1

2

This implies that the statistical distance between E(X) is close to 0.5 and therefore far away from 0
unless r is trivially small. This means that there does not exist an extractor for this random variable.

The example above shows that one can define a random variable X which has a high Shannon
entropy, but from which no uniform randomness can be extracted with an extractor. Thus, Shannon
entropy is insufficient to measure the extractable randomness contained in a random variable, for
which reason we will use a different notion of entropy. The problem with the above example was
that there was an outcome that individually occurs with large probability. The Min-entropy defined
below yields an upper bound on the largest probability for individual outcomes.

2

Definition 4 (Min-entropy of X). Let X be a random variable. The Min-entropy of X is the
number

H∞(X)
.
= min

x
log

1

Pr[X = x]
= log

1

maxx Pr[X = x]
.

Equivalently, H∞(X) is the largest number k such that all outcomes have probability at most 2−k.

In the example above, we had maxx{Pr[X = x]} = 1
2 and thus H∞(X) = 1, which is very small

compared to the maximum possible value of n. Thus, the Min-entropy may be small even though
the Shannon entropy is large. The following lemma shows the relationship between two entropies
in general.

Lemma 3 (Relationship Between Entropies.). Let X be a random variable and let supp(X)
.
=

{x|Pr[X = x] > 0} be the support of X. Then we have

0 ≤ H∞(X) ≤ H(X) ≤ log
∣∣supp(X)

∣∣ . (1)

The last inequality in (1) means that a sample of X can always be stored using at most log |supp(X)|
bits. The Shannon-entropy may be smaller than that, which means that, on average, fewer bits
are needed to store a sample from X. The Min-entropy can not be larger than that, and it is the
number of uniform random that can be extracted from samples of X.

Lemma 4. Let X and Y be independent random variables. Then both entropies are additive:

H(X,Y) = H(X) +H(Y) ,

H∞(X,Y) = H∞(X) +H∞(Y) .

The additivity of the Shannon entropy says that, in order to store a sample from X and an
independent sample from Y , we need to store both samples individually. For the min-entropy, the
intuition is that the amount of randomness extractable from X and Y is equal to the sum of the
amount of randomness extractable from these random variables individually.

We use random variables X as a source of (possibly non-uniform) randomness.

Definition 5. A k-source is a random variable X with H∞(X) ≥ k.

As we will see later, one can extract roughly k uniform bits from a k-source. Let us first look at
some examples of k-sources.

Example 5 (Bit-fixing sources). A random variable X on {0, 1}n is a bit-fixing source if

◦ k bits of X are uniformly distributed

◦ n− k bits of X are fixed; these bits are deterministic function of the uniform k bits.

A special case of bit-fixing sources occurs when the fixed bits are all fixed to 0.

Example 6 (Flat k-sources). A random variable X on {0, 1}n is a flat k-source if there is a set
S ⊆ {0, 1}n with |S| = 2k such that

Pr[X = x] =

{
1
2k

if x ∈ S,

0 otherwise.

We also write XS for the flat source.

3

In both of the cases above, the min-entropy is H∞(X) = k. Actually, every k-source is a convex
combination of flat k-sources.

Lemma 7. Every k-source X is a convex combination of flat k-sources, that is,

Pr[X = x] =
∑
S

cS · Pr[XS = x]

holds for some coefficients cS with
∑

S cS = 1 and cS ≥ 0.

This lemma will enable us to reduce the extraction from an arbitrary k-source to the extraction
from a flat k-source.

Exercise 1. Prove Lemma 7.

2 Deterministic extractors

The following lemma shows that every deterministic extractor as defined in Definition 2 is bad for
some source.

Lemma 8. For all functions E : {0, 1}n → {0, 1}, there is a flat (n− 1)-source so that E(X) is a
constant function.

In particular, every extractor has a source of very high entropy for which not even a single bit can
be extracted.

Proof. Let b ∈ {0, 1} so that the number of x ∈ {0, 1}n such that E(x) = b holds is at least
2n/2 = 2n−1. Such b exists by the pigeon hole principle. Now let X be the flat source whose
support consists of those x for which E(x) = b holds. Then X is a flat (n− 1)-source and E(X) is
always equal to b. �

On the other hand, the following lemma shows that, for every k-source, most deterministic extrac-
tors work.

Lemma 9. For all k-sources X on {0, 1}n and ε > 0 we have

Pr
E

[random function E is an ε-extractor for X] ≥ 1− 2−Ω(2kε2)

where r = k − 2 log 1
ε −O(1) and E : {0, 1}n → {0, 1}r.

The lower bound for the probability is very close to one, which means that a random function is
an extractor for the flat k-source X with high probability.

Exercise 2. Prove Lemma 9 using the Chernoff bound.

4

3 Seeded Extractors

We have seen that deterministic extractors cannot be used for all k-sources, and fully random
extractors are good for all k-sources. With our goal of saving randomness in mind, we want to
avoid using fully random extractors. Seeded extractors are a compromise between the two extremes.
They assume to have access to a little bit of perfectly uniform randomness, but the amount is only
logarithmic in the length of the source.

Definition 6. A function E : {0, 1}n×{0, 1}d → {0, 1}r is a (k, ε)-extractor if, for all k-sources X
on {0, 1}n, we have dstat

(
E(X,Ud), Ur

)
≤ ε.

The following theorem shows that seeded extractors exist, and the proof uses the probabilistic
method.

Theorem 10. For all positive integers n and k ≤ n, and all ε > 0, there exists a (k, ε)-extractor
E : {0, 1}n × {0, 1}d → {0, 1}r with r = k − 2 log 1

ε −O(1) and d = log(n− k) + 2 log 1
ε + Ω(1).

Because the k-source X and the uniform distribution Ud are independent, their min-entropies add
up, for which reason the overall entropy of the input of E is k + d. The smaller ε is, the less
randomness r can be extracted.

Proof (Idea). Let E be sampled uniformly at random from the set of all functions of the specified
type. We want to argue that E fails to be an extractor with probability strictly less than one. Let
X be a k-source. By Lemma 7, we know that X can be written as a convex combination of flat
k-sources. Thus, if X is an extractor for all flat k-sources, it is an extractor for X. For this, we
use the union bound, and the probability of E not being an extractor for X is at most a factor of
at most

(
2n

2k

)
larger than the probability of E not being an extractor for a flat k-source, since that

is the number of all flat k-sources on {0, 1}n. Formally, we have

Pr
E

[
E is not a (k, ε)-extractor

]
≤
(

2n

2k

)
· max

flat k-source F
Pr
E

[
E is not an ε-extractor for F

]
≤
(

2n−ke
)2k

· 2−Ω(2k2dε2) < 1

The second inequality follows from
(
N
K

)
≤ (Ne/K)K and Lemma 9 using the fact that (F,Ud) has

min-entropy k + d, and the last inequality follows from the choice of parameters. �

4 Motivation: Derandomization

Extractors can be used to reduce the amount of randomness required by randomized algorithms.
Let A(x, ρ) be a randomized algorithm so that, for all inputs x, we have

Pr
(
A(x, Ur) fails

)
≤ δ ,

and let E be a (k, ε)-extractor. Then we define a derandomized algorithm by generating the
randomness using E and taking a majority vote over the extractor seed:

A′(x, ρ′)
.
= majs∈{0,1}dA

(
x,E(ρ′, s)

)
.

5

The main advantage of this approach is that A′(x, Y) does not need a uniform source Y anymore;
a k-source suffices. Then we have, for all inputs x,

Pr(A′(x, Y) fails) ≤ 2(δ + ε) .

This allows to simulate A when there is a little uniform randomness and access to large string of
not necessarily uniform randomness like key strokes.

Lemma 11. For all functions f so that A(x, Ur) computes f(x) with probability at least 1− δ, we
have that A′(x, Y) computes f(x) with probability at least 1−2(ε+δ) for all k-sources Y on {0, 1}n.

Proof. We consider the statistical distance and use the triangle inequality:

dstat

(
A(x,E(x, Ud)), f(x)

)
≤ d
(
A(x,E(x, Ud)), A(x, Ur)

)
(≤ ε by extractor property)

+ d
(
A(x, Ur), f(x)

)
(≤ δ by failure probability)

≤ δ + ε

Then we use Markov’s inequality to compute the probability that the majority vote fails:

Pr
ρ′∼Y

[
≥ 1

2
of all s are bad

]
≤ 2(ε+ δ) . �

The algorithm A′ runs in time 2d times the running time of A plus the running time of E. Thus,
while Theorem 10 guarantees that a seeded extractor with good parameters exists, we don’t have
it explicitly and we don’t know how efficiently it can be computed.

Next time, we will see how to construct seeded extractors explicitly by using their strong
relationship with bipartite expanders.

6

	Entropy measures
	Deterministic extractors
	Seeded Extractors
	Motivation: Derandomization

