
Foundations and TrendsR© in
Theoretical Computer Science
Vol. 2, No. 3 (2006) 197–303
c© 2007 D. van Melkebeek
DOI: 10.1561/0400000012

A Survey of Lower Bounds for Satisfiability
and Related Problems

Dieter van Melkebeek*

University of Wisconsin, 1210 W. Dayton St., Madison, WI 53706, USA,
dieter@cs.wisc.edu

Abstract

Ever since the fundamental work of Cook from 1971, satisfiability has
been recognized as a central problem in computational complexity. It
is widely believed to be intractable, and yet till recently even a linear-
time, logarithmic-space algorithm for satisfiability was not ruled out.
In 1997 Fortnow, building on earlier work by Kannan, ruled out such an
algorithm. Since then there has been a significant amount of progress
giving non-trivial lower bounds on the computational complexity of
satisfiability. In this article, we survey the known lower bounds for the
time and space complexity of satisfiability and closely related prob-
lems on deterministic, randomized, and quantum models with random
access. We discuss the state-of-the-art results and present the underly-
ing arguments in a unified framework.

* Research partially supported by NSF Career Award CCR-0133693.

1
Introduction

Satisfiability is the problem of deciding whether a given Boolean for-
mula has at least one satisfying assignment. It is the first problem that
was shown to be NP-complete, and is possibly the most commonly
studied NP-complete problem, both for its theoretical properties and
its applications in practice. Complexity theorists widely believe that
satisfiability takes exponential time in the worst case and requires an
exponent linear in the number of variables of the formula. On the other
hand, we currently do not know how to rule out the existence of even
a linear-time algorithm on a random-access machine. Obviously, linear
time is needed since we have to look at the entire formula in the worst
case. Similarly, we conjecture that the space complexity of satisfiability
is linear but we have yet to establish a space lower bound better than
the trivial logarithmic one.

Till the late 1990s it was even conceivable that there could be an
algorithm that would take linear time and logarithmic space to decide
satisfiability! Fortnow [19], building on earlier techniques by Kannan
[31], developed an elegant argument to rule out such algorithms. Since
then a wide body of work [3, 17, 18, 20, 22, 37, 56, 39, 41, 58, 59, 61]
have strengthened and generalized the results to lead to a rich variety

198

199

of lower bounds when one considers a nontrivial combination of time
and space complexity. These results form the topic of this survey.

We now give some details about the evolution of the lower bounds
for satisfiability. Fortnow’s result is somewhat stronger than what we
stated above — it shows that satisfiability cannot have both a linear-
time algorithm and a (possibly different) logarithmic-space algorithm.
In fact, his argument works for time bounds that are slightly super-
linear and space bounds that are close to linear, and even applies to
co-nondeterministic algorithms.

Theorem 1.1 (Fortnow [19]). For every positive real ε, satisfiability
cannot be solved by both

(i) a (co-non)deterministic random-access machine that runs in
time n1+o(1) and

(ii) a (co-non)deterministic random-access machine that runs in
polynomial time and space n1−ε.

In terms of time–space lower bounds, Fortnow’s result implies that
there is no (co-non)deterministic algorithm solving satisfiability in time
n1+o(1) and space n1−ε. Lipton and Viglas [20, 37] considered deter-
ministic algorithms with smaller space bounds, namely polylogarith-
mic ones, and managed to establish the first time–space lower bound
where the running time is a polynomial of degree larger than one. Their
argument actually works for subpolynomial space bounds, i.e., for space
no(1). It shows that satisfiability does not have a deterministic algorithm
that runs in n

√
2−o(1) steps and uses subpolynomial space.1 Fortnow and

van Melkebeek [20, 22] captured and improved both earlier results in
one statement, pushing the exponent in the Lipton–Viglas time–space
lower bound from

√
2 ≈ 1.414 to the golden ratio φ ≈ 1.618. Williams

[59, 61] further improved the latter exponent to the current record of
2cos(π/7) ≈ 1.801, although his argument no longer captures Fortnow’s
original result for deterministic machines.

1 The exact meaning of this statement reads as follows: For every function f : N → N that is
o(1), there exists a function g : N → N that is o(1) such that no algorithm for satisfiability
can run in time n

√
2−g(n) and space nf(n).

200 Introduction

Theorem 1.2 (Williams [61]). Satisfiability cannot be solved by a
deterministic random-access machine that runs in time n2cos(π/7)−o(1)

and space no(1).

The following — somewhat loaded — statement represents the
state-of-the-art on lower bounds for satisfiability on deterministic
machines with random access.

Theorem 1.3 (Master Theorem for deterministic algorithms).
For all reals c and d such that (c − 1)d < 1 or cd(d − 1) − 2d + 1 < 0,
there exists a positive real e such that satisfiability cannot be solved
by both

(i) a co-nondeterministic random-access machine that runs in
time nc and

(ii) a deterministic random-access machine that runs in time nd

and space ne.

Moreover, the constant e approaches 1 from below when c approaches
1 from above and d is fixed.

Note that a machine of type (ii) with d < 1 trivially fails to decide
satisfiability as it cannot access the entire input. A machine of type
(i) with c < 1 can access the entire input but nevertheless cannot
decide satisfiability. This follows from a simple diagonalization argu-
ment which we will review in Chapter 3 because it forms an ingredient
in the proof of Theorem 1.3. Note also that a machine of type (ii) is
a special case of a machine of type (i) for d ≤ c. Thus, the interesting
values of c and d in Theorem 1.3 satisfy d ≥ c ≥ 1.

Theorem 1.3 applies when c and d satisfy a disjunction of two con-
ditions. For values of d > 2 the condition (c − 1)d < 1 is less stringent
than cd(d − 1) − 2d + 1 < 0; for d < 2 the situation is the other way
around. See Figure 1.1 for a plot of the bounds involved in Theorem 1.3.
We can use the first condition to rule out larger and larger values of d for
values of c that get closer and closer to 1 from above. Thus, Fortnow’s

201

1

 1.25

 1.5

 1.75

2

1 1.5 2 2.5 3 3.5 4

c

d

f(d)
g(d)
h(d)

Fig. 1.1 Bounds in the Master Theorem for deterministic algorithms: f(d) solves
(c − 1)d = 1 for c, g(d) solves cd(d − 1) − 2d + 1 = 0 for c, and h(d) is the identity.

result for deterministic machines is a corollary to Theorem 1.3. The
second condition does not hold for large values of d for any c ≥ 1, but
yields better time lower bounds for subpolynomial-space algorithms.
We can obtain time–space lower bounds from Theorem 1.3 by setting
c = d; in that case we can omit the part from the statement involving
the machine of type (i) as it is implied by the existence of a machine of
type (ii). The first condition thus yields a time lower bound of nd−o(1)

for subpolynomial space, where d > 1 satisfies d(d − 1) = 1, i.e., for d

equal to the golden ratio φ ≈ 1.618. The second condition leads to a
time lower bound of nd−o(1) for subpolynomial space, where d > 1 sat-
isfies d2(d − 1) − 2d + 1 = 0; the solution to the latter equation equals
the above mysterious constant of 2cos(π/7) ≈ 1.801, which is larger
than φ. Thus, the Master Theorem captures Theorem 1.2 as well.

The successive improvements of recent years beg the question how
far we can hope to push the time–space lower bounds for satisfiability
in the near future. On the end of the spectrum with small space bounds,
there is a natural bound of 2 on the exponent d for which the current
techniques allow us to prove a time lower bound of nd for algorithms
solving satisfiability in logarithmic space. We will discuss this bound
in Section 4.1 and its reachability in Chapter 9. On the end of the
spectrum with small time bounds, the quest is for the largest exponent e

202 Introduction

such that we can establish a space lower bound of ne for any algorithm
solving satisfiability in linear time. The techniques presented in this
survey critically rely on sublinear space bounds so we cannot hope
to reach e = 1 or more along those lines. Note that sublinear-space
algorithms for satisfiability are unable to store an assignment to the
Boolean formula.

All the known lower bounds for satisfiability on deterministic
random-access machines use strategies similar to one pioneered by
Kannan in his early investigations of the relationship between non-
deterministic and deterministic linear time [31]. The arguments really
give lower bounds for nondeterministic linear time; they translate to
lower bounds for satisfiability by virtue of the very efficient quasi-linear
reductions of nondeterministic computations to satisfiability. The same
type of reductions exist to many other NP-complete problems — in fact,
to the best of my knowledge, they exist for all of the standard NP-
complete problems. Thus, the lower bounds for satisfiability as stated
in Theorem 1.3 actually hold for all these problems. In Section 4.2,
we discuss how the underlying arguments can be adapted and applied
to other problems that are closely related to satisfiability, such as the
cousins of satisfiability in higher levels of the polynomial-time hierar-
chy and the problem of counting the number of satisfying assignments
to a given Boolean formula modulo a fixed number.

Lower bounds for satisfiability on deterministic machines relate
to the P-versus-NP problem. Similarly, in the context of the NP-
versus-coNP problem, one can establish lower bounds for satisfiabil-
ity on co-nondeterministic machines, or equivalently, for tautologies
on nondeterministic machines. The statement of Theorem 1.3 par-
tially realizes such lower bounds because the machine of type (i) is
co-nondeterministic; all that remains is to make the machine of type
(ii) co-nondeterministic, as well. In fact, Fortnow proved his result for
co-nondeterministic machines of type (ii). Similar to the determinis-
tic case, Fortnow and van Melkebeek [20, 22] improved the time lower
bound in this version of Fortnow’s result from slightly super-linear to a
polynomial of degree larger than 1. In terms of time–space lower bounds
on the large-time end of the spectrum, their result yields a time lower
bound of n

√
2−o(1) for subpolynomial space nondeterministic machines

203

that decide tautologies. Diehl et al. [18] improved the exponent in the
latter result from

√
2 ≈ 1.414 to 3

√
4 ≈ 1.587 but their proof does not

yield nontrivial results at the end of the spectrum with space bounds
close to linear.

Theorem 1.4 (Diehl–van Melkebeek–Williams [18]). Tautolo-
gies cannot be solved by a nondeterministic random-access machine
that runs in time n

3√4−o(1) and space no(1).

The following counterpart to Theorem 1.3 captures all the known
lower bounds for tautologies on nondeterministic machines with ran-
dom access.

Theorem 1.5 (Master Theorem for nondeterministic algo-
rithms). For all reals c and d such that (c2 − 1)d < c or c2d < 4, there
exists a positive real e such that tautologies cannot be solved by both

(i) a nondeterministic random-access machine that runs in time
nc and

(ii) a nondeterministic random-access machine that runs in time
nd and space ne.

Moreover, the constant e approaches 1 from below when c approaches
1 from above and d is fixed.

Similar to the deterministic setting, the interesting values in
Theorem 1.5 satisfy d ≥ c ≥ 1. The hypothesis is the disjunction of two
conditions. See Figure 1.2 for a plot of the bounds involved. The first
condition is binding for larger values of d and allows us to derive Fort-
now’s result in full form. The second condition is binding for smaller
values of d, which includes the range in which the hypothesis holds for
c = d. The first condition yields a time lower bound of nd−o(1) for sub-
polynomial space, where d > 1 satisfies d(d2 − 1) = d, i.e., for d =

√
2.

The second condition leads to such a lower bound for d > 1 satisfying
d3 = 4, yielding Theorem 1.4.

204 Introduction

1

 1.25

 1.5

 1.75

2

1 1.5 2 2.5 3 3.5 4

c

d

f(d)
g(d)
h(d)

Fig. 1.2 Bounds in the Master Theorem for nondeterministic algorithms: f(d) solves
(c2 − 1)d = c for c, g(d) solves c2d = 4 for c, and h(d) is the identity.

Theorems 1.3 and 1.5 can be viewed as the first two in a sequence
where the machines of type (ii) can have more and more alternations.
We will not pursue this sequence any further in full generality but the
case of small values for c plays a role in the lower bounds for satisfia-
bility on “somewhat-nonuniform” models, which we discuss next.

Complexity theorists do not think that nonuniformity helps in
deciding satisfiability. In particular, we conjecture that satisfiability
requires circuits of linear-exponential size. At the same time, we can-
not rule out that satisfiability has linear-size circuits.

Time–space lower bounds for deterministic machines straightfor-
wardly translate into size-width lower bounds for sufficiently uni-
form circuits, and into depth-logarithm-of-the-size lower bounds
for sufficiently uniform branching programs. Lower bounds for
(co)nondeterministic machines similarly imply lower bounds for very
uniform (co)nondeterministic circuits. Logarithmic-time uniformity
trivially suffices for all of the above results to carry over without any
changes in the parameters. We currently do not know of any interesting
lower bounds for fully nonuniform general circuits. However, modulo
some deterioration of the parameters, we can relax or even eliminate
the uniformity conditions in some parts of Theorems 1.3 and 1.5. This

205

leads to lower bounds with relatively weak uniformity conditions in a
few models of interest.

Fortnow showed how to apply his technique to logspace-uniform
NC1-circuits [19]. Allender et al. [3] extended this result to logspace-
uniform SAC1-circuits and their negations. van Melkebeek [39] derived
all these circuit results as instantiations of a general theorem, and
showed directly that in each case NTS(nO(1),n1−ε)-uniformity for a
positive constant ε suffices, where NTS(t,s) refers to nondeterministic
computations that run in time t and space s. We can further relax
the uniformity condition from nondeterministic to alternating compu-
tations of the same type with a constant number of alternations, i.e.,
to ΣkTS(nO(1),n1−ε)-uniformity for arbitrary constant k. See Section
2.2 for the precise definitions of the complexity classes and uniformity
conditions involved.

We discuss “somewhat-nonuniform” versions of Theorems 1.3 and
1.5 in Chapter 6. Here we suffice with the corresponding statement for
alternating machines when c ranges over values close to 1, since this
setting allows us to capture all the above results.

Theorem 1.6 (Somewhat-nonuniform algorithms). For every
nonnegative integer k, every real d, and every positive real ε, there
exists a real c > 1 such that satisfiability cannot both

(i) have ΣkTS(nd,n1−ε)-uniform co-nondeterministic circuits of
size nc and

(ii) be in ΣkTS(nd,n1−ε).

For certain types of circuits, part (i) implies a uniform algorithm
for satisfiability that is efficient enough so that we do not need to state
(ii). In particular, we obtain the following corollary to the proof of
Theorem 1.6.

Corollary 1.1. For every nonnegative integer k and positive real ε,
satisfiability cannot be solved by ΣkTS(nO(1),n1−ε)-uniform families

206 Introduction

of any of the following types: circuits of size n1+o(1) and width n1−ε,
SAC1-circuits of size n1+o(1), or negations of such circuits.

Recall that SAC1-circuits are circuits of logarithmic depth with
bounded fan-in ANDs, unbounded fan-in ORs, and negations only on
the inputs. NC1-circuits of size n1+o(1) are a special type of SAC1-
circuits of size n1+o(1). Negations of SAC1-circuits are equivalent to
circuits of logarithmic depth with bounded fan-in ORs, unbounded fan-
in ANDs, and negations only on the inputs.

There is another direction in which we can extend the lower bounds
to a nonuniform setting. Tourlakis [56] observed that the arguments
of Fortnow and of Lipton–Viglas carry through when the machines
involved receive subpolynomial advice. The same holds for almost all
the results stated in this survey. We refer to Section 3.1 and the end of
Chapter 6 for more details.

Other models of computation that capture important capabili-
ties of current or future computing devices include randomized and
quantum machines. To date we know of no nontrivial lower bounds
for satisfiability on such models with two-sided error but we do
have interesting results for problems that are somewhat harder than
satisfiability.

In the setting of randomized computations with two-sided error,
the simplest problem for which we can prove nontrivial lower bounds
is Σ2SAT, the language consisting of all valid Σ2-formulas. Σ2SAT
constitutes the equivalent of satisfiability in the second level of the
polynomial-time hierarchy.

At first glance, it might seem that results from space-bounded
derandomization let us derive time–space lower bounds for random-
ized algorithms as immediate corollaries to time–space lower bounds
for deterministic algorithms. In particular, assuming we have a ran-
domized algorithm that solves satisfiability in logarithmic space and
time nd, Nisan’s deterministic simulation [46] yields a deterministic
algorithm for satisfiability that runs in polynomial time and polylog-
arithmic space. However, even for d = 1, the degree of the polynomial
is far too large for this simulation to yield a contradiction with known
time–space lower bounds for deterministic algorithms.

207

At the technical level, the arguments for satisfiability in the deter-
ministic setting do not carry over to the setting of randomized algo-
rithms with two-sided error. The difficulty is related to the fact that
we know efficient simulations of randomized computations with two-
sided error in the second level of the polynomial-time hierarchy but
not in the first level. Roughly speaking, this is why we have results for
Σ2SAT but not for satisfiability itself. Diehl and van Melkebeek [17]
proved the first lower bound for Σ2SAT in the randomized setting and
still hold the record, namely an almost-quadratic time lower bound for
subpolynomial space.

Theorem 1.7 (Diehl–van Melkebeek [17]). For every real d < 2
there exists a positive real e such that Σ2SAT cannot be solved by a
randomized random-access machine with two-sided error that runs in
time nd and space ne. Moreover, e approaches 1/2 from below as d

approaches 1 from above.

Note a few other differences with the deterministic setting. The
format of Theorem 1.7 is weaker than that of Theorem 1.3, which entails
machines of types (i) and (ii). In the randomized setting, we do not
know how to take advantage of the existence of an algorithm for Σ2SAT
that runs in time nc for small c but unrestricted space to derive better
time–space lower bounds for Σ2SAT. The parameters of Theorem 1.8
are also weaker than those of the corresponding result for Σ2SAT in
the deterministic setting, where the bound on d is larger than 2 and e

converges to 1 when d goes to 1. See Section 4.2 for the exact bounds
for Σ2SAT in the deterministic setting.

Theorem 1.7 also applies to Π2SAT, the complement of Σ2SAT, as
randomized computations with two-sided error can be trivially com-
plemented. For the equivalents of satisfiability, tautologies, Σ2SAT,
Π2SAT, etc. in higher levels of the polynomial-time hierarchy, stronger
results can be shown, including results in the model where the random-
ized machines have two-way sequential access to the random-bit tape.
Theorem 1.7 refers to the more natural but weaker coin flip model
of space-bounded randomized computation, which can be viewed as

208 Introduction

equipping a deterministic machine with one-way access to a random
bit tape. We refer to Section 7.2 for more details.

In the setting of one-sided error (with errors only allowed on the
membership side), we do have lower bounds for the first level of the
polynomial-time hierarchy, namely for tautologies. Such results trivially
follow from Theorem 1.5 since randomized machines with one-sided
error are special cases of nondeterministic machines. For example, we
can conclude from Theorem 1.5 that tautologies cannot have both a
randomized algorithm with one-sided error that runs in time n1+o(1)

and a randomized algorithm with one-sided error that runs in poly-
nomial time and subpolynomial space. Diehl and van Melkebeek [17]
observed that the (then) known lower bound proofs for satisfiability
on deterministic machines can be extended to lower bound proofs for
tautologies on randomized machines with one-sided error without any
loss in parameters. Their argument holds for all proofs to date, includ-
ing Theorem 1.3. In particular, we know that tautologies cannot be
solved by a randomized algorithm with one-sided error that runs in
time n2cos(π/7)−o(1) and subpolynomial space.

In the quantum setting, the simplest problem for which we cur-
rently know nontrivial lower bounds is MajMajSAT. MajSAT, short
for majority-satisfiability, denotes the problem of deciding whether the
majority of the assignments to a given Boolean formula satisfy the
formula. Similarly, an instance of MajMajSAT asks whether a given
Boolean formula depending on two sets of variables y and z has the
property that for at least half of the assignments to y, at least half of
the assignments to z satisfy the formula.

Allender et al. [3] showed a lower bound for MajMajSAT on ran-
domized machines with unbounded error. The parameters are similar
to those in Fortnow’s time–space lower bound for satisfiability. In par-
ticular, they prove that MajMajSAT does not have a randomized algo-
rithm with unbounded error that runs in time n1+o(1) and space n1−ε.
van Melkebeek and Watson [41], building on earlier work by Adleman
et al. [1], showed how to simulate quantum computations with bounded
error on randomized machines with unbounded error in a time- and
space-efficient way. As a result, they can translate the lower bound of
Allender et al. to the quantum setting.

1.1 Scope 209

Theorem 1.8 (van Melkebeek–Watson [41], using Allender
et al. [3]). For every real d and positive real ε there exists a real
c > 1 such that at least one of the following fails:

(i) MajMajSAT has a quantum algorithm with two-sided error
that runs in time nc and

(ii) MajSAT has a quantum algorithm with two-sided error that
runs in time nd and space n1−ε.

Corollary 1.2. For every positive real ε there exists a real d > 1 such
that MajMajSAT does not have a quantum algorithm with two-sided
error that runs in time nd and space n1−ε.

There is a — very simple — reduction from satisfiability to MajSAT
but presumably not the other way around since MajSAT is hard for
the entire polynomial-time hierarchy [54]. The same statement holds for
MajMajSAT and Σ2SAT instead of MajSAT and satisfiability, respec-
tively. The reason why we have quantum lower bounds for MajMajSAT
but not for ΣkSAT for any integer k bears some similarity to why we
have randomized lower bounds for Σ2SAT but not for satisfiability.
MajSAT tightly captures randomized computations with unbounded
error in the same was as ΣkSAT captures Σk-computations. We can
efficiently simulate randomized computations with two-sided error on
Σ2-machines but we do not know how to do so on nondeterministic
machines. Similarly, we can efficiently simulate quantum computations
with bounded error on randomized machines with unbounded error but
we do not know how to do that on Σk-machines. This analogy actually
suggests that we ought to get quantum lower bounds for MajSAT rather
than only for MajMajSAT. We discuss that prospect in Chapter 9.

1.1 Scope

This paper surveys the known robust lower bounds for the time
and space complexity of satisfiability and closely related problems

210 Introduction

on general-purpose models of computation. The bounds depend on
the fundamental capabilities of the model (deterministic, randomized,
quantum, etc.) but are robust, up to polylogarithmic factors, with
respect to the details of the model specification. For each of the basic
models, we focus on the simplest problem for which we can establish
nontrivial lower bounds. Except for the randomized and quantum mod-
els, that problem is satisfiability (or tautologies).

We do not cover lower bounds on restricted models of computation.
The latter includes general-purpose models without random access,
such as one-tape Turing machines with sequential access, off-line Turing
machines (which have random access to the input and sequential access
to a single work tape), and multi-tape Turing machines with sequen-
tial access via one or multiple tape heads. In those models, techniques
from communication complexity can be used to derive lower bounds
for simple problems like deciding palindromes or computing generalized
inner products. Time–space lower bounds for such problems immedi-
ately imply time–space lower bounds for satisfiability by virtue of the
very efficient reductions to satisfiability. However, in contrast to the
results we cover, these arguments do not rely on the inherent difficulty
of satisfiability. They rather exploit an artifact of the model of com-
putation, e.g., that a one-tape Turing machine with sequential access
deciding palindromes has to waste a lot of time in moving its tape head
between both ends of the tape. Note that on random-access machines
palindromes and generalized inner products can be computed simulta-
neously in quasi-linear time and logarithmic space. We point out that
some of the techniques in this survey lead to improved results on some
restricted models of computation, too, but we do not discuss them.

Except in Corollary 1.1, we also do not consider restricted circuit
models. In several of those models lower bounds have been established
for problems computable in polynomial time. Such results imply lower
bounds for satisfiability on the same model provided the problems
reduce to satisfiability in a simple way. As we will see in Section 2.3,
problems in nondeterministic quasi-linear time are precisely those that
have this property in a strong sense — they translate to satisfiability
in quasi-linear time and do so in an oblivious way. All of the clas-
sical lower bounds on restricted circuit models involve problems in

1.2 Organization 211

nondeterministic quasi-linear time and therefore also hold for satisfi-
ability up to polylogarithmic factors. These results include the expo-
nential lower bounds for the size of constant-depth circuits (for parity
and its cousins), the quadratic lower bound for branching program size
(for a version of the element distinctness problem, whose complement
lies in nondeterministic quasi-linear time), and the cubic lower bound
for formula size (for Andreev’s addressing function). See [9] for a survey
that is still up to date in terms of the strengths of the bounds except
for the formula size lower bound [25]. We point out that some of the
more recent work in circuit complexity does not seem to have implica-
tions for satisfiability. In particular, the non-uniform time–space lower
bounds by Ajtai [2] and their improvements by Beame et al. [7] do not
yield time–space lower bounds for satisfiability. These authors consider
a problem in P based on a binary quadratic form, and showed that any
branching program for it that uses only n1−ε space for some positive
constant ε takes time

Ω(n ·
√

logn/ log logn). (1.1)

An extremely efficient reduction of the problem they considered to
satisfiability is needed in order to obtain nontrivial lower bounds
for satisfiability, since the bound (1.1) is only slightly super-linear.
The best known reductions (see Section 2.3.1) do not suffice. More-
over, their problem does not appear to be in nondeterministic
quasi-linear time.

1.2 Organization

Chapter 2 contains preliminaries. Although the details of the model of
computation do not matter, we describe a specific model for concrete-
ness. We also specify our notation for complexity classes and exhibit
complete problems which capture those classes very tightly such that
time–space lower bounds for those problems and for linear time on
the corresponding models are equivalent up to polylogarithmic factors.
Whereas in this section we have stated all results in terms of the com-
plete problems, in the rest of the paper we will think in terms of linear
time on the corresponding models.

212 Introduction

We present the known results in a unified way by distilling out what
they have in common. Chapter 3 introduces the proof techniques and
the tools involved in proving many of the lower bounds. It turns out
that all the proofs have a very similar high-level structure, which can
be characterized as indirect diagonalization. We describe how it works,
what the ingredients are, and illustrate how they can be combined.

We then develop the results for the various models within this unify-
ing framework: deterministic algorithms in Chapter 4, nondeterministic
algorithms in Chapter 5, somewhat-nonuniform algorithms in Chap-
ter 6, randomized algorithms in Chapter 7, and quantum algorithms in
Chapter 8. We mainly focus on space bounds of the form n1−ε and on
subpolynomial space bounds as they allow us to present the underlying
ideas without getting bogged down in notation and messy calculations.
Chapters 4 through 8 are largely independent of each other, although
some familiarity with the beginning of Chapter 4 can help to better
appreciate Chapters 5, 6, and 7.

Finally, in Chapter 9 we propose some directions for further
research.

2
Preliminaries

This chapter describes the machine models we use and introduces our
notation for complexity classes. It establishes natural complete prob-
lems which capture the complexity of some of the models in a very tight
way, e.g., satisfiability in the case of nondeterministic computations.

2.1 Machine Models

The basic models of computation we deal with are deterministic, non-
deterministic, alternating, randomized, and quantum machines. Up
to polylogarithmic factors, our results are robust with respect to the
details of each of the basic models. Our arguments work for all variants
we know; for some variants extra polylogarithmic factors arise in the
analysis due to simulations of machines within the model.

For concreteness, we describe below the particular deterministic
model we have in mind. The nondeterministic, alternating, and ran-
domized models are obtained from it in the standard way by allow-
ing the transition function to become a relation and, for alternating
machines, associating an existential/universal character to the states.
An equivalent way of viewing our model of randomized computation
is as deterministic machines that have one-way sequential access to

213

214 Preliminaries

an additional tape that is filled with random bits before the start of
the computation. The model for quantum computing needs some more
discussion because of the issue of intermediate measurements. We post-
pone that exposition to Section 8.2.

As the basic deterministic model we use random-access Turing
machines with an arbitrary number of tapes. The machine can have
two types of tapes: sequential-access tapes and random-access tapes
(also referred to as indexed tapes). Each random-access tape T has an
associated sequential-access tape I, which we call its index tape. The
machine can move the head on T in one step to the position indexed by
the contents of I. The contents of I is erased in such a step. The input
tape is read-only; the output tape is write-only with sequential one-
way access. The input and output tapes do not count toward the space
usage of the machine. Non-index tapes contribute the largest position
ever read (indexed) to the space usage. The latter convention seems
to capture the memory requirements for random-access machines bet-
ter than the alternative where we count the number of distinct cells
accessed. It does imply that the space can be exponential in the run-
ning time. However, by using an appropriate data structure to store
the contents of the tape cells accessed, we can prevent the space from
being larger than the running time without blowing up the running
time by more than a polylogarithmic factor.

A configuration of a machine M consists of the internal state of M ,
the contents of the work and index tapes, and the head positions on the
index tapes. We use the notation C �t

M,x C ′ to denote that machine M

on input x can go from configuration C to configuration C ′ in t steps.
The computation tableau of M on input x is a representation of the entire
computation. It consists of a table in which successive rows describe
the successive configurations of M on input x, starting from the initial
configuration of M . If M runs in time t and space s, each configuration
has size O(s) and the computation tableau contains at most t rows.

2.2 Complexity Classes

Based on our machine models, we define the languages they decide in
the standard way. We use the same notation for classes of machines

2.2 Complexity Classes 215

and for the corresponding class of languages. More often than not,
both interpretations work; if not, the correct interpretation should be
clear from the context. Our acronyms may be a bit shorter than the
usual ones and we introduce some additional ones. We use the fol-
lowing letters to denote a machine type X: D for deterministic, N for
nondeterministic, Σk for alternating with at most k − 1 alternations
and starting in an existential state, Πk for alternating with at most
k − 1 alternations and starting in a universal state, P for random-
ized with unbounded error, BP for randomized with two-sided error,
R for randomized with one-sided error, and BQ for quantum with
two-sided error. Bounded error always means that the error proba-
bility is bounded by 1/3. All of the above machine types have a nat-
ural complementary type. We use coX to denote the complementary
type of X.

For functions t,s : N → N, we denote by XTS(t,s) the class of
machines of type X that run in time O(t(n)) and space O(s(n)) on
inputs of length n. XT(t) denotes the same without the space bound.
We also define a shorthand for computations where the amount of space
is negligible compared to the time. We formalize the latter as the space
bound s being subpolynomial in the time bound t, i.e., s = to(1). We
substitute a lower-case “s” for the capital “S” in the notation to hint
at that:

XTs(t) = XTS(t, to(1)).

Note that if t is polynomial then to(1) is subpolynomial.
For alternating computations, we introduce some notation that

allows us to make the number of guess bits during the initial phases
explicit.

Definition 2.1. Starting from an alternating class C with time bound t

and space bound s, we inductively define new classes ∃gC and ∀gC
for any function g : N → N. ∃gC consists of all languages decided by
alternating machines that act as follows on an input x of length n:
existentially guess a string y of length O(g(n)) and then run a machine
M from C on input 〈x,y〉 for O(t(n)) steps and using O(s(n)) space.

216 Preliminaries

The class ∀gC is obtained in an analogous way; the guess of y now
happens in a universal rather than existential mode.

Let us point out a few subtleties in Definition 2.1. First, although the
machine M runs on input 〈x,y〉, we measure its complexity in terms
of the length of the original input x. For example, machines of type
∃n2∀lognDTs(n) have a final deterministic phase that runs in time linear
rather than quadratic in |x|. The convention of expressing the resources
in terms of the original input length turns out to be more convenient
for the arguments in this survey. The second subtlety arises when we
consider space-bounded classes C. Computations corresponding to ∃gC
and ∀gC explicitly write down their guess bits y and then run a space-
bounded machine on the combined input consisting of the original input
x and the guess bits y. Thus, the space-bounded machine effectively has
two-way access to the guess bits y. For example, although machines cor-
responding to ∃nDTs(n) and to NTs(n) both use only a subpolynomial
amount of space to verify their guesses, they do not necessarily have
the same computational power. This is because the former machines
have two-way access to the guess bits, which are written down on a
separate tape that does not count toward its space bound, whereas the
latter machines only have one-way access to these bits and do not have
enough space to write them down on their work tape.

For randomized machines, we default to the standard coin flip
model, in which a deterministic machine has one-way read-only access
to a tape that is initialized with random bits. If the machine wishes
to re-read random bits, it must copy them down on a worktape at the
cost of space, as opposed to the more powerful model which has two-
way access to the random tape. Except where stated otherwise, results
about randomized machines refer to the former machine model.

By a function we always mean a function from the set N of nonneg-
ative integers to itself. Time and space bounds are functions that are
at least logarithmic. Note that we do consider sublinear time bounds.
We will not worry about constructibility issues. Those arise when we
perform time and/or space bounded simulations, such as in padding
arguments or hierarchy results. We tacitly assume that the bounds we
are working with satisfy such requirements. The bounds we use in the

2.2 Complexity Classes 217

statements of the results are typically polynomials, i.e., functions of the
form nd for some positive real d. Polynomials with rational d are suf-
ficiently smooth and meet all the constructibility conditions we need.
For completeness, we sketch an example of a padding argument.

Proposition 2.1. If

NT(n) ⊆ DTS(nd,ne)

for some reals d and e, then for every bound t(n) ≥ n + 1

NT(t) ⊆ DTS(td + t, te + log t).

Proof. (Sketch) Let L be a language that is accepted by a nondetermin-
istic machine M that runs in time O(t). Consider the padded language
L′ = {x10t(|x|)−|x|−1 |x ∈ L}. The language L′ is accepted by a nonde-
terministic machine that acts as follows on an input y of length N . First,
the machine verifies that y is of the form y = x10k for some string x and
integer k, determines the length n of x, stores n in binary, and verifies
that t(n) = N . The constructibility of t allows us to verify the latter
condition in time linear in N . Second, we run M on input x, which
takes time t(n). Overall, the resulting nondeterministic machine for L′

runs in time O(N). By our hypothesis, there also exists a deterministic
machine M ′ that accepts L′ and runs in time O(Nd) and space O(N e).

We then construct the following deterministic machine accepting L.
On input x of length n, we use the constructibility of t to compute
N = t(n) and write n and N down in binary. This step takes time
O(t(n)) and space O(log t(n)). Next, we simulate a run of M ′ on input
y = x10t(n)−n−1. We do so without storing y explicitly, using the input
x, the values of n and N in memory, and comparing indices on the fly.
The second step takes time O((t(n))d) and space O((t(n))e), resulting
in overall requirements of O((t(n))d + t(n)) for time and O((t(n))e +
log t(n)) for space.

We measure the size of circuits by the bit-length of their description
and assume a description that allows evaluation of the circuit in quasi-
linear time, i.e., in time O(n · (logn)O(1)). For circuits with bounded

218 Preliminaries

fan-in, the size is roughly equal to the number of gates and to the
number of connections. For circuits with unbounded fan-in, the size
is roughly equal to the latter but not necessarily to the former. For
a function t we use SIZE(t) to denote the class of languages that can
be decided by a family of circuits (Cn)n∈N such that the size of Cn is
O(t(n)). We define NSIZE(t) similarly using nondeterministic circuits.
We call a family (Cn)n of circuits C-uniform if all of the following prob-
lems lie in C as a function of the size of the circuit: given an input x,
labels g1 and g2 of nodes of the circuit C|x|, and an index i, decide the
type of g1 (type of gate, input with value 0, or input with value 1),
and decide whether g1 is the ith gate that directly feeds into g2. For
classes C of the form ΣkTS(t,s) for positive integers k, being C-uniform
is equivalent up to polylogarithmic factors to the requirement that the
following problem lies in C as a function of the size of the circuit: given
an input x, an index i, and a bit b, decide whether the ith bit of the
description of C|x| equals b.

2.3 Complete Problems

The following are standard completeness results under deterministic
polynomial-time mapping reductions, also known as Karp reductions.
Satisfiability consists of all Boolean formulas that have at least one
satisfying assignment. Satisfiability is complete for NP. Tautologies are
Boolean formulas that are true under all possible assignments. Tautolo-
gies is complete for coNP. For any positive integer k, ΣkSAT denotes
the language consisting of all true Σk-formulas. Σ1SAT is equivalent
to satisfiability. ΣkSAT is complete for Σp

k = ∪d≥1ΣkT(nd). Similarly,
ΠkSAT denotes all true Πk-formulas. Π1SAT is equivalent to tautolo-
gies, and ΠkSAT is complete for Πp

k = ∪d≥1ΠkT(nd). MajSAT consists
of all Boolean formulas that have a majority of satisfying assignments.
The problem is complete for PP = ∪d≥1PT(nd).

For our purposes, we need stronger notions of completeness than
the standard ones. The NP-completeness of satisfiability implies that
time lower bounds for satisfiability and for NP are equivalent up to
polynomial factors. In fact, on each of the standard models of computa-
tion, time–space lower bounds for satisfiability and for nondeterministic

2.3 Complete Problems 219

linear time are equivalent up to polylogarithmic factors. This follows
because satisfiability is complete for nondeterministic quasi-linear time,
i.e., time n · (logn)O(1), under very simple reductions. More gener-
ally, ΣkSAT is complete for the Σk-level of the quasi-linear-time hier-
archy under such reductions. A similar statement holds for MajSAT
and quasi-linear time on randomized machines with unbounded error.
We argue the hardness, as that is the only part we need for
our results.

Lemma 2.2. For any positive integer k, every language in ΣkT(n)
Karp-reduces to ΣkSAT in deterministic time O(n · (logn)O(1)). More-
over, given an input x of length n and an index i, the ith bit of the
reduction is computable by a deterministic machine that runs in time
(logn)O(1) and space O(logn). The same holds if we replace ΣkT(n)
and ΣkSAT by PT(n) and MajSAT, respectively.

Several proofs of Lemma 2.2 exist [20, 56]. They all build on ear-
lier work [14, 48, 49] and, one way or the other, rely on the Hennie–
Stearns oblivious efficient simulation of multi-tape Turing machines
with sequential access by 2-tape machines with sequential access [26].
In Section 2.3.1, we present a simple proof that avoids the latter com-
ponent. In some sense, the need for oblivious simulations is reduced
from a general computation to the task of sorting, for which we employ
elementary efficient sorting networks, which are inherently oblivious.
The latter can be built using a divide-and-conquer strategy, which we
deem considerably simpler than the Hennie–Stearns construction. Our
proof is also robust with respect to the model of computation.

Combined with the fact that ΣkSAT belongs to ΣkT(n · (logn)O(1)),
Lemma 2.2 implies that time–space lower bounds for ΣkSAT and for
ΣkT(n) are equivalent up to polylogarithmic factors. The same holds,
mutatis mutandis, for MajSAT and PT(n). In particular, we obtain the
following for time and space bounds in the polynomial range.

Corollary 2.1. Let X denote any of the machine types from Section
2.2 or their complements. Let k be a positive integer, and let d and e

220 Preliminaries

be reals. If

ΣkT(n) �⊆ XTS(nd,ne),

then for any reals d′ < d and e′ < e

ΣkSAT �∈ XTS(nd′
,ne′

).

The same holds if we replace ΣkT(n) and ΣkSAT by PT(n) and
MajSAT, respectively.

The simple reductions to satisfiability that underlie Lemma 2.2 for
k = 1 also exist to all of the standard natural NP-complete problems.
In fact, to the best of my knowledge, all known natural NP-complete
problems in nondeterministic quasi-linear time share the latter prop-
erty. Consequently, the case k = 1 of Lemma 2.2 and of Corollary 2.1
holds if we replace satisfiability by any of these problems.

From now on, our goal will be to obtain time and space lower bounds
for nondeterministic linear time, ΣkT(n) with k > 1, and randomized
linear time with unbounded error. For example, we will prove results
of the form NT(n) �⊆ DTS(nd,ne) for some constants d ≥ 1 and e > 0.
Results for satisfiability, other NP-complete problems, for ΣkSAT with
k > 1, or for MajSAT then follow via Corollary 2.1.

2.3.1 Proof of Lemma 2.2

We first give the proof for k = 1, i.e., we argue the hardness of sat-
isfiability for nondeterministic linear time under very efficient Karp-
reductions. The generalization for larger values of k will follow easily.

We start the proof with a technical claim. In principle, a linear-time
nondeterministic machine M can access locations on non-index tapes
that have addresses of linear length. We claim that without loss of gen-
erality, we can assume that these addresses are at most of logarithmic
length. The reason is that we can construct a nondeterministic Turing
machine M ′ that simulates M with only a constant factor overhead in
time and satisfies the above restriction. For each non-index tape T of
M , M ′ uses an additional non-index tape T ′ on which M ′ stores a list
of all (address,value) pairs of cells of T which M accesses and that have

2.3 Complete Problems 221

an address value of more than logarithmic length. During the simula-
tion of M , M ′ uses T in the same way as M does to store the contents
of the cells of T with small addresses; it uses T ′ for the remaining cells
of T accessed by M . M ′ can keep track of the (address,value) pairs
on tape T ′ in an efficient way by using an appropriate data structure,
e.g., sorted doubly linked lists of all pairs corresponding to addresses
of a given length, for all address lengths used. Note that the list of
(address,value) pairs is at most linear in size so the index values M ′

uses on T ′ are at most logarithmic. By using the power of nondeter-
minism to guess the right tape locations, M ′ can easily retrieve a pair,
insert one, and perform the necessary updates with a polylogarithmic
factor overhead in time. Thus, M ′ simulates M with a polylogarith-
mic factor overhead in time and only accesses cells on its tapes with
addresses of at most logarithmic length.

With each computation step of M ′, we can associate a block con-
sisting of a logarithmic number of Boolean variables that represent the
following information about that step: the transition of the finite con-
trol of M ′, and the contents of the index tapes, the tape head positions
of all tapes that are not indexed, and the contents of all tape cells
accessed at the beginning of that step. We can verify that a sequence
of such blocks represents a valid accepting computation of M ′ on a
given input x by checking: (i) that the initial block corresponds to a
valid transition out of an initial configuration of M ′, (ii) that all pairs
of successive computation steps are consistent in terms of the internal
state of M ′, the contents of the index tapes, and the tape head positions
of all tapes that are not indexed, (iii) that the accesses to the indexed
non-input tapes are consistent, (iv) that the accesses to the input tape
are consistent with the input x, and (v) that the final step leads to
acceptance. By the standard proofs of the NP-completeness of satisfia-
bility, conditions (i), (v), and each of the linear number of constituent
conditions of (ii) can be expressed by clauses of polylogarithmic size
using the above variables and additional auxiliary variables. Each bit
of those clauses can be computed in polylogarithmic time and logarith-
mic space. All that remains is to show that the same can be done for
conditions (iii) and (iv).

222 Preliminaries

We check the consistency of the accesses to the indexed non-input
tapes for each tape separately. Suppose that, for a given tape T , we
have the blocks sorted in a stable way on the value of the corresponding
index tape in that block. Then we can perform the consistency check
for tape T by looking at all pairs of consecutive blocks and verifying
that, if they accessed the same cell of T , the contents of that cell in the
second block is as dictated by the transition encoded in the first block,
and if they accessed different cells, then the contents of the cell in the
second block is blank. These conditions can be expressed in the same
way as (ii) above.

In order to obtain the blocks in the required sorted order, we use effi-
ciently constructible stable sorting networks of quasi-linear size, such as
Batcher’s networks. These are built using the merge-sort divide-and-
conquer strategy, where each (so-called odd-even) merger network is
constructed using another level of divide-and-conquer. The resulting
sorting network is of size O(n log2 n) and each connection can be com-
puted in polylogarithmic time and logarithmic space. We refer to [15,
Chapter 28] for more details about sorting networks. We associate a
block of Boolean variables with each connection in the network and
include clauses that enforce the correct operation of each of the com-
parator elements of the network. The latter conditions can be expressed
in a similar way as condition (ii) above. The size and constructibility
properties of the network guarantee that the resulting Boolean formula
is of quasi-linear size and such that each bit can be computed in poly-
logarithmic time and logarithmic space.

The consistency of the input tape accesses with the actual input x

can be checked in a similar way as condition (iii). The only difference
is that before running the stable sorting for the input tape, we prepend
n dummy blocks, the ith of which has the input tape head set to loca-
tion i. The approach for handling condition (iii) then enforces that
all input accesses are consistent with the values encoded in the dummy
blocks. Since we know explicitly the variable that encodes the ith input
bit in the dummy blocks, we can include simple clauses that force that
variable to agree with the ith bit of x.

This finishes the proof of the case k = 1. For larger values of k, we
use induction and exploit the fact that the formula we produce in the

2.3 Complete Problems 223

case k = 1 depends on the input length but is oblivious to the actual
input x of that length. More precisely, on input length n the reduc-
tion produces a Boolean formula ϕn in variables x and y such that for
every input x of length n there exists a setting of y that makes ϕ(x,y)
evaluate to true iff x is accepted by M . For larger values of k, the
reduction first produces k − 1 blocks consisting of a linear number of
variables y1,y2, . . . ,yk−1, which correspond to the (co)nondeterministic
choices made during the first k − 1 alternating phases of the com-
putation. Then the reduction applies the above procedure for k = 1
to the remaining (co)nondeterministic linear-time computation on the
combined input consisting of the original input x and the variables
y1,y2, . . . ,yk−1 of the first k − 1 blocks, resulting in an oblivious Boolean
formula ϕ(x,y1, . . . ,yk) for the matrix of the Σk-formula.

The result for MajSAT can be shown by exploiting the additional
property that the translation for k = 1 is parsimonious, i.e., the number
of settings of the variables y that satisfy ϕ(x,y) equals the number of
accepting computations of M on input x. We can then create a new
Boolean formula ϕ′(x,y,b) ≡ (ϕ(x,y) ∧ b = 0) ∨ (ϕ′′(y) ∧ b = 1), where
ϕ′′ is a Boolean formula that offsets the number of assignments to (y,b)
that satisfy ϕ′(x,y,b) in such a way that the total count is more than
half iff x is accepted by M in the probabilistic sense.

3
Common Structure of the Arguments

This chapter describes the common fabric of the lower bounds presented
in this survey. All of the arguments share the same high-level structure,
which can be characterized as indirect diagonalization.

Indirect diagonalization is a technique to separate complexity
classes. In the case of lower bounds for satisfiability on determinis-
tic machines, we would like to obtain separations of the form NT(n) �⊆
DTS(t,s) or NT(n) �⊆ coNT(nc) ∩ DTS(t,s) for some interesting values
of the parameters t, s, and c. The proofs go by contradiction and have
the following outline:

(1) We assume that the separation does not hold, i.e., we
assume the unlikely inclusion NT(n) ⊆ DTS(t,s) or NT(n) ⊆
coNT(nc) ∩ DTS(t,s).

(2) Next, using our hypothesis, we derive more and more unlikely
inclusions of complexity classes.

(3) Finally, we derive a contradiction with a direct diagonaliza-
tion result.

224

225

The techniques we use to derive more inclusions in step (2) go in two
opposing directions:

(a) speeding up deterministic space-bounded computations by
introducing more alternations, and

(b) using the hypothesis to eliminate alternations at a moderate
increase in running time.

The hypothesis NT(n) ⊆ DTS(t,s) allows us to simulate nondetermin-
istic computations on deterministic space-bounded machines, which
brings us in the realm of (a). The hypothesis NT(n) ⊆ DTS(t,s) or
NT(n) ⊆ coNT(nc) makes (b) possible. By combining (a) and (b) in
the right way, we can speed up nondeterministic computations in the
first level of the polynomial-time hierarchy, which can be shown impos-
sible by a simple direct diagonalization argument.

More generally, we are shooting for separations of the form C1 �⊆
C2 ∩ C3. We are in the situation where there exists a hierarchy of classes
built on top of C1 such that

(ã) C3 can be sped up in higher levels of the hierarchy, and
(b̃) computations in a certain level of the hierarchy can be sim-

ulated in a lower level with a slowdown which is small if we
assume that C1 ⊆ C2.

An appropriate combination of those two transformations allows us to
speed up computations within the same level of the hierarchy, which
contradicts a direct diagonalization result.

In the rest of this chapter, we first list the direct diagonalization
results we use for step (3) of the indirect diagonalization paradigm.
Then we describe the two techniques (a) and (b) for step (2). They are
all we need to derive each of the lower bounds in this survey except
the quantum ones. In the quantum setting we go through intermedi-
ate simulations in the so-called counting hierarchy rather than in the
polynomial-time hierarchy. We will describe the equivalents of (ã) and
(b̃) in the counting hierarchy when we get to the quantum bounds in
Chapter 8. We end this chapter with a concrete instantiation to illus-
trate the above paradigm.

226 Common Structure of the Arguments

3.1 Direct Diagonalization Results

A variety of direct diagonalization results have been used in the liter-
ature to derive the lower bounds discussed in this survey. Almost all
of the arguments can be reformulated in such a way that the following
straightforward direct diagonalization result suffices. The result says
that computations in any fixed level of the polynomial-time hierarchy
cannot be sped up in general by complementation within the same
level. We state it formally for polynomial time bounds as that version
is robust with respect to the details of the model of computation and
is all we need. We include a proof sketch for completeness.

Lemma 3.1. Let k be a positive integer and a,b be reals such that
1 ≤ a < b. Then

ΣkT(nb) �⊆ ΠkT(na).

Proof. (Sketch) The idea is to use an efficient universal machine U for
Σk-machines to complement the behavior of every Πk-machine N that
runs in time O(na), on some input depending on N . This works because
complementing a Πk-machine is equivalent to running a Σk-machine for
the same number of steps. Thus, U only needs to simulate Σk-machines
that run in time O(na), which it can do in time nb.

The universal machine U takes as input a pair 〈x,y〉, interprets
x as the description of a Σk-machine, and simulates that machine on
input y. The construction of U involves reducing the number of tapes
of Σk-machines to a constant, as U can only have a fixed number of
tapes. By interleaving tape cells we can simulate every Σk-machine
with an arbitrary number of tapes on an Σk-machine with a fixed num-
ber � of tapes. The simulation only requires a subpolynomial overhead
in time.

Consider the Σk-machine M that takes an input x and runs U on
input 〈x,x〉. We clock M such that it runs in time |x|b. The language
L decided by M lies in ΣkT(nb) by construction.

Consider an arbitrary Πk-machine N that runs in time na. By swap-
ping the existential/universal characteristics of the states, as well as the

3.1 Direct Diagonalization Results 227

accept/reject characteristics, we transform N into an Σk-machine that
accepts the complementary language of N . Since there are infinitely
many equivalent descriptions of machines, there are infinitely many
strings x that describe an Σk-machine that does the opposite of N

and runs in the same time as N . For large enough strings x in that
sequence, U finishes its computation on input 〈x,x〉 before the clock
kicks in, and therefore M does the opposite of what N does on input
x. Thus, N cannot decide the same language L that M decides. Since
the latter holds for every Πk-machine N running in time O(na), L is
not in ΠkT(na).

As much as possible, we will cast the lower bound arguments as
indirect diagonalizations that use Lemma 3.1 for the direct diagonal-
ization result in step (3). The proof of Lemma 3.1 is not only simple
but also carries through when the machines running in the smaller
time na receive up to n bits of advice at length n. This translates into
lower bounds that hold even for machines that take a subpolynomial
amount of advice. See the end of Chapter 6 for more details about the
translation.

For a few lower bounds, we will also need the time hierarchy the-
orem for alternating machines, which says that for any fixed type of
machines we can decide strictly more languages when given a bit more
time. For the same reasons as above, we only state the result for poly-
nomial time bounds. Various proofs are known; we briefly sketch the
one by Zak [63]. The proofs are more complicated than the proof of
Lemma 3.1 due to the difficulty of complementation on alternating
machines of a fixed type. In the case of Lemma 3.1 the complementa-
tion step is easy because we switch from one type of machine to the
complementary type.

Lemma 3.2 (Cook [13], Seiferas–Fischer–Meyer [52], Zak [63]).
Let k be a positive integer and a,b be reals such that 1 ≤ a < b. Then

ΣkT(na) � ΣkT(nb).

228 Common Structure of the Arguments

Proof. (Sketch) We use the efficient universal machine U from the proof
of Lemma 3.1. Instead of reserving single inputs x in order to diago-
nalize against a given machine N that runs in time O(na), we now use
large intervals I of lexicographically successive inputs.

Here is the idea. Although complementation may take a long time,
we can make the interval I sufficiently long such that on the input xf

that forms the end of the interval, |xf |b is enough time for M to deter-
ministically complement N on the input xi that forms the beginning
of the interval. On the rest of the interval we can define M in such
a way that if N agrees with M , N is forced to copy the behavior of
M at the end of the interval all the way down to the beginning of the
interval. This cannot be since we constructed M(xf) to be different
from N(xi).

The copying process is realized as follows. On every input x ∈ I

except the last string of I, M uses U to simulate N on the lexicograph-
ically next input. As before, we clock M such that it runs in time nb. If
N runs in time O(na), M will be able to finish the simulations in time
for sufficiently large x and thus realize the copying process under the
assumption that M and N agree on I.

Apart from the fact that the proof of Lemma 3.2 is more compli-
cated than the one of Lemma 3.1, it can also only handle a constant
rather than n bits of advice on the smaller time side. See [40] for more
details.

In the quantum setting, we will make use of the hierarchy theorem
for randomized computations with unbounded error. The proof of that
result is similar to the one of Lemma 3.1 except simpler because com-
plementation is very easy on randomized machines with unbounded
error. As in the case of Lemma 3.1, the argument can handle up to n

bits on advice on the smaller time side.

Lemma 3.3. Let a,b be reals such that 1 ≤ a < b. Then

PT(na) � PT(nb).

3.2 Speeding Up Space-Bounded Computations Using Alternations 229

3.2 Speeding Up Space-Bounded Computations
Using Alternations

We now start our discussion of the tools we use to derive from our initial
hypothesis a contradiction with one of the direct diagonalization results
of the previous section. The first tool is speeding up computations by
allowing more alternations. We know how to do this in general for
space-bounded computations. The technique consists of a divide-and-
conquer strategy. It has been known for a long time and has been
applied extensively in computational complexity, for example, in the
proof of Savitch’s theorem [51].

Let us explain the idea for nondeterministic computations first. Sup-
pose we have a nondeterministic machine M that runs in space s. We
are given two configurations C and C ′ of M on an input x, and would
like to know whether M can go from C to C ′ in t steps. One way to do
this is to run the machine for t steps from configuration C and check
whether we can end up in configuration C ′. In other words, we fill in
the whole tableau in Figure 3.1(a) row by row.

Using the power of alternation, we can speed up this process as
follows. We can break up the tableau into b equal blocks, guess con-

Fig. 3.1 Tableaus of a computation using time t and space s.

230 Common Structure of the Arguments

figurations C1,C2, . . . ,Cb−1 for the common borders of the blocks,
treat each of the blocks i, 1 ≤ i ≤ b, as a subtableau and verify that
M on input x can go from configuration Ci−1 to Ci in t/b steps. See
Figure 3.1(b).

In terms of logical formulas, we are using the following property of
configurations:

C �t C ′ ⇔ (∃C1,C2, . . . ,Cb−1)(∀1 ≤ i ≤ b)Ci−1 �t/b Ci, (3.1)

where C0
.= C and Cb

.= C ′. We can perform this process on a Σ3-
machine using time O(bs) for guessing the b − 1 intermediate config-
urations of size s each in the first existential phase, time O(logb) to
guess the block i we want to verify in the universal phase, and time
O(t/b) to nondeterministically run M for t/b steps to verify the ith
block in the final existential phase. Using the notation we introduced
in Definition 2.1, we obtain

NTS(t,s) ⊆ ∃bs∀logbNTS(t/b,s) ⊆ Σ3T(bs + t/b). (3.2)

The running time of the Σ3-machine is minimized (up to a constant)
by choosing b =

√
t/s, resulting in

NTS(t,s) ⊆ Σ3T(
√

ts). (3.3)

We point out for future reference that the final phase of the compu-
tation only needs access to the global input x and two configurations
(denoted Ci−1 and Ci in (3.1)), not to any of the other configurations
guessed during the first phase.

The final phase of our simulation consists of an easier instance of
our original problem, namely nondeterministically checking whether
M can go from one configuration to another in a certain number of
steps. Therefore, we can apply the divide-and-conquer strategy again,
and again. Each application increases the number of alternations by 2.
k recursive applications with block numbers b1, b2, . . . , bk, respectively,
yield:

NTS(t,s) ⊆ ∃b1s∀logb1∃b2s∀logb2 · · ·∃bks∀logbkNTS

(
t/
∏

i

bi,s

)

⊆ Σ2k+1T

((∑
i

bi

)
s + t/

(∏
i

bi

))
. (3.4)

3.2 Speeding Up Space-Bounded Computations Using Alternations 231

The running time of the Σ2k+1-machine is minimized (up to a constant)
by picking the block numbers all equal to (t/s)1/(k+1). We obtain:

NTS(t,s) ⊆ Σ2k+1T((tsk)1/(k+1)). (3.5)

We point out for later reference that minimizing the running time of
the Σ2k+1-machine may not be the best thing to do if this simulation
is just an intermediate step in a derivation. In particular, in several
applications the optimal block numbers will not all be equal.

One application of (3.5) is Nepomnjascii’s theorem [43], which states
that NTS(nO(1),n1−ε) is included in the linear-time hierarchy for every
positive real ε.

Lemma 3.4 (Nepomnjascii [43]). For every real d and positive real
ε there exists an integer k such that

NTS(nd,n1−ε) ⊆ ΣkT(n).

For alternating space-bounded machines M that are more compli-
cated than nondeterministic machines, we can apply a similar strategy
to each of the phases of the computation. For an existential phase, we
can guess the configuration Cb at the end of the phase, apply (3.1),
and verify that Cb is an accepting configuration on the given input.
For the latter we can use a complementary strategy and handle the
subsequent universal phase of the computation, etc. This leads to a
generalization of (3.2) and of Nepomnjascii’s Theorem to an arbitrary
constant number of alternations.

Lemma 3.5 (Kannan [31]). For every integer k, real d, and positive
real ε, there exists an integer � such that

ΣkTS(nd,n1−ε) ⊆ Σ�T(n).

For deterministic machines, the same divide-and-conquer strategy
(3.1) as for nondeterministic machines applies, leading to the inclusions:

DTS(t,s) ⊆ ∃bs∀logbDTS(t/b,s) ⊆ Σ2T(bs + t/b) (3.6)

232 Common Structure of the Arguments

and

DTS(t,s) ⊆ Σ2T(
√

ts). (3.7)

Note that we have one fewer alternation in (3.6) and (3.7) than in the
corresponding (3.2) and (3.3) because the final phase is now determin-
istic rather than nondeterministic. In the recursive applications corre-
sponding to (3.4) and (3.5) we can do with even fewer alternations —
we can realize the same savings in running time as in (3.4) and (3.5)
with roughly only half the number of alternations. This is because
deterministic computations are closed under complementation, which
allows us to align adjacent quantifiers in successive applications of the
basic speedup (3.1) by complementing between applications; that way
we induce only one instead of two additional quantifier alternations per
application.

Another way to view this is as exploiting the following property of
deterministic computations.

C �t C ′ ⇔ (∀C ′′ �= C ′)C �t C ′′. (3.8)

That is, a deterministic machine M goes from a configuration C to a
configuration C ′ in t steps iff for every configuration C ′′ different from
C ′, M cannot reach C ′′ from C in t steps. To verify the latter we use the
divide-and-conquer strategy from Figure 3.1. We replace the matrix of
(3.8) by the negation of the right-hand side of (3.1) and rename C ′′ to
Cb for convenience.

C �t C ′ ⇔ (∀Cb �= C ′)(∀C1,C2, . . . ,Cb−1)(∃1 ≤ i ≤ b)Ci−1 �t/b Ci,

(3.9)

where C0 denotes C. In terms of the tableau of Figure 3.2, M reaches
C ′ from C in t steps iff the following holds: If we break up the tableau
into b blocks then for every choice of intermediate configurations Ci,
1 ≤ i ≤ b − 1, and of a final configuration Cb other than C ′, there has
to be a block i that cannot be completed in a legitimate way.

Applying this idea recursively amounts to replacing the matrix
Ci−1 �t/b Ci of the Π2-formula (3.9) by a Σ2-formula which is the nega-
tion of a formula of the same type as the whole right-hand side of
(3.9). The existential quantifiers merge and the resulting formula is of

3.2 Speeding Up Space-Bounded Computations Using Alternations 233

Fig. 3.2 Saving alternations.

type Π3. In general, k recursive applications result in a Πk+1-formula.
If we denote the block numbers for the successive recursive applications
by b1, b2, . . . , bk, we conclude in a similar way as in (3.4) that

DTS(t,s)

⊆ ∀b1s∃logb1∃b2s∀logb2 · · ·Qlogbk−1QbksQ
logbkDTS

(
t/
∏

i

bi,s

)
(3.10)

⊆ Πk+1T

((∑
i

bi

)
s + t/

(∏
i

bi

))
, (3.11)

where Q = ∀ for odd k, Q = ∃ for even k, and Q denotes the comple-
mentary quantifier of Q. By picking the block numbers in a way to
minimize the running time in (3.11), we obtain

DTS(t,s) ⊆ Πk+1T((tsk)1/(k+1)). (3.12)

As promised, we realize the same speed-up as in (3.4) and (3.5) with
only about half as many alternations.

234 Common Structure of the Arguments

3.3 Eliminating Alternations

The other tool we use to derive more unlikely inclusions of complexity
classes from our hypothesis consists of the opposite of what we just
did — eliminating alternations at a moderate cost in running time.

In general, we only know how to remove an alternation at an
exponential cost in running time. However, a hypothesis like NT(n) ⊆
coNT(nc) for a small real c ≥ 1 means that we can efficiently simu-
late nondeterminism co-nondeterministically and thus eliminate alter-
nations at a moderate expense.

Proposition 3.6. Let k be a positive integer, c ≥ 1 be a real, and t

be a function. If

NT(n) ⊆ coNT(nc)

then

Σk+1T(t) ⊆ ΣkT((t + n)c). (3.13)

Proof. We give the proof for k = 1. Consider a Σ2-machine running
in time t on an input x of length n. Its acceptance criterion can be
written as

(∃y1 ∈ {0,1}t) (∀y2 ∈ {0,1}t)R(x,y1,y2)︸ ︷︷ ︸
(∗)

, (3.14)

where R denotes a predicate computable in deterministic linear time.
Part (∗) of (3.14) defines a co-nondeterministic computation on input
x and y1. The running time is O(t) = O(t + n), which is linear in the
length of the combined input 〈x,y1〉. Therefore, our hypothesis implies
that we can transform (∗) into a nondeterministic computation on input
x and y1 taking time O((t + n)c). All together, (3.14) then describes
a nondeterministic computation on input x of time complexity O(t +
(t + n)c) = O((t + n)c).

We point out that the term n in the right-hand side of (3.13) is
necessary, i.e., for sublinear t we can only guarantee a running time

3.4 A Concrete Example 235

of nc rather than tc. Although for sublinear t every computation path
of (∗) in the proof of Proposition 3.6 can only access t bits of the
input x, which bits are accessed depends on the computation path,
so all of x needs to be input to the co-nondeterministic computation
(∗). For our applications, a situation in which we apply Proposition 3.6
with sublinear t is suboptimal. The alternations we spent to reduce the
running time below linear are wasted since we would have achieved the
same running time after the application of Proposition 3.6 if we had not
spent those alternations. For running times that are at least linear, the
hypothesis allows us to eliminate one alternation at the cost of raising
the running time to the power c.

3.4 A Concrete Example

In this section, we give a concrete instantiation of the paradigm of
indirect diagonalization we presented at the beginning of Chapter 3.
So far we have seen techniques to trade alternations for time and to
trade time for alternations. What remains is to combine them in the
right way so as to reduce the resources enough and get a contradiction
with a direct diagonalization result.

Our example is due to Kannan [31], who used the paradigm avant
la lettre to investigate the relationship between deterministic time O(t)
and nondeterministic time O(t) for various time bounds t. In the case of
linear time bounds he showed that NT(n) �⊆ DTS(n,ne) for every real
e < 1. We cast his argument in our indirect diagonalization paradigm
and slowly go through the steps, providing more details than we will
in our later applications.

Step 1 We assume by way of contradiction that

NT(n) ⊆ DTS(n,ne). (3.15)

Step 2 Consider the class DTS(t, te) for some polynomial t ≥ n to
be determined. By first speeding up as in (3.7) and then
removing an alternation as in (3.13) with k = 1 and c = 1,
we obtain the following unlikely inclusion:

DTS(t, te) ⊆ Σ2T(t(1+e)/2) ⊆ NT(t(1+e)/2). (3.16)

236 Common Structure of the Arguments

We can apply (3.13) with k = 1 and c = 1 because the
hypothesis implies that NT(n) ⊆ DT(n); the application is
valid provided that t(1+e)/2(n) ≥ n.

Step 3 We can pad the hypothesis (3.15) to time t as given by
Proposition 2.1. Combined with the closure of DTS under
complementation and with (3.16) we obtain

NT(t) ⊆ DTS(t, te) = coDTS(t, te) ⊆ coNT(t(1+e)/2).

This contradicts Lemma 3.1 as long as 1 > (1 + e)/2, i.e.,
for e < 1.

Setting t(n) = n2 satisfies all the conditions we needed. We conclude
that NT(n) �⊆ DTS(n,ne) for reals e < 1.

In step (3), we used the closure under complementation of deter-
ministic computations. We made that step explicit in the sequence of
inclusions; from now on we will do it implicitly.

Separations of the form NT(n) �⊆ DTS(n,ne) are not strong enough
for Corollary 2.1 to give us lower bounds for satisfiability. Kannan used
the separations to derive other results about the relationship between
DT(t) and NT(t) for nonlinear t. We do not state these results. Instead,
we move on and see how we can use the same paradigm to derive lower
bounds for NT(n) that are strong enough to imply lower bounds for
satisfiability.

4
Deterministic Algorithms

In this chapter, we discuss lower bounds on deterministic machines.
We first derive the results for nondeterministic linear time, implying
lower bounds for satisfiability, and then cover closely related classes
and corresponding problems.

4.1 Satisfiability

Our goal is to prove statements of the form:

NT(n) �⊆ coNT(nc) ∩ DTS(nd,ne) (4.1)

for reals d ≥ c > 1 and e > 0. Following the paradigm of indirect diag-
onalization from Chapter 3, we assume the opposite, i.e., that

NT(n) ⊆ coNT(nc) ∩ DTS(nd,ne), (4.2)

and derive a contradiction. Note that the hypothesis really states two
inclusions. We refer to them as the first and the second hypothesis.

Fortnow’s argument relies on Nepomnjascii’s Theorem
(Lemma 3.4). His original proof follows the more general scheme
outlined at the beginning of Chapter 3 — he shows that the hypothe-
ses lead to speedups within some higher level of the polynomial-time

237

238 Deterministic Algorithms

hierarchy. We recast his argument to fit the scheme of deriving
speedups within the first level. It goes as follows: use the second
hypothesis to put NT(t) for some super-linear t in DTS(nO(1),n1−ε)
for some positive real ε, then apply Nepomnjascii’s Theorem to obtain
a simulation somewhere in the linear-time hierarchy, and finally use
the first hypothesis to eliminate all the induced alternations and return
to the first level of the polynomial-time hierarchy. Eliminating alterna-
tions costs raising the running time to the power c per alternation. For
small enough c this process results in a net speedup of computations
in the first level of the polynomial-time hierarchy, which is impossible
in general.

In order to put NT(t) in DTS(nO(1),n1−ε) by padding the second
hypothesis, we need te ≤ n1−ε. Since we want t to be super-linear, we
set t = n(1−ε)/e and require e < 1 − ε. We have

NT(t) ⊆ DTS(td, te) [hypothesis 2]
⊆ coDTS(nd(1−ε)/e,n1−ε) [simplification]
⊆ ΠkT(n) [Nepomnjascii’s Theorem]
⊆ coNT(nck−1

) [hypothesis 1 and Proposition 3.6]

where k depends on d, e, and ε. No matter what k is, there are val-
ues of c > 1 such that ck−1 < (1 − ε)/e. For such values we obtain
a contradiction with Lemma 3.1. We conclude that for every real d

and e < 1 there exists a real c > 1 such that (4.1) holds. In particu-
lar, for every real e < 1 we have the time–space lower bound NT(n) �⊆
DTS(n1+o(1),ne).

The application of Nepomnjascii’s Theorem is equivalent to multiple
applications of the basic divide-and-conquer-strategy (3.1). Kannan’s
result that we discussed in Section 3.4 involved one application in a
setting with d = 1. Lipton and Viglas analyzed what a single appli-
cation gives for larger values of d. The optimal form for one applica-
tion is given by (3.7). Thus, for sufficiently large polynomials t we can
derive

NT(t) ⊆ DTS(td, te) [hypothesis 2]
⊆ Π2T(t(d+e)/2) [(3.7)]
⊆ coNT(tc(d+e)/2) [hypothesis 1 and Proposition 3.6]

4.1 Satisfiability 239

We obtain a contradiction with Lemma 3.1 as long as c(d + e) < 2.
We conclude that for all reals c and d such that cd < 2, there exists
a positive real e such that (4.1) holds. In particular, we obtain the
following time–space lower bound for subpolynomial space: NT(n) �⊆
DTs(n

√
2−o(1)).

At first sight, it may seem that one can easily improve the time lower
bound for subpolynomial-space algorithms from n

√
2−o(1) to n2−o(1)

by applying the optimal divide-and-conquer strategy recursively as in
(3.11). In fact, there have been some unsubstantiated claims to that
effect in the literature. The — fallacious — reasoning is the following.
For subpolynomial space bounds, (3.7) allows us to realize a square-
root speedup at the cost of introducing two alternations. We can apply
this strategy � times recursively and exploit the closure under com-
plementation of deterministic computations to align adjacent quanti-
fiers, as we did at the end of Section 3.2. This way, � + 1 quantifiers
are sufficient to reduce a DTs(t)-computation to a DTs(t1/2�+o(1))-
computation. Eliminating all but one quantifier block using Proposi-
tion 3.6 leads to the conclusion that for sufficiently large polynomial
t, NT(t) ⊆ coNT(tc

�d/2�+o(1)). For c = d we obtain a contradiction with
Lemma 3.1 as long as d < 2 and � is sufficiently large. However, this
reasoning is flawed because the input to the recursive levels does not
only consist of the original input x of length n but also of the config-
urations and blocks guessed at previous levels. As a function of that
input size, the running time of the computation on which we apply
Proposition 3.6 for the complementation becomes sublinear. In that
case the cost of alternation elimination becomes more than a power
c as a function of the running time. As a result, the net effect of
introducing one more level of recursion and eliminating it again is
not as good as a factor of c/2 in the exponent of the running time.
This issue of input size is a recurring theme and a bottleneck in all of
the subsequent arguments. It is not obvious whether a quadratic time
lower bound for subpolynomial-space deterministic algorithms can be
reached using the ingredients from Chapter 3 alone. It does seem like
a quadratic bound is the best we can hope for given the optimality
of (3.7).

240 Deterministic Algorithms

Fortnow and van Melkebeek analyzed how to pick the block sizes in
� recursive applications of the divide-and-conquer strategy so as to opti-
mize the speedup of deterministic space-bounded computations on non-
deterministic machines that results after eliminating all the alternations
using Proposition 3.6. We give their analysis in the case of subpolyno-
mial space bounds.

Lemma 4.1 (Fortnow–van Melkebeek [20, 22]). If

NT(n) ⊆ coNT(nc)

for some real c, then for every nonnegative integer � and for every
sufficiently large polynomial t,

DTs(t) ⊆ NT(tα�+o(1)),

where

α0 = 1
α�+1 = cα�/(1 + α�).

(4.3)

Proof. We give a proof by induction. The base case � = 0 holds trivially.
For the induction step � → � + 1 we have for every real α ∈ (0,1) and
sufficiently large polynomial t

DTs(t) ⊆ ∃tα+o(1)∀log t DTs(t1−α)︸ ︷︷ ︸
(∗)

[(3.6) with b = tα]

⊆ ∃tα+o(1) ∀log tcoNT(t(1−α)α�+o(1))︸ ︷︷ ︸
(∗∗)

[induction hypothesis]

⊆ ∃tα+o(1)
NT((tα+o(1) + t(1−α)α�+o(1))c)︸ ︷︷ ︸

(∗∗∗)

[hypothesis 1]

⊆ NT((tα + t(1−α)α�)c+o(1))

[simplification using c ≥ 1].

(4.4)

4.1 Satisfiability 241

Note that the input to (∗) is only of length n + to(1) since the com-
putation only needs access to the original input x and two config-
urations. For the induction hypothesis to apply to (∗), t1−α has to
satisfy the “sufficiently large polynomial” condition at level �, which
will be the case for yet larger polynomials t (depending on the choice
of α). The input to the computation (∗∗) consists of the original
input x and the guess bits of the first existential phase, so it is
of length n + tα+o(1). This is why, for sufficiently large t, there is
no extra term in the application of the induction hypothesis but
there is an extra term of tα in the application of the hypothesis of
the lemma.

The final running time is optimized up to subpolynomial factors by
equating the exponents of both terms, i.e., by setting α = (1 − α)α�,
which leads to the recurrence (4.3) for α�+1.

We will encounter a fair number of recurrences of the type given
by (4.3). The following facts are useful in studying their convergence
behavior.

Proposition 4.2. Let a, b, and ξ0 be positive reals. The sequence
defined by

ξ�+1 = aξ�/(1 + bξ�)

for nonnegative integers � converges monotonically, namely to 0
if a ≤ 1 and to (a − 1)/b if a ≥ 1. The sequence is decreasing
iff ξ0 > (a − 1)/b.

Proof. Since the transformation ξ → aξ/(1 + bξ) on the reals is increas-
ing, the sequence ξ� is monotone. Combined with the continuity of the
transformation, this means the sequence has to converge to a fixed point
of the function. The fixed points are 0 and (a − 1)/b. The first one is
attractive iff a ≤ 1. The sequence if decreasing iff ξ0 is larger than the
limit point.

242 Deterministic Algorithms

Note that the mere monotonicity of the sequence implies that the
smallest real the sequence can get close to is the minimum of the
start value ξ0 and the limit value ξ∞. That value can be written as
min(ξ0,max(0,(a − 1)/b)). For the particular sequence (4.3) Propo-
sition 4.2 tells us that the sequence converges to α∞ = c − 1, and
decreases monotonically for c < 2.

Given the speedup lemma, we can finish the argument in the same
way as before. Starting from hypothesis (4.2) with e = o(1), we have
for sufficiently large polynomials t that

NT(t) ⊆ DTs(td) [hypothesis 2]

⊆ coNT(tdα�) [Lemma 4.1]
(4.5)

which contradicts Lemma 3.1 if dα� < 1. By the monotonicity of the
sequence α�, we only need to check � = 0 and � → ∞. The first case
only leads to a contradiction for d < 1. The second case contradicts
Lemma 3.1 as long as dα∞ = (c − 1)d < 1. Thus, we have derived the
first part of the Master Theorem for deterministic algorithms (Theo-
rem 1.3) in the case of subpolynomial space bounds. In particular, we
can conclude that NT(n) �⊆ DTs(nφ−o(1)), since d(d − 1) = 1 defines
the golden ratio φ. A more careful analysis of our argument proves the
first part of Theorem 1.3 in full generality. This result also captures
Fortnow’s NT(n) �⊆ coNT(n1+o(1)) ∩ DTS(nO(1),n1−ε), as the condi-
tion (c − 1)d < 1 allows us to let d grow unboundedly for c = 1 + o(1),
in which case we can let e grow to 1.

Before moving on, let us make a few observations about the proof
of Lemma 4.1. Recall from our discussion in Section 3.3 that it never
makes sense for us to eliminate an alternation using Proposition 3.6 in a
situation where the running time is sublinear. The proof of Lemma 4.1
exactly balances the input to (∗∗) and the running time. This sug-
gests that if we somehow did not have to take the entire input into
account, we could do better. In fact, the proof makes our earlier point
about input size issues very explicit. If we could ignore the tα+o(1)

guess bits as input to (∗∗), we could set α�+1 as the solution α to
α = (1 − α)α�c, which would result in a limit of 1 − 1/c and a contra-

4.1 Satisfiability 243

diction with Lemma 3.1 for (c − 1)d < c. The latter condition reduces
to d < 2 for c = d.

For future reference we also point out the following failed approach
for improving Lemma 4.1. Consider the second to last line of (4.4) in
the proof of Lemma 4.1. We could first apply the second hypothesis
to (∗∗∗), transforming (∗∗∗) into a DTs-computation at the cost of
raising the running time to the power d, and then apply the induction
hypothesis to speed up the DTs-computation on a nondeterministic
machine. The latter makes sense since the induction hypothesis gives
us the best way we have found so far to speed up DTs-computations on
nondeterministic machines. The resulting computation is of the same
form as (∗∗∗) but hopefully has a smaller exponent for the second term
of the running time. That would push the optimum for α to smaller
values and thereby achieve a smaller final running time. Unfortunately,
this application of the induction hypothesis is invalid. The induction
hypothesis only applies when the running time of the computation is
a sufficiently large polynomial in the input length. The largeness con-
dition becomes more stringent when � grows; a closer analysis shows
that the polynomial needs to be of degree Ω(c�) at level �. The run-
ning time of (∗∗∗) is a relatively small polynomial in tα. Since the tα

guess bits are part of the input to (∗∗∗), this means that, although t

is a large polynomial, the running time of (∗∗∗) is only a polynomial
of relatively small degree in the length of the input to that part of
the computation. Thus, we cannot apply the induction hypothesis as
we envisioned. The underlying idea will be useful in another context,
though, namely for the lower bounds on nondeterministic machines in
Chapter 5.

In the current context, we can improve the indirect diagonaliza-
tion strategy in a different way. Lemma 4.1 optimizes the following
alternation trading process: introduce alternations to speed up the
computation by applying the divide-and-conquer strategy (3.6) � times
recursively; next eliminate the induced alternations one by one by
successively applying the first hypothesis and Proposition 3.6 to the
last quantifier block and then merging that block with the previous
block. The latter phase of alternation elimination is rather blunt. It it
oblivious to the special structure of the computation (3.10). We can

244 Deterministic Algorithms

take more of the structure into account by extending our view dur-
ing the alternation elimination phase from just the last block to the
last two blocks. In other words, we iteratively complement the last
two quantifier blocks and merge the second-to-last quantifier with the
previous one.

The Π2-computations we need to complement during the process
all have the property that the final nondeterministic stage only needs
access to a small part of the input to the Π2-computation. The com-
plementary property holds for Σ2. Consider the case of odd k in
(3.10). Recall that each of the universal quantifier blocks in (3.10)
are of the form ∀logbi∀bi+1s. They get as input the global input x

and the configurations guessed during stage i. Of those configura-
tions only two are passed on from the ∀logbi-part to the ∀bi+1s-part
and thus to the subsequent ∃logbi+1-part. In particular, the above
property holds for the first Π2-computation we need to complement,
the one at the far right end of (3.10). Moreover, if we replace that
Π2-computation by a generic Σ2-computation and merge the now-
aligned existential quantifiers, the resulting Σ2-computation at the end
again has the above property. Thus, the above property is maintained
during the process of successive complementations within the second
level.

Using our hypotheses, we can efficiently complement Π2-
computations by first turning them into space-bounded deterministic
computations and then speeding those up on Σ2-machines using (3.7).
More precisely, we have that

Π2T(τ) ⊆ coNT((τ + µ)c)

⊆ DTs(((τ + µ)c + ν)d)

⊆ Σ2T(((τ + µ)c + ν)d/2+o(1)),

where τ denotes a possibly sublinear running time, ν denotes the size
of the input to the Π2-computation, and µ the size of the part of that
input that is input to the final nondeterministic computation of the Π2-
computation. For generic Π2-computations, µ = ν and it does not make
sense for us to consider sublinear running times τ as it would mean that
we wasted some alternations — see the discussion after Proposition 3.6
in Section 3.3. However, the Π2-computations we need to complement

4.1 Satisfiability 245

have the property that µ � ν. In that case, it does make sense to
consider sublinear τ . In fact, due to the binding nature of the input
size issue, we can take advantage of sublinear τ . The following lemma
shows how.

The lemma can be viewed as a counterpart to Lemma 4.1 but where
we eliminate alternations by complementing computations within the
second rather than the first level of the polynomial-time hierarchy. The
lemma analyzes how to optimally select the parameters in the process of
speeding up DTs-computations using (3.10) and subsequently removing
alternations by complementing within the second level so as to achieve
the smallest running time for the final simulation. Note that the process
ends at the second level of the polynomial-time hierarchy rather than
the first one as in Lemma 4.1 since the smallest number of quantifier
blocks we can reduce to by complementing within the second level is
two. For future use, we parameterize the lemma with the efficiency
of the speedup of deterministic sublinear-space computations in the
second level of the polynomial-time hierarchy. The simulation (3.7)
corresponds to σ = 1/2 + o(1) in the lemma.

Lemma 4.3 (follows from [61]). If

NT(n) ⊆ coNT(nc) ∩ DTs(nd)

for some reals c and d, and if

DTs(t) ⊆ Σ2T(tσ + n) (4.6)

for some real σ ≤ 1/d and all functions t, then for every nonnegative
integer � and for every sufficiently large polynomial t,

DTs(t) ⊆ Σ2T(tβ�+o(1)),

where

β0 = σ

β�+1 = cdσβ�/(1 + cdσβ�).
(4.7)

Proof. The proof is again by induction. The base case follows from
(4.6). For the induction step � → � + 1 we have for every real β ∈ (0,1)

246 Deterministic Algorithms

and sufficiently large polynomial t

DTs(t) ⊆ ∃tβ+o(1)∀log t DTs(t1−β)︸ ︷︷ ︸
(∗)

[(3.6) with b = tβ]
⊆ ∃tβ+o(1)∀log t Π2T(t(1−β)β�+o(1))︸ ︷︷ ︸

(∗∗)

[induction hypothesis]

⊆ ∃tβ+o(1) ∀log tcoNT(t(1−β)β�c+o(1))︸ ︷︷ ︸
(∗∗∗)

[hypothesis 1 and Proposition 3.6]

⊆ ∃tβ+o(1)
DTs((tβ+o(1) + t(1−β)β�c+o(1))d)︸ ︷︷ ︸

(∗∗∗∗)

[hypothesis 2]

⊆ ∃tβ+o(1)
Σ2T((tβ+o(1) + t(1−β)β�c+o(1))dσ + tβ+o(1))

[(4.6)]

⊆ Σ2T(t(1−β)β�cdσ+o(1) + tβ+o(1))
[simplification using dσ ≤ 1]

(4.8)

Note that the input to (∗) and (∗∗) is only of length n + to(1), which
is less than t1−β or even t(1−β)β� for sufficiently large polynomials t.
The input size to (∗∗∗) and (∗∗∗∗) equals n + tβ+o(1) = O(tβ+o(1)) for
sufficiently large polynomials t.

The final running time is optimized up to subpolynomial factors
by setting β = (1 − β)β�cdσ, which leads to the recurrence (4.7) for
β�+1.

Let us connect the proof of the lemma with the discussion before.
The net effect from the second to the fifth line in (4.8) is to transform
the Π2-computation described by ∀log t(∗∗) on the second line into an
equivalent Σ2-computation on the fifth line. The computation ∀log t(∗∗)
is exactly of the type we described before the lemma: it has a running
time τ = t(1−β)β�+o(1) that is sublinear in the size of its input, ν =
n + tβ+o(1), but the effective input to the final nondeterministic phase
is only µ = τ � ν. Note also that µ = τ means that the input size and

4.1 Satisfiability 247

running time are balanced in the application of Proposition 3.6, just as
that was the case in the proof of Lemma 4.1.

We can wrap up the argument in a similar way as before. For suffi-
ciently large polynomials t we have

NT(t) ⊆ DTs(td) [hypothesis 2]
⊆ Π2T(tdβ�+o(1)) [Lemma 4.3]
⊆ coNT(tdβ�c+o(1)) [hypothesis 1]

which contradicts Lemma 3.1 if cdβ� < 1 for some nonnegative inte-
ger �. By Proposition 4.2, the only values we need to check are � = 0 and
� → ∞. The former leads to the simple condition that cdσ < 1 (since we
do not need the condition dσ ≤ 1 of Lemma 4.3 at the start). For the
latter case, we need the additional condition that dσ ≤ 1. By Propo-
sition 4.2, β∞ = 0 if cdσ < 1 and β∞ = 1 − 1/(cdσ) otherwise. The
second possibility results in the conditions dσ ≤ 1 and cd < 1 + 1/σ.
As we can assume c ≥ 1, the condition cdσ < 1 implies dσ ≤ 1 and
cd < 1 + 1/σ, so we can forget about cdσ < 1. In summary, we obtain
a contradiction if dσ ≤ 1 and cd < 1 + 1/σ.

Let us now see what we get when we plug in the general speedup
(3.7) into Lemma 4.3, i.e., if we set σ = 1/2 + o(1) in (4.6). We obtain a
contradiction if d ≤ 2 and cd < 3. In particular, we obtain a time lower
bound of n

√
3−o(1) for every subpolynomial-space algorithm solving sat-

isfiability, which beats the golden ratio result.
We can do even better. Williams showed that the speedup (3.7),

which holds unconditionally, can be improved under the hypothesis
that NT(n) ⊆ DTs(nd) for values of d < 2: instead of the square-root
speedup of (3.7) we can realize a (d/(d − 1))th root, which is better for
d < 2 since d/(d − 1) > 2.

Lemma 4.4 (Williams [59]). If

NT(n) ⊆ DTs(nd)

for some real d, then for every time bound t

DTs(t) ⊆ Σ2T(t(d−1)/d+o(1) + n).

248 Deterministic Algorithms

Proof. We prove by induction that

DTs(t) ⊆ Σ2T(tγ�+o(1) + n)

for every nonnegative integer �, where

γ0 = 1/2
γ�+1 = dγ�/(1 + dγ�).

(4.9)

The proof is by induction on �. The base case � = 0 holds because of
(3.7). By Proposition 4.2 the sequence defined by (4.9) is nondecreasing
for d ≥ 2, so the base case trivially implies the remaining cases for d ≥ 2.
In the rest of the proof we only consider d < 2. For the induction step
� → � + 1 we have for every real γ ∈ (0,1)

DTs(t) ⊆ ∃tγ+o(1) ∀log tDTs(t1−γ)︸ ︷︷ ︸
(∗)

[(3.6) with b = tγ]

⊆ ∃tγ+o(1)
DTs((n + tγ+o(1) + t1−γ)d)︸ ︷︷ ︸

(∗∗)

[hypothesis of the lemma]

⊆ ∃tγ+o(1)
Σ2T((n + tγ + t1−γ)dγ�+o(1) + n + tγ+o(1))

[induction hypothesis]

⊆ Σ2T(tγ+o(1) + t(1−γ)dγ�+o(1) + n)

[simplification using dγ� < 1]

Note that (∗) represents a co-nondeterministic computation on an input
of size n + tγ+o(1) that runs in time t1−γ , and that (∗∗) has the same
input.

The final running time is optimized up to subpolynomial factors by
equating the exponents of the two terms involving γ, i.e., by setting
γ = (1 − γ)dγ�, which leads to the recurrence (4.9) for γ�+1.

The sequence given by (4.9) decreases monotonically to γ∞ =
1 − 1/d. It follows that the condition dγ� < 1 is met for every �. By
exploiting the uniformity of the construction we can let � grow slowly
with the input size n at the cost of an additional small factor in the
running time. Since t is at least logarithmic, we can absorb the latter
factor in a term of the form to(1), which gives the result.

4.2 Related Problems 249

By virtue of Lemma 4.4, we can now apply Lemma 4.3 and the sub-
sequent analysis with σ = (d − 1)/d + o(1). We obtain a contradiction
if d ≤ 2 and cd < 1 + d/(d − 1). The condition c(d − 1) < 1 together
with c ≤ d implies that (c − 1)d < 1 so it does not lead to new results.
The latter condition is equivalent to cd(d − 1) − 2d + 1 < 0 and coin-
cides with the second condition in the Master Theorem for determin-
istic algorithms (Theorem 1.3). Note that we do not have to worry
about the fact that we have the additional condition d ≤ 2 here since
we know that the first condition in the Master Theorem is binding for
d > 2. In particular, we obtain a time lower bound of n2cos(π/7)−o(1)

for every subpolynomial-space algorithm solving satisfiability. A more
careful analysis finishes the proof of Theorem 1.3 in full force. This
marks the end of the story on lower bounds for satisfiability on deter-
ministic machines so far. . .

4.2 Related Problems

We now discuss how the arguments of the previous section can be
extended to ΣkSAT for every integer k > 1 and to the problem of count-
ing the number of satisfying assignments modulo a fixed integer. We
point out that Fortnow and van Melkebeek [20, 22] used the same ideas
to obtain lower bounds for classes of the form NTS(n,s) for sublinear s.
We will not cover those results here as there are no natural computa-
tional problems known that correspond exactly to those classes.

We first consider ΣkSAT. We would like to rule out hypotheses of
the form:

ΣkT(n) ⊆ ΠkT(nc) ∩ DTS(nd,ne)

for certain values of c, d, and e > 0. We start with some simple obser-
vations. First, Lemma 3.1 shows that c ≥ 1 and therefore also d ≥ 1.
The second hypothesis combined with (3.12) implies

ΣkT(n) ⊆ DTS(nd,ne) ⊆ ΠkT(n(d+(k−1)e)/k),

so we can assume without loss of generality that c ≤ (d + (k − 1)e)/k.
Combined with Lemma 3.1 we have ruled out values such that d +
(k − 1)e < k. In the case of subpolynomial space bounds, which we

250 Deterministic Algorithms

focus on next, this means we can assume that 1 ≤ c ≤ d/k, which
implies d ≥ k.

The statement and proof of Lemma 4.1 carry over verbatim if we
replace the machine type N by Σk. As before, we can rule out values for
which (c − 1)d < 1. Taking into account that c ≤ d/k, this leads to the
time–space lower bound ΣkT(n) �⊆ DTs(nd) for every real d such that
d(d − k) < k. Note that the solution to d(d − k) = k lies somewhere
between k and k + 1 and differs from k + 1 by O(1/k).

Lemma 4.3 also remains valid modulo the substitution of N by
Σk, of Σ2 by Σk+1, and of Π2 by Πk+1. Under the hypothesis that
ΣkT(n) ⊆ DTs(nd) for some real d, the generalization of Lemma 4.4
shows that for every time bound t, DTs(t) ⊆ Σk+1T(t(d−k)/d+o(1) + n).
We obtain a contradiction with Lemma 3.1 if d ≤ k + 1 and cd < 1 +
d/(d − k). The latter condition is equivalent to cd(d − k) − 2d + k < 0
and is weaker than the condition (c − 1)d < 1 iff d < k + 1. As for a
pure time lower bound for subpolynomial space algorithms, the solution
to d2(d − k) − 2d + k = 0 also lies somewhere between k and k + 1
and converges to k + 1 for large k, but does so more quickly than the
solution to d(d − k) = k.

A more careful analysis leads to the following generalization of the
Master Theorem for deterministic machines.

Theorem 4.5(follows from [20, 22, 61]). For every positive integer
k and for all reals c and d such that (c − 1)d < 1 or cd(d − k) − 2d +
k < 0, there exists a positive real e such that ΣkSAT cannot be solved
by both

(i) a Πk-machine with random access that runs in time nc and
(ii) a deterministic random-access machine that runs in time nd

and space ne.

Moreover, the constant e approaches 1 from below when c approaches
1 from above and d is fixed.

Recall that a machine of type (ii) implies the existence of a machine
of type (i) with c = (d + (k − 1)e)/k.

4.2 Related Problems 251

Williams considered the problem of counting the number of satisfy-
ing assignments modulo some integer m > 1. The language ModmSAT
consists of all Boolean formulas for which the number of satisfying
assignments is divisible by m. By the first part of Toda’s Theorem
[54], ModmSAT is hard for the polynomial-time hierarchy under ran-
domized reductions but it is consistent with current knowledge that
the deterministic complexities of ModmSAT and of ΣkSAT would be
incomparable for all integers m > 1 and k > 0. In the other direction,
we definitely do not expect lower bound statements for satisfiability to
immediately imply similar statements for ModmSAT in general. Nev-
ertheless, Williams showed that the lower bounds from the previous
section do carry over.

We can define a model of computation that has the same tight con-
nection to ModmSAT as nondeterministic computations have to sat-
isfiability. The class ModmTS(t,s) denotes all languages L for which
there exists a nondeterministic machine M that runs in time O(t)
and space O(s) such that a string x belongs to L iff the number of
accepting computations of M on input x is divisible by m. The classes
ModmT(t) and ModmTs(t) are defined analogously. Lemma 2.2 holds
for ModmT(n) and ModmSAT instead of ΣkT(n) and ΣkSAT, as does
Corollary 2.1.

Williams argued that all of the lower bound proofs in Section
4.1 carry through if we replace nondeterministic computations by
Modp-computations and co-nondeterministic computations by Modq-
computations where p and q are any two distinct primes. He shows
that hypotheses like{

ModpT(n) ⊆ ModqT(nc) ∩ DTS(nd,ne)

ModqT(n) ⊆ ModpT(nc) ∩ DTS(nd,ne)

lead to a contradiction for the same settings of the reals c, d, and e as
in the proof of Theorem 1.3. The critical ingredient in the translation
argument is the equivalent of (3.6). It leads to the following time–space
lower bound.

Theorem 4.6 (Williams [61]). For every real d < 2cos(π/7) there
exists a positive real e such that for every prime p except possibly one,

252 Deterministic Algorithms

ModpSAT cannot be solved by a deterministic random-access machine
that runs in time nd and space ne. Moreover, the constant e approaches
1 from below when d approaches 1 from above.

Since Modp-computations trivially reduce to Modm-computations
for every positive integer m that is a multiple of p, we can conclude the
same lower bounds as in Theorem 4.6 for every integer m > 1 except
possibly the powers of a single prime.

5
Nondeterministic Algorithms

In this chapter, we discuss how the lower bound arguments from
Section 4.1 for deterministic machines can be adapted to co-
nondeterministic machines, resulting in the lower bounds for tautologies
on nondeterministic machines as stated in Theorem 1.5.

Following the paradigm of indirect diagonalization, we start from a
hypothesis of the form:

coNT(n) ⊆ NT(nc) ∩ NTS(nd,ne) (5.1)

for certain reals c, d, and e. We aim to derive a contradiction with
a direct diagonalization result like Lemma 3.1 by speeding up nonde-
terministic space-bounded computations with more alternations and
eliminating the extra alternations using Proposition 3.6.

For starters, Lemma 3.1 immediately implies that c ≥ 1 and that
d ≥ 1. We can also assume without loss of generality that c ≤ d.

Speeding up nondeterministic space-bounded computations takes
more alternations than deterministic ones. Recall that the closure under
complementation of deterministic computations allowed us to realize
the same speedup (3.11) in the deterministic case as (3.4) in the non-
deterministic case with roughly only half the number of alternations.

253

254 Nondeterministic Algorithms

Each alternation we introduce needs to be eliminated later, which we
can do using Proposition 3.6 at a cost of raising the running time to
the power c. A need for more alternations for the same speedup results
in weaker lower bounds in the end.

In the range of space bounds close to linear, the effect is not very
noticeable — it is hidden in the statement of Theorems 1.3 and 1.5.
For e < 1 and any positive real ε < 1 − e the argument of Section 4.1
carries through almost verbatim. Setting t = n(1−ε)/e we have

NT(t) ⊆ coNTS(td, te) ⊆ coNTS(nd(1−ε)/e,n1−ε)
⊆ ΠkT(n) ⊆ coNT(nck−1

)

for some integer k depending on d and ε. The dependency is worse than
in the deterministic case, but we can still conclude that for every real
d and e < 1 there is a real c > 1 such that hypothesis (5.1) fails.

The deterioration in parameters becomes more tangible for smaller
space bounds, in particular for subpolynomial ones. Fortnow and van
Melkebeek determined in general how to pick the block sizes in (3.4)
such that if we subsequently eliminate all extra alternations one by
one from the back to the front using Proposition 3.6, we end up with a
speedup of nondeterministic space-bounded computations on nondeter-
ministic machines that is the best one this process can give. We cover
the case of subpolynomial space bounds.

Lemma 5.1 (Fortnow–van Melkebeek [20, 22]). If

NT(n) ⊆ coNT(nc)

for some real c, then for every nonnegative integer � and for every
sufficiently large polynomial t,

NTs(t) ⊆ NT(tδ�+o(1)),

where

δ0 = 1
δ�+1 = c2δ�/(1 + cδ�).

(5.2)

255

Proof. The proof is again one by induction with a trivial base case.
For the induction step � → � + 1 we have for every real δ ∈ (0,1) and
sufficiently large polynomial t

NTs(t) ⊆ ∃tδ+o(1)∀log t NTs(t1−δ)︸ ︷︷ ︸
(∗)

[(3.2) with b = tδ]

⊆ ∃tδ+o(1)∀log t NT(t(1−δ)δ�+o(1))︸ ︷︷ ︸
(∗∗)

[induction hypothesis]

⊆ ∃tδ+o(1) ∀log tcoNT(t(1−δ)δ�c+o(1))︸ ︷︷ ︸
(∗∗∗)

[hypothesis of the lemma]

⊆ ∃tδ+o(1)
NT((tδ+o(1) + t(1−δ)δ�c+o(1))c)

[hypothesis of the lemma]

⊆ NT((tδ + t(1−δ)δ�c)c+o(1))

[simplification using c ≥ 1]

Note that the input to (∗) and to (∗∗) is only of length n + to(1) = O(n);
the input to the computation (∗∗∗) consists of the original input x and
the guess bits of the first existential phase, so it is of length n + tδ+o(1).

The final running time is optimized up to subpolynomial factors by
equating δ and (1 − δ)δ�c, which results in the recurrence (5.2).

We conclude that for sufficiently large polynomials t

NT(t) ⊆ coNTs(td) [hypothesis 2]
⊆ coNT(tdδ�) [Lemma 5.1]

(5.3)

which contradicts Lemma 3.1 if dδ� < 1. By Proposition 4.2 the
sequence defined by (5.2) converges monotonically to δ∞ = c − 1/c, and
is decreasing for c < φ. By the monotonicity, we only need to check � = 0
and � → ∞. The initial value only leads to a contradiction for d < 1;
the limit leads to one for (c2 − 1)d < c. By setting c = d, we obtain a
time lower bound of n

√
2−o(1) for subpolynomial-space nondeterminis-

tic algorithms for coNT(n). Recall that the corresponding argument in
the deterministic setting yields an exponent of φ rather than

√
2.

256 Nondeterministic Algorithms

We point out that we could also have derived a contradiction for
the same setting of the parameters from the hypothesis

NT(n) ⊆ coNT(nc) ∩ NTS(nd,ne). (5.4)

rather than from hypothesis (5.1). Lemma 5.1 only needs the first part
of the hypothesis (5.1), which is equivalent to the first part of hypoth-
esis (5.4). The argument similar to (5.3) now leads to a contradiction
with the nondeterministic time hierarchy (Lemma 3.2) rather than with
Lemma 3.1. As a result, in the part of the Master Theorem for nondeter-
ministic algorithms involving the condition (c2 − 1)d < 1, the machine
(ii) can also be co-nondeterministic rather than nondeterministic.

Lemma 5.1 optimizes an alternation trading process that acts in
a rather myopic way during the alteration elimination phase. It only
looks at the last quantifier block, complements it using Proposition
3.6, merges it with the previous quantifier block, and repeats. In doing
so, it only relies on the first part of the hypothesis, the part involving
time-efficient complementations of Σ1-machines. In the deterministic
setting of Section 4.1 we saw how we could do better by expanding our
view during the alternation elimination phase from the last block to
the last two blocks, and exploiting the second part of the hypothesis.
We currently do not know of a fruitful analogue to that strategy in
the nondeterministic setting. However, Diehl et al. showed how we can
use the second part of the hypothesis to our advantage while still just
looking at the last quantifier block during each step of the alternation
removal phase. They managed to get the idea to work which we briefly
mentioned as a failed attempt in the deterministic setting, namely that
of getting more mileage out of the induction hypothesis by applying
it for a second time after making the computations space-bounded
again using the second hypothesis. They achieve speedups of nonde-
terministic space-bounded computations on nondeterministic machines
that are better than those provided by Lemma 5.1 for relatively small
values of d.

Lemma 5.2 (Diehl–van Melkebeek–Williams [18]). If

coNT(n) ⊆ NT(nc) ∩ NTs(nd)

257

for some reals c and d then for every nonnegative integer � and for every
sufficiently large polynomial t,

NTs(t) ⊆ NT(tε�+o(1)),

where

ε0 = 1
ε�+1 = cdε2

�/(1 + dε2
�).

(5.5)

Proof. As usual, the proof is by induction on � and has a trivial base
case. For the induction step � → � + 1 we have for every real ε ∈ (0,1)
and sufficiently large polynomial t

NTs(t) ⊆ ∃tε+o(1)∀log t NTs(t1−ε)︸ ︷︷ ︸
(∗)

[(3.2) with b = tε]

⊆ ∃tε+o(1)∀log t NT(t(1−ε)ε�+o(1))︸ ︷︷ ︸
(∗∗)

[induction hypothesis]

⊆ ∃tε+o(1)∀log t coNTs(t(1−ε)ε�d+o(1))︸ ︷︷ ︸
(∗∗∗)

[hypothesis 2 of the lemma]

⊆ ∃tε+o(1) ∀log tcoNT(t(1−ε)ε�dε�+o(1))︸ ︷︷ ︸
(∗∗∗∗)

[induction hypothesis]

⊆ ∃tε+o(1)
NT((tε+o(1) + t(1−ε)ε�dε�+o(1))c)

[hypothesis 1 of the lemma]

⊆ NT((tε + t(1−ε)ε2�d)c+o(1))
[simplification using c ≥ 1]

Note that for all of (∗), (∗∗), and (∗∗∗), the input to the computation
is only of length n + to(1) = O(n). In particular, this means that by
picking t to be a sufficiently large polynomial, we can make sure that
both (∗) and (∗∗∗) are valid applications of the induction hypothesis.

258 Nondeterministic Algorithms

The input to (∗∗∗∗) consists of the original input x and the guess bits
of the first existential phase, so it is of length n + tε+o(1).

The final running time is optimized up to subpolynomial factors by
equating ε and (1 − ε)ε2

�d, which results in the recurrence (5.5).

We point out that the second application of the induction hypothesis
causes the alternation introducing and eliminating process to become
considerably more complicated than the ones we have seen before. The
process no longer consists of two separate phases where the first one
introduces all alternations and the second one removes them by succes-
sively complementing the last block or the last two blocks of quantifiers.
We also note that applying the induction hypothesis more than twice
does not seem to work for the same reason why a second application
in the deterministic case does not work.

Due to the extra application of the induction hypothesis, the trans-
formation underlying the recurrence (5.5) is now a rational function
of degree two rather than one. Proposition 4.2 only deals with trans-
formations of degree one but some of the argumentation still applies.
Since the transformation ξ → cdξ2/(1 + dξ2) over the reals is increas-
ing, the sequence ε� is monotone. The sequence is decreasing iff ε1 < ε0,
which is equivalent to (c − 1)d < 1. A simple calculation shows that
the transformation ξ → cdξ2/(1 + dξ2) has 0 as its only fixed point
for values of c and d such that c2d < 4. In that case, the sequence ε�

decreases monotonically to zero. We conclude that for sufficiently large
polynomials t

NT(t) ⊆ coNTs(td) ⊆ coNT(tdε�),

which contradicts Lemma 3.1 for c2d < 4 and sufficiently large �. Setting
c = d, we get a time lower bound of n

3√4−o(1) for subpolynomial-space
nondeterministic algorithms for coNT(n). In the case where c2d ≥ 4,
the analysis becomes more involved [18] but it turns out that dε� ≥ 1
for every �, so we do not obtain a contradiction.

Modulo a slightly closer analysis, the above arguments give us all
the ingredients of the Master Theorem for nondeterministic algorithms
(Theorem 1.5) and present the state-of-the-art on lower bounds for
tautologies on nondeterministic machines.

6
Somewhat-Nonuniform Algorithms

This chapter investigates what the paradigm of indirect diagonaliza-
tion from Chapter 3 can say about lower bounds for satisfiability in
nonuniform models. We revisit the results from previous sections and
show that, modulo some loss in parameters, certain uniformity require-
ments can be dropped or relaxed significantly. We will not succeed in
obtaining lower bounds on fully nonuniform circuits but will obtain
interesting lower bounds for specific types with relatively weak unifor-
mity conditions.

Recall that the hypotheses we tried to rule out in the previous sec-
tions consist of two parts: that nondeterministic linear time can be
simulated on co-nondeterministic machines in time nc, and on deter-
ministic or co-nondeterministic or nondeterministic machines that run
in time nd and space ne. We used the first hypothesis for only one goal,
namely reducing the number of alternations in alternating computa-
tions at a small cost in running time.

Karp and Lipton [33] showed that if satisfiability has polynomial-
size circuits then the polynomial-time hierarchy collapses to the second
level. Here is a more quantitative statement.

259

260 Somewhat-Nonuniform Algorithms

Lemma 6.1 (Karp–Lipton [33]). If

NT(n) ⊆ SIZE(nc)

for some real c then

Σ2T(n) ⊆ Π2T(nc+o(1)).

Proof. It is a bit easier to think about the lemma as transforming a
linear-time Π2-machine M into an equivalent Σ2-machine N that runs
in time nc+o(1). Let M ′ denote the nondeterministic machine induced by
the existential and final deterministic phase of M . The Σ2-machine N

uses its existential phase to guess a circuit C of size nc that purportedly
solves the following problem: given a configuration of M ′ on inputs of
size n, can M ′ reach an accepting halting configuration from there.
N checks the validity of the circuit by verifying the following for every
instance y of size m = O(n): If the configuration y is halting then C

accepts iff y is accepting; otherwise, C accepts y iff it accepts at least
one of the configurations that can be reached in a single step from y.
The machine N can guess the instance y during its universal phase and
perform the check during its final deterministic phase in time nc+o(1).
During its universal phase, N also makes the universal guesses M makes
during its first phase. During its final deterministic phase, N uses the
circuit C to simulate the computation of M during its existential and
final deterministic phase. The latter takes time nc+o(1).

As described in Section 4.1, we can use an efficient complementation
within the second level of the polynomial-time hierarchy to transform
any alternating machine into an equivalent Σ2-machine at a small cost
in running time. Plugging in this component as a substitute for the
efficient complementation within the first level, we obtain the following
analog to Lemma 4.1.

Lemma 6.2. If

NT(n) ⊆ SIZE(nc)

261

for some real c, then for every nonnegative integer � and for every
sufficiently large polynomial t,

DTs(t) ⊆ Σ2T(tζ�+o(1)),

where

ζ0 = 1/2
ζ�+1 = cζ�/(1 + cζ�).

(6.1)

Proof. The base case � = 0 of the induction proof holds by virtue of
(3.7). For the induction step � → � + 1 we have for every real ζ ∈ (0,1)
and sufficiently large polynomial t

DTs(t) ⊆ ∃tζ+o(1)∀log t DTs(t1−ζ)︸ ︷︷ ︸
(∗)

[(3.6) with b = tζ]

⊆ ∃tζ+o(1)∀log t Π2T(t(1−ζ)ζ�+o(1))︸ ︷︷ ︸
(∗∗)

[induction hypothesis]

⊆ ∃tζ+o(1)∀log t Σ2T(t(1−ζ)ζ�c+o(1))︸ ︷︷ ︸
[Lemma 6.1]

⊆ ∃tζ+o(1) ∀log t∃t(1−ζ)ζ�c+o(1)︸ ︷︷ ︸
(∗∗∗)

coNT(t(1−ζ)ζ�c+o(1))

[expanding notation]

⊆ ∃tζ+o(1)∃t(1−ζ)ζ�c+o(1)∀log tcoNT(t(1−ζ)ζ�c+o(1))
[independence]

⊆ Σ2T(tζ+o(1) + t(1−ζ)ζ�c+o(1))
[simplification]

(6.2)

Note that the input to (∗) is only of length n + to(1) = O(n) so the term
tζ+o(1) does not appear in the running time of the Π2-computation on
the next line. The same holds for (∗∗) because we do not take up the
∀log t-part in the transformation. Not taking up those universal guesses
fails to reduce the number of alternations in the next line. However, the

262 Somewhat-Nonuniform Algorithms

guesses represented by ∃tζ�(1−ζ)c+o(1)
in (∗∗∗) essentially correspond to

a circuit for satisfiability on inputs of size m = tζ�(1−ζ)+o(1), which can
be made independently of the choices in the preceding ∀log t-quantifier.
Thus, the ∃tζ�(1−ζ)c+o(1)

-phase can be moved in front of the ∀log t-phase.
The final running time is optimized up to subpolynomial factors by

equating ζ and (1 − ζ)ζ�c, which yields the recurrence (6.1).

By Proposition 4.2 the sequence (6.1) converges monotonically to
ζ∞ = 1 − 1/c for c ≥ 1; the sequence is decreasing iff c < 2.

In order to continue the argument along the lines of (4.5) in
Section 4.1, we need a second hypothesis that allows us to effi-
ciently simulate Σ2-computations (rather than Σ1-computations as in
Section 4.1) by deterministic machines that run in a small amount of
space. If we assume Σ2T(n) ⊆ DTs(nd) as the second hypothesis, we
can continue as follows: for every nonnegative integer � and every suf-
ficiently large polynomial t,

Σ2T(t) ⊆ DTs(td) ⊆ Π2T(tdζ�+o(1)).

We obtain a contradiction with Lemma 3.1 for k = 2 if dζ0 < 1 or
dζ∞ < 1, i.e., if d < 2 or (c − 1)d < c. Since the existence of a DTs(nd)-
algorithm for Σ2SAT implies that satisfiability has circuits of size
nd+o(1), we can assume that c ≤ d. In that case d < 2 implies (c − 1)
d < c, so we can forget about the first condition.

We point out that the results of Section 4.2 allow us to directly
obtain a somewhat weaker result without going through Lemma 6.2.
By Lemma 6.1, our hypotheses imply

Σ2T(n) ⊆ Π2T(nc+o(1)) ∩ DTs(nd).

This is all we need to apply the generalization of the lower bound
arguments for NT(n) from Section 4.1 to Σ2T(n). In particular, the
first part of Theorem 4.5 for k = 2 implies that we get a contradiction
for (c − 1)d < 1. In our setting, we managed to relax the latter con-
dition to (c − 1)d < c using Lemma 6.2. The improvement is due to
our exploiting the obliviousness of the circuit we guess in the Karp–
Lipton argument in the proof of Lemma 6.2. This allows us to shield
part of the input to the Π2-computation we need to complement in the

263

third line of (6.2). We do not know of a way to exploit the oblivious-
ness of the circuit in the context of Lemma 4.3, whose generalization
yielded the second part of Theorem 4.5. We can still directly apply the
second part of Theorem 4.5 for k = 2, though. All combined, we obtain
the following counterpart to the Master Theorem for deterministic
algorithms.

Theorem 6.3. For all reals c and d such that (c − 1)d < c or cd(d −
2) − 2d + 2 < 0, there exists a positive real e such that at least one of
the following fails:

(i) satisfiability has circuits of size nc and
(ii) Σ2SAT has a deterministic random-access machine that runs

in time nd and space ne.

Moreover, the constant e approaches 1 from below when c approaches
1 from above and d is fixed.

Note the differences with Theorem 1.3: part (i) refers to circuits
rather than co-nondeterministic machines, and part (ii) describes a
machine for Σ2SAT rather than for satisfiability. The true nonuni-
form equivalent of (i) in Theorem 1.3 uses co-nondeterministic rather
than standard deterministic circuits. If we assume that satisfiability
has small co-nondeterministic circuits, we can transform any alternat-
ing machine into an equivalent Σ3-machine at a small cost in running
time. This follows from an extension of the Karp–Lipton argument to
co-nondeterministic circuits. Yap [62] showed that if satisfiability has
co-nondeterministic circuits of polynomial size then the polynomial-
time hierarchy collapses to the third level. The proof is the same as the
one for Lemma 6.1 except that the validity check for the circuit now
takes an extra alternation. The argument yields the following quanti-
tative statement similar to Lemma 6.1.

Lemma 6.4 (Yap [62]). If

NT(n) ⊆ coNSIZE(nc)

264 Somewhat-Nonuniform Algorithms

for some real c then

Σ3T(n) ⊆ Π3T(nc+o(1)).

The resulting equivalent of Lemma 6.2 has the same parameters
but uses the hypothesis NT(n) ⊆ coNSIZE(nc), yields simulations of
DTs on Σ3-machines, and can start with ζ0 = 1/3. We can also apply
Theorem 4.5 with k = 3. The resulting equivalent to Theorem 6.3 reads
as follows.

Theorem 6.5. For all reals c and d such that (c − 1)d < c or cd(d −
3) − 2d + 3 < 0, there exists a positive real e such that at least one of
the following fails:

(i) satisfiability has co-nondeterministic circuits of size nc and
(ii) Σ3SAT has a deterministic random-access machine that runs

in time nd and space ne.

Moreover, the constant e approaches 1 from below when c approaches
1 from above and d is fixed.

Theorems 6.3 and 6.5 do not only involve satisfiability but also
Σ2SAT or Σ3SAT. We can deduce from Theorems 6.3 and 6.5 results
that only refer to satisfiability. First, we can immediately replace (ii) by
a more efficient algorithm for satisfiability, namely a DTS(n

√
d,ne/

√
d)-

algorithm in the case of Theorem 6.3 and a DTS(n
3√

d,ne/d2/3
)-

algorithm in the case of Theorem 6.5. Alternatively, we can impose
uniformity conditions on the circuits for satisfiability from part (i). If
the uniformity conditions are sufficiently strong, we can trivially drop
part (ii) all together; if they are weaker, the fact of having small fairly
uniform circuits for satisfiability can still help us to relax the condi-
tions on the fully uniform algorithm for satisfiability in part (ii). This
is what happens in the proof of Theorem 1.6, which corresponds to
a generalization to alternating machines of Theorem 6.5 for determin-
istic machines and a similar statement for nondeterministic machines
corresponding to the results from Chapter 5 (which we will not elabo-
rate on). Theorem 1.6 only refers to the setting with small values of c,

265

though. This is because in that setting we know how to handle large
values of d and the value of d ultimately figures in the bound on the
running time of the uniformity algorithm for the circuits. Since we are
shooting for as weak and natural uniformity conditions as possible, we
would like to accommodate arbitrarily large polynomial running times
for the uniformity algorithm, which forces us to the setting with small
values of c.

We now show how to argue Theorem 1.6. The proof has some sim-
ilarity with Fortnow’s original proof of Theorem 1.1, which goes as
follows. First, if NT(n) ⊆ coNT(n1+o(1)) then the n1+o(1)-time hierar-
chy collapses to the first level, so for every time bound t ≥ n,

∪a≥1ΣaT(t1+o(1)) = NT(t1+o(1)). (6.3)

Second, if NT(n) ⊆ DTS(nd,ne) for some real e < 1 then we can pick a
positive real ε < 1 − e such that t = n(1−ε)/e is a super-linear polyno-
mial and by Lemma 3.4

NT(t) ⊆ DTS(nd(1−ε)/e,n1−ε) ⊆ ΠkT(n)

for some integer k depending on d, e, and ε. Therefore, picking a = k in
(6.3) we obtain that ΣkT(n(1−ε)/e) ⊆ ΠkT(n1+o(1)), which contradicts
Lemma 3.1 as (1 − ε)/e > 1.

In our current setting, the hypothesis NT(n) ⊆ coNSIZE(n1+o(1))
and repeated applications of Lemma 6.4 imply a collapse of the n1+o(1)-
time hierarchy to the third level, so for every time bound t ≥ n we have

∪a≥1ΣaT(t1+o(1)) = Σ3T(t1+o(1)). (6.4)

If our second hypothesis were Σ3T(n) ⊆ DTS(nd,ne) for some real
e < 1, we could finish the argument exactly as before. However, we
only have NT(n) ⊆ DTS(nd,ne) to work with. In the above results for
NP-uniform circuits, we managed to bridge the gap by efficient simula-
tions of Σ3-computations by nondeterministic computations. We do not
know of such simulations in the case of ΣkTS(nO(1),n1−ε)-uniformity.
However, we can directly show how to simulate Σ3T(t) for small but
super-linear polynomials in some fixed level of the n1+o(1)-time hierar-
chy, and that is all we need to finish the argument.

266 Somewhat-Nonuniform Algorithms

Consider the following attempt to obtain an efficient nondetermin-
istic simulation of Σ3T(t). By hypothesis, we know that there exists a
co-nondeterministic circuit C of size t1+o(1) that decides the final non-
deterministic phase of the Σ3T(t)-computation. The circuit C may be
difficult to compute but once we have our hands on it, we can transform
the Σ3T(t)-computation into an equivalent Σ2T(t1+o(1))-computation.
We can repeat this process using a circuit C ′ to reduce the Σ2T(t1+o(1))-
computation further down to a NT(t1+o(1))-computation. Once we are
there, we can run our ΣkTS(nd,ne)-algorithm for NT(n) to arrive at a
situation where Lemma 3.5 applies, so we end up in some fixed level of
the linear-time hierarchy. The only pieces of information we are missing
to execute the above plan are the descriptions of the circuits C and C ′.
We can simply consider those as additional inputs to the above process
and generate the bits of the description as needed by the process, using
the uniformity of the circuits.

More precisely, for every language L ∈ Σ3T(t) there exists a lan-
guage L′ in nondeterministic quasi-linear time such that

x ∈ L ⇔ 〈x,C,C ′〉 ∈ L′,

where C and C ′ are the above circuits. By our second hypothesis there
exists a Σk-machine M that decides whether 〈x,C,C ′〉 ∈ L′ in time Nd

and space N e, where N = |〈x,C,C ′〉| = t1+o(1). In order to decide L on
input x, we run M on input 〈x,C,C ′〉; each time M needs to access a
bit of C or of C ′, we run the uniformity algorithm for the circuit to
determine that bit on the fly.

If the circuits are NTS(nd,ne)-uniform, the resulting algorithm for
L is ΣkTS(t2d+o(1), te+o(1)). By Lemma 3.5, for polynomials t of degree
less than (1 − ε)/e, this puts L in some fixed level of the linear-time
hierarchy, which leads to a contradiction with Lemma 3.1 since we also
have (6.4).

If the uniformity algorithm is an alternating machine, the above
simulation has a super-constant number of alternations and we do not
know how to obtain a simulation in Σ�TS(nO(1),n1−ε) for some fixed �

and positive real ε, but we still obtain a simulation in a fixed level of
the linear-time hierarchy. We can view our algorithm for L as an oracle
computation, where M makes oracle queries to the uniformity oracle

267

for the circuits C and C ′. For t = n(1−ε)/e, both the base computation
and the oracle computations lie in ΣkTS(n(1−ε)/e·d+o(1),n1−ε), so by
Lemma 3.5 in Σ�T(n), where � is an integer which only depends on k,
d, e, and ε. The following standard fact then shows that the overall
computation lies in Σ2�T(n1+o(1)). In fact, in our context we can shave
off one alternation but we will not worry about that. For completeness
we include a proof of the fact.

Proposition 6.6. For all integers � ≥ 1 and m ≥ 0,

Σ�T(n)ΣmT(n) ⊆ Σ�+mT(n).

Proof. It suffices to provide a relativizable proof for � = 1 and arbitrary
nonnegative integer m, since we can then argue by induction on � that

Σ�+1T(n)ΣmT(n) ⊆ NT(n)Σ�T(n)ΣmT(n)⊕ΣmT(n) ⊆ NT(n)Σ�+mT(n),

where ⊕ denotes disjoint union.
Consider an NT(n)-machine M that makes oracle queries to a

ΣmT(n)-machine O. We construct an equivalent Σm+1T(n)-machine
N as follows.

N starts out in an existential phase and runs M up to the point
where M is about to output its decision b. Each time M makes an oracle
query q, N makes a guess a for the answer, stores the pair 〈q,a〉 on a
separate tape, and continues the simulation of M assuming the oracle
answer a. When M is finished, N rejects outright if b = 0. Otherwise,
N wants to accept iff all guesses for the answers to the queries were
correct. It verifies the query–answer pairs in the following fashion. For
all the queries q that were answered positively, it runs O on input q. For
the other queries, it runs O on input q, where O denotes the Σm+1T(n)-
machine that complements the ΣmT(n)-machine O in the trivial way.
N accepts iff all the runs accept. N executes these runs in parallel,
synchronizing the existential and universal phases such that the overall
simulation is of type Σm+1. Since the sum of the lengths of the queries
M makes on a valid computation path is bounded by a linear function
and O runs in linear time, we can clock N to run in linear time without
affecting the strings N accepts.

268 Somewhat-Nonuniform Algorithms

We can then finish the indirect diagonalization argument as before.
By choosing a = 2� + 1 in (6.4) we have

Π2�T(n(1−ε)/e) ⊆ Σ2�+1T(n(1−ε)/e)
⊆ Σ3T(n(1−ε)/e+o(1)) ⊆ Σ2�T(n1+o(1)),

which contradicts Lemma 3.1 since (1 − ε)/e > 1. This finishes the
proof of Theorem 1.6.

We next argue the instantiations of the proof of Theorem 1.6 stated
in Corollary 1.1. Circuits of size s and width w can be evaluated simul-
taneously in time s logO(1) s and space O(w logs). SAC1-circuits can be
evaluated in NTS(nO(1), log2 n) [50]. All of these simulations just need
access to the input and the description of the circuit. Let us denote the
latter circuit by C ′′. In the setting of the proof of Theorem 1.6, the input
is of the form 〈x,C,C ′〉 and the circuit C ′′ is the one from the same
family as C and C ′ but for the input length |〈x,C,C ′〉|. The proof of
Theorem 1.6 still works. The only modification is that the base machine
M now corresponds to one of the above circuit-simulating algorithms,
which all run in the first level of the polynomial-time hierarchy or bet-
ter using space at most n1−ε. Apart from x and the descriptions of the
circuits C and C ′, the circuit-simulating algorithms also need access to
the description of C ′′. The bits of those descriptions are again gener-
ated on the fly using the uniformity algorithm for the circuit family.
A similar application of Proposition 6.6 as in the proof of Theorem 1.6
is the key to complete the proof of Corollary 1.1.

Finally, we mention that there is another direction in which we
can make the models to which our lower bound arguments apply a
bit more nonuniform — most of the results we covered carry through
when we supply the machines with a subpolynomial amount of advice.
If our hypothetical machines solving hard problems have advice, we
can pass along and collect all the advice strings we need during the
various transformations. Since we only apply a constant number of
transformations and each one involves at most a polynomial blowup in
resources, the total amount of advice remains subpolynomial. In the
case where we were aiming for a contradiction with Lemma 3.1, the
final line of our proof now becomes of the form:

ΣkT(nb) ⊆ ΠkT(na)/no(1)

269

for some positive integer k and reals a and b with 1 ≤ a < b. Because the
proof of Lemma 3.1 can handle up to n bits of advice on the smaller time
side, we still obtain the contradiction we want. The same holds when
we use Lemma 3.3 in Chapter 8. However, we do not know whether
Lemma 3.2 holds with no(1) bits of advice on the smaller time side. Of
the arguments we present in this survey, only one relies on Lemma 3.2,
namely the extension of Theorem 1.5 we mentioned in Chapter 5 (see
(5.4)). And even there, we could perform another complementation and
use Lemma 3.1 instead at the cost of some deterioration in parameters.

7
Randomized Algorithms

This chapter describes the known lower bounds on randomized
machines with bounded error. The simplest problems for which we have
nontrivial results are Σ2SAT in the case of two-sided error, and tau-
tologies in the case of one-sided error. We first discuss those results and
then mention stronger lower bounds for ΣkSAT with k > 2.

7.1 Satisfiability and Σ2SAT

We again follow the paradigm of indirect diagonalization as described
in Chapter 3, using the polynomial-time hierarchy as the substrate for
intermediate computations. We can bring the ideas behind the deter-
ministic lower bounds to bear in the randomized setting by exploit-
ing efficient simulations of randomized algorithms on Σ2-machines.
The standard simulations, due to Sipser–Gacs [53] and Lautemann
[36], transform a BPTS(t,s)-machine into a Σ2-machine that runs a
DTS(tO(1),s)-computation after making its existential and universal
guesses. The hope is to apply the unconditional speedups of determin-
istic space-bounded computations from Section 3.2 to this final deter-
ministic phase and eliminate the induced alternations so as to obtain a

270

7.1 Satisfiability and Σ2SAT 271

net speedup that contradicts Lemma 3.1 or another result of the time
hierarchy ilk.

It turns out that we need to modify the standard simulations some-
what in order to obtain lower bounds for Σ2SAT. Let us start by ana-
lyzing the complexity of Lautemann’s simulation, paying attention to
its dependence on the error bound.

Let M denote a BPTS(t,s)-machine that uses r random bits and
decides a language L with error on both sides bounded by ε. When ε

is small enough in comparison to r, we can characterize the inputs x

that are in the language L defined by M as those for which we can
cover the entire universe of possible random strings of length r by a
small number of shifts of the set of random strings that lead M to
accept on input x. Let us denote the number of shifts by σ. If x ∈ L,
we can guarantee that such shifts exist as long as εσ < 1/2r. If x /∈ L,
no choice of σ shifts can cover the universe of random strings as long
as ε < 1/σ. For such ε and σ, these complementary conditions provide
a Σ2-predicate that defines L.

Lemma 7.1 (Lautemann [36]). Let L be a language recognized by a
randomized machine M that runs in time t, space s, and uses r random
bits with error bounded on both sides by ε. Then for any function σ

such that ε < 1/max(2r/σ,σ), we have that

L ∈ ∃σr∀rDTS(σt,s + logσ). (7.1)

In his proof that BPP lies in the second level of the polynomial-
time hierarchy, Lautemann starts from an algorithm deciding L with
error less than the reciprocal of the number r′ of random bits it uses.
Such an error probability can be achieved from a standard random-
ized algorithm with error bounded by 1/3 and using r random bits by
taking the majority vote of O(logr) independent trials, which results
in r′ = O(r logr). For ε < 1

r′ , choosing σ = r′ satisfies the conditions of
Lemma 7.1. This shows that a BPTS(t,s)-computation using r random
bits can be simulated in

∃(r logr)2∀r logrDTS(tr(logr)2,s). (7.2)

272 Randomized Algorithms

Once we have transferred the computation to the polynomial-time hier-
archy, the idea is to use the techniques from Section 3.2 to speed it up.
However, as r can be of the same order as t, the final deterministic
phase may take Ω(t2) time. Since the techniques from Section 3.2 can
realize a square-root speedup at best, overall we would not gain any-
thing in computation time. Moreover, even if we could speed up the
final deterministic phase, the existential and universal phases could
still take Ω(t2) time. The solution to both issues is to reduce the num-
ber of random bits without increasing the time or space by much. Since
we are working in a space-bounded setting, we have good pseudoran-
dom generators at our disposal to do so. We state the properties we
need of Nisan’s pseudorandom generator [45].

Lemma 7.2 (Nisan [45]). Every randomized machine M running in
time t and space s with error ε can be simulated by another randomized
machine that runs in time O(t · (log t)O(1)) and space O(s log t) and uses
only O(s log t) random bits. The error of the simulation is ε + 1/2s, and
is one-sided if M has one-sided error.

Note that we do not apply Lemma 7.2 to deterministically simulate
the randomized machine. Instead, we use it to reduce the randomness
required by a BPTS(t,s)-machine to O(s log t). Combined with (7.2),
we conclude that

BPTS(t,s) ⊆ ∃s2(log t)3∀s(log t)2DTS(ts(log t)O(1),s log t). (7.3)

Let us illustrate how this simulation leads to a time–space lower
bound for Σ2T(n). For simplicity we only consider the range of sub-
polynomial space. Assume by way of contradiction that

Σ2T(n) ⊆ BPTs(nd)

for some real d. First notice that the hypothesis combined with (7.3)
and the closure of BPTs under complementation allows us to efficiently
complement computations within the second level of the polynomial-
time hierarchy. More specifically, we have that

Σ2T(n) ⊆ BPTs(nd) ⊆ Π2T(nd+o(1)). (7.4)

7.1 Satisfiability and Σ2SAT 273

By Lemma 3.1, this means that d cannot be less than 1. Moreover,
we know that the latter Π2-computation only guesses no(1) bits in
its existential and universal phases, and then runs a DTs(nd+o(1))-
computation on an input of size n + no(1). Thus, starting from a
Σ2T(n2)-computation instead of a Σ2T(n)-computation in (7.4), we can
apply the square-root speedup (3.7) to the final DTs(n2d+o(1))-phase on
the right-hand side of (7.4) and obtain a simulation which makes one
more alternation than we started with but only runs a DTs(nd+o(1))-
computation in its final deterministic phase. To balance the number
of alternations, we eliminate one of them. We do so by viewing the
part of the simulation after the first universal phase as a Σ2T(nd+o(1))-
computation on an input of size n + no(1) and turn it into an equivalent
Π2-computation using the efficient complementation (7.4) once more.
Merging the resulting adjacent existential stages yields that

Σ2T(n2) ⊆ Π2T(nd2+o(1)). (7.5)

For d <
√

2, this results in a net speedup, which is a contradiction
to Lemma 3.1. For values of d in the range [

√
2,2), the conclusion (7.5)

does not immediately yield a contradiction with Lemma 3.1 but it gives
us a complementation of Σ2-computations that is more efficient than
the one given by (7.4), at least for running times that are quadratic
or higher. We then go through the argument again using the more
efficient complementation, which allows us to rule out larger values of
d and yields an even more efficient complementation for values of d less
than 2, and so on. We analyze this bootstrapping argument in the next
lemma.

Lemma 7.3 (Diehl–van Melkebeek [17]). If

Σ2T(n) ⊆ BPTs(nd)

for some real d, then for every nonnegative integer � and every suffi-
ciently large polynomial t

Σ2T(t) ⊆ Π2T(tη�+o(1)),

where η� = (d/2)�d.

274 Randomized Algorithms

Proof. Let us consider the induction step � → � + 1 first.

Σ2T(t) ⊆ BPTs(td) [hypothesis of the lemma]

⊆ ∀to(1)∃to(1)
DTs(td+o(1))︸ ︷︷ ︸

(∗)

[(7.3)]

⊆ ∀to(1) ∃to(1)
Σ2T(td/2+o(1))︸ ︷︷ ︸

(∗∗)

[(3.7)]

⊆ ∀to(1)
Π2T((td/2)η�+o(1)) [induction hypothesis]

⊆ Π2T(td/2·η�+o(1)) [simplification]

Note that the input to (∗) and to (∗∗) is of size n + to(1) = O(n). This
justifies setting η�+1 = (d/2)η�. The base case follows from the first two
lines of the induction step.

For values of d < 2, the sequence η� converges to 0, so Lemma 7.3
yields a contradiction with Lemma 3.1 for k = 2. This establishes The-
orem 1.7 for the case of subpolynomial space bounds. The same con-
struction works for space bounds that are a bit larger. In order to
show that the constant e in Theorem 1.7 converges to 1/2 when d

approaches 1, a different simulation than (7.3) is needed, namely one
where the dependence on s of the number of guesses in the initial
phase is only linear rather than quadratic. Such a simulation can be
obtained using randomness-efficient methods for error reduction. With
such methods, the error can be made as small as 1/2r while using only
O(r) random bits. Specifically, the algorithm runs O(r) trials which are
obtained from the labels of vertices on a random walk of length O(r)
in an easily constructible expander graph, and accepts if a majority of
these trials accept. We can use the Gabber–Galil family of expanders
[23], a construction based on the Margulis family [38], where the ver-
tices are connected via simple affine transformations on the labels. The
easy form of the edge relations ensures that the walk is efficiently com-
putable in time O(r2) and space O(r).

Lemma 7.4 ([12, 30]). Let M be a randomized machine with con-
stant error bounded away from 1/2 that runs in time t, space s, and
uses r random bits. Then M can be simulated by another randomized

7.1 Satisfiability and Σ2SAT 275

machine M ′ that runs in time O(rt) and space O(r + s), while using
only O(r) random bits to achieve error at most 1/2r.

Once an algorithm has been amplified as in Lemma 7.4, a con-
stant number σ of shifts suffice in Lautemann’s theorem (Lemma 7.1).
This shows that a BPTS(t,s)-computation that uses r random bits can
be simulated in ∃r∀rDTS(tr,r + s). Combining this simulation with
Nisan’s pseudorandom generator (Lemma 7.2) shows that

BPTS(t,s) ⊆ ∃s log t∀s log tDTS(ts(log t)O(1),s log t). (7.6)

Using this simulation instead of (7.3) in the above argument allows us
to establish Theorem 1.7 for space bounds close to

√
n.

In the case of randomized algorithms with one-sided error (i.e.,
there can only be errors on inputs that are in the language), we can
establish lower bounds for a problem that is easier than Σ2SAT, namely
tautologies. The results from Chapter 5 trivially imply such lower
bounds, since randomized computations with one-sided error are special
cases of nondeterministic computations. In particular, Theorem 1.5
implies a lower bound of n

3√4−o(1) for every subpolynomial-space
one-sided error randomized algorithm for tautologies. But we can
do better. In fact, Diehl and van Melkebeek observed that we can
match every deterministic time–space lower bound that carries over to
co-nondeterministic algorithms that guess few bits. The reason we can
match such bounds is that we can use Nisan’s pseudorandom generator
from Lemma 7.2 to transform a one-sided error randomized algorithm
for tautologies into an equivalent co-nondeterministic algorithm that
guesses few bits and takes only marginally more time and space. To date,
all lower bound arguments for satisfiability on deterministic machines
carry over to co-nondeterministic machines with few guess bits. For
example, the arguments from Section 4.1 can be adapted to show
that NT(n) �⊆ ∀no(1)

DTs(n2cos(π/7)−o(1)), which implies that coNT(n) �⊆
RTs(n2cos(π/7)−o(1)). More generally, we obtain the following.

Theorem 7.5 (follows from [17, 61]). For all reals c and d such
that (c − 1)d < 1 or cd(d − 1) − 2d + 1 < 0, there exists a positive real
e such that tautologies cannot be solved by both

276 Randomized Algorithms

(i) a randomized random-access machine with one-sided error
that runs in time nc and

(ii) a randomized random-access machine with one-sided error
that runs in time nd and space ne.

Moreover, the constant e approaches 1 from below when c approaches
1 from above and d is fixed.

7.2 Related Problems

The lower bound argument for Σ2SAT on randomized machines with
two-sided error readily generalizes to ΣkSAT for values of k > 2. Under
the hypothesis ΣkT(n) ⊆ BPTs(nd), we can apply the bootstrapping
strategy from Section 7.1 to show that, for every nonnegative integer
� and sufficiently large polynomial t, ΣkT(t) ⊆ ΠkT(tη

′
�+o(1)), where

η′
� = (d/k)� · d/(k − 1). This leads to a contradiction with Lemma 3.1

as long as d < k.
We can handle larger space bounds for k > 2 than for k = 2. Recall

that Theorem 1.7 only worked for space bounds of the form ne for
e < 1/2. For k > 2, we can handle every real e < 1. The reason is that we
can exploit the extra alternation to establish a more time-efficient sim-
ulation of BPTS(t,s)-computations than (7.3) and (7.6). More specifi-
cally, we add an alternation to the latter Σ2-simulation and eliminate
the time blowup incurred by running the O(s log t) trials required by the
error reduction of Lemma 7.4. Rather than deterministically simulate
all of these trials, we use the power of alternation to efficiently verify
that a majority of these trials accept. This leads to the simulation

BPTS(t,s) ⊆ ∃s log t∀s log t∃logsDTS(t(log t)O(1),s log t). (7.7)

As in Section 7.1, this simulation admits a speedup of BPTS on
Σ3-machines as well as an efficient complementation of Σ3. Under the
hypothesis ΣkT(n) ⊆ BPTS(nd,ne), the latter eliminates alternations
essentially at the cost of raising the running time to the power of d. For
values of d close to 1, this cost is small enough to alleviate the effects
of the extra alternation in (7.7). In this case, the better dependence
of the running time of the simulation on the space parameter allows

7.2 Related Problems 277

us to derive contradictions for larger values of e than we can by using
(7.6). On the other hand, for larger values of d, the extra alternation in
(7.7) has a greater impact, and eventually prevents us from reaching a
contradiction. In this case, switching to the more alternation-efficient
simulation given by (7.6) allows us to do better. All combined we obtain
the following statement.

Theorem 7.6(Diehl–van Melkebeek [17]). For every integer k ≥ 3
and every real d < k there exists a positive real e such that ΣkSAT
cannot be solved by a randomized random-access machine with two-
sided error that runs in time nd and space ne. Moreover, e approaches
1 from below as d approaches 1 from above.

The simulation (7.7) also plays a role in an extension of the time–
space lower bound for Σ3SAT in the range of small time bounds. Viola
[58] showed that Σ3T(n) �⊆ BPTS(n1+o(1),n1−ε) also holds in the more
powerful model of space-bounded randomized computation where the
machine has sequential two-way access to the random bits (and random
access to everything else). The proof uses the pseudorandom generator
by Impagliazzo et al. [29] instead of Nisan’s pseudorandom generator.
The latter pseudorandom generator critically depends on the one-way
access to the random bits; the former one also works in the two-way
access model but only in a very limited range. This is why only the
result for small time bounds carries over.

Finally, Diehl [16] and others observed that the lower bounds for
Σ2T(n) immediately imply somewhat weaker lower bounds for a class
that lies between NT(n) and Σ2T(n), namely MA1T(n), which stands
for Merlin–Arthur protocols with perfect completeness that run in lin-
ear time. Merlin–Arthur protocols [5, 6] are proof systems for a lan-
guage L in which Merlin presents a purported proof of membership of
the input x to Arthur, who then verifies the proof using randomness.
The requirements for the proof system are: (perfect completeness) for
inputs x ∈ L, Merlin has to be able to convince Arthur with probabil-
ity one, and (soundness) for inputs x �∈ L, Arthur can be convinced of
membership only with bounded probability, no matter whether Merlin
follows the protocol or not. The running time of the protocol is the

278 Randomized Algorithms

time Arthur spends in the communication with Merlin and in the ver-
ification. We can argue that if Σ2T(n) �⊆ BPTs(nd) then MA1T(n) �⊆
BPTs(n

√
d−o(1)). The reason is similar as to why in the deterministic

setting Σ2T(n) �⊆ DTs(nd) implies NT(n) �⊆ DTs(n
√

d−o(1)) and is per-
haps a bit easier to understand in the contrapositive. Assuming that
MA1T(n) ⊆ BPTs(nd), we have:

Σ2T(n) ⊆ ∃n ∀nDT(n)︸ ︷︷ ︸
⊆ ∃n BPTs(nd)︸ ︷︷ ︸ [hypothesis]

⊆ ∃n∃no(1)
co Rn

o(1)︸ ︷︷ ︸
(∗)

DTs(nd+o(1)) [(7.2)]

⊆ MA1T(nd+o(1)) [rewriting]

⊆ BPTs(nd2+o(1)) [hypothesis]

The funny co R-quantifier in (∗) indicates a special property of Laute-
mann’s simulation from Lemma 7.1, namely that for inputs outside
of L each choice of shifts can only cover a small fraction of the uni-
verse, provided the error bound is small enough. This means that the
resulting simulation represents a Merlin–Arthur protocol with perfect
completeness.

By Theorem 1.7, we conclude from the above reasoning that
MA1T(n) �⊆ BPTs(n

√
2−o(1)). In fact, Watson used a direct argument

along the lines of Lemma 4.1 to show that MA1T(n) �⊆ BPTs(nφ−o(1)).
Unfortunately, we do not know of a specific problem that captures the
complexity of MA1T(n) in a similar way as satisfiability does for NT(n),
and the result does not seem to yield better lower bounds for natural
computational problems. The same applies to the lower bounds which
Diehl and van Melkebeek [17] derive for classes of the form ΣkTS(n,s)
for sublinear s. For that reason we do not cover those results.

8
Quantum Algorithms

This chapter describes the known time and space lower bounds on
quantum models, namely for MajMajSAT. They follow from similar
lower bounds on randomized machines with unbounded error. We first
describe the latter results and then show how they translate to the
quantum setting.

8.1 Randomized Algorithms with Unbounded Error

Randomized machines with unbounded error do not represent a realistic
model of computation but they allow us to capture the complexity
of counting problems in a fairly tight way. We can obviously decide
languages in PP when given the ability to count NP-witnesses, and the
latter is something we can do using binary search when given access to
an oracle for PP.

As mentioned in Section 2.3, MajSAT captures the complexity of
the class PP in the same way as satisfiability captures the complex-
ity of NP. MajSAT is complete for quasi-linear time on randomized
machines with unbounded error under the very efficient reductions
given in Lemma 2.2. As a result, time and space lower bounds for
MajSAT and for PT(n) are equivalent up to polylogarithmic factors.

279

280 Quantum Algorithms

If we would like to establish lower bounds for PT(n) following the
indirect diagonalization paradigm from Chapter 3, Toda’s Theorem
suggests that we should look for another substrate than the polynomial-
time hierarchy. Instead, we use the so-called counting hierarchy, which
is a hierarchy built on top of PP in the same way as the polynomial-time
hierarchy is built on top of NP. Just like the polynomial-time hierar-
chy has alternate characterizations in terms of (α) uniform Boolean
formulas of polynomial size with existential and universal quantifiers,
and (β) uniform constant-depth circuits of exponential size consisting
of AND and OR gates, the counting hierarchy can be characterized in
terms of (α) uniform Boolean formulas of polynomial size with major-
ity quantifiers, and (β) uniform constant-depth circuits of exponential
size consisting of threshold gates.

Allender et al. developed an analog of Fortnow’s result in the count-
ing hierarchy. Fortnow relies on Nepomnjascii’s Theorem to show that,
under the hypothesis NT(n) ⊆ NTS(nd,ne) for some reals d and e < 1,
there exists a super-linear polynomial t such that computations in the
first level of the polynomial-time hierarchy that run in time t can be
simulated in linear time in some higher level of the polynomial-time
hierarchy. He then uses the hypothesis NT(n) ⊆ coNT(n1+o(1)) to show
that the n1+o(1)-time hierarchy collapses to the first level. All together
we obtain a speedup of computations within the first level from time t

to time n1+o(1), which contradicts the time hierarchy for nondetermin-
istic computations (Lemma 3.2). The critical ingredient in the analogue
by Allender et al. is the equivalent of Nepomnjascii’s Theorem in the
counting hierarchy. They use their equivalent to prove that, under the
hypothesis PT(n) ⊆ PTS(nd,ne) for some reals d and e < 1, there exists
a super-linear polynomial t such that computations in the first level of
the counting hierarchy that run in time t can be simulated in linear
time in some higher level of the counting hierarchy. They then employ
another hypothesis that implies a collapse of the n1+o(1)-time counting
hierarchy to the first level. The net result is again a speedup of compu-
tations within the first level of the hierarchy from time t to time n1+o(1),
which is ruled out by the time hierarchy for randomized machines with
unbounded error (Lemma 3.3).

8.1 Randomized Algorithms with Unbounded Error 281

The hypothesis Allender et al. need to collapse the n1+o(1)-time
counting hierarchy to the first level is a bit different than what Fortnow
needs for the similar collapse in the polynomial-time hierarchy. This is
due to one salient difference between the two hierarchies — whereas
complementation within a fixed level of the polynomial-time hierarchy
is believed to be difficult, it is trivial in the case of the counting hier-
archy. Indeed, even the linear-time levels of the counting hierarchy are
closed under complement. Thus, the equivalent of Fortnow’s collapse
hypothesis in the counting hierarchy, namely PT(n) ⊆ coPT(n1+o(1))
does not buy us anything. Instead, we can use the hypothesis that
linear-time computations in the second level of the counting hierarchy
can be simulated in PT(n1+o(1)) to collapse the n1+o(1)-time counting
hierarchy. Capitalizing on the completeness under very efficient reduc-
tions of MajSAT and MajMajSAT for the first and the second level of
the counting hierarchy, respectively, Allender et al. obtain the following
more precise statement.

Theorem 8.1 (Allender et al. [3]). For every real d and positive
real ε there exists a real c > 1 such that it cannot be the case that both

(i) MajMajSAT has a randomized algorithm with unbounded
error that runs in time nc and

(ii) MajSAT has a randomized algorithm with unbounded error
that runs in time nd and space n1−ε.

Corollary 8.1. For every positive real ε there exists a real d > 1
such that MajMajSAT does not have a randomized algorithm with
unbounded error that runs in time nd and space n1−ε.

As usual, we will focus on the less precise version of Theorem 8.1
with c = 1 + o(1). Our presentation is somewhat more elementary than
the one by Allender et al., who rely on the hardness under very effi-
cient reductions of MajMajSAT for the second level of the counting
hierarchy, i.e., for PPPP. Although it is straightforward to show that

282 Quantum Algorithms

MajMajMajSAT is hard for PPPP, it takes more work to show that
MajMajSAT is [55]. It turns out that the full power of the hardness
result for MajMajSAT is not needed and can be sidestepped by arguing
in terms of Boolean formulas with majority quantifiers rather than in
terms of relativized randomized computations with unbounded error.
That is the approach we will follow.

Before doing so, let us first cast the two steps of Fortnow’s argu-
ment in terms of manipulating Boolean formulas with existential and
universal quantifiers.

(1) If satisfiability is in coNT(n1+o(1)) then we can transform
in time n1+o(1) a Boolean formula ϕ(x,y,z) into another
Boolean formula ϕ′(x,y′) such that for every setting of x,

(∃y)(∀z)ϕ(x,y,z) ⇔ (∃y′)ϕ′(x,y′).

(2) If NT(n) ⊆ NTS(nd,ne) for some reals d and e < 1, then for
every real f < 1/e there exists an integer � such that for
every language L ∈ NT(nf) and every input length n, we can
generate in time n1+o(1) a Boolean formula ϕ(x,y1,y2, . . . ,y�)
such that for every input x of length n,

x ∈ L ⇔ (∃y1)(∀y2) · · ·(Qy�−1)(Qy�)ϕ(x,y1,y2, . . . ,y�−1,y�),

where Q denotes ∀ if � is even, Q denotes ∃ if � is odd, and
Q denotes the complement of Q.

We now lift the above two steps to the counting hierarchy using major-
ity formulas, which we inductively define as follows.

Definition 8.1. A Boolean formula is a majority formula. If ϕ(x,y)
denotes a majority formula on variables x and y, then (

M

y)ϕ(x,y) is a
majority formula on variables x. For any given setting of x, (

M

y)ϕ(x,y)
holds if for at least half of the settings of y, ϕ(x,y) holds.

We refer to the symbol

M

introduced in Definition 8.1 as a major-
ity quantifier. It is a mnemonic for “majority” or “most” in the same

8.1 Randomized Algorithms with Unbounded Error 283

way that ∃ is for “exists” and ∀ for “all.” Majority quantifiers form a
resource similar to alternations in regular quantified formulas.

The equivalent of the above two steps in Fortnow’s approach in
terms of majority formulas reads as follows:

(1) If MajMajSAT ∈ PT(n1+o(1)) then we can transform in time
n1+o(1) a Boolean formula ϕ(x,y,z) into another Boolean for-
mula ϕ′(x,y′) such that for every setting of x,

(

M

y)(

M

z)ϕ(x,y,z) ⇔ (

M

y′)ϕ′(x,y′). (8.1)

(2) If PT(n) ⊆ PTS(nd,ne) for some reals d and e < 1, then for
every real f < 1/e there exists an integer � such that for every
language L ∈ PT(nf) and input length n, we can generate in
time n1+o(1) a Boolean formula ϕ(x,y1,y2, . . . ,y�) such that
for every input x of length n,

x ∈ L ⇔ (

M

y1)(

M

y2) · · ·(M

y�−1)(

M

y�)ϕ(x,y1,y2, . . . ,y�−1,y�).
(8.2)

Once we have those two steps, the proof of Theorem 8.1 is straight-
forward. Part (ii) of the statement yields that PT(n) ⊆ PTS(nd+o(1),ne)
for some e < 1. Pick f to be a real in the range (1,1/e) and consider any
language L ∈ PT(nf). By the last part of Lemma 2.2 and the second
step, there exists an integer � independent of L such that on an input
x of length n we can generate in time n1+o(1) a Boolean formula ϕ such
that (8.2) holds. By part (i) of the theorem, we can apply the first step
� − 1 times to the Boolean formula and end up with a Boolean formula
ϕ′ such that

x ∈ L ⇔ (

M

y′)ϕ′(x,y′). (8.3)

The whole process only takes time n1+o(1); in particular, ϕ′ is of size
n1+o(1). The right-hand side can be easily evaluated on a randomized
machine with unbounded error that runs in time n1+o(1). Since L was an
arbitrary language in PT(nf), we conclude that PT(nf) ⊆ PT(n1+o(1)),
which contradicts Lemma 3.3 as f > 1.

The proof of the first step follows from the obliviousness of the
majority formula produced by the proof of the last part of Lemma 2.2

284 Quantum Algorithms

since our hypothesis gives a PT(n1+o(1))-algorithm to decide the left-
hand side of (8.1).

All the meat is in the proof of the second step, which takes up the
rest of this section. Given f < 1/e, there exists an integer g and a posi-
tive real ε such that PT(nf) ⊆ PTS(ng,n1−ε). Consider a computation
M of the latter type on an input x of length n. We assume that the
computation is normalized such that the possible computation paths
form a full binary tree.

The first step is to construct a uniform arithmetic formula of linear-
exponential size that computes the number of accepting computation
paths of M on input x. We can apply the divide-and-conquer strategy
from Figure 3.1 to reduce counting the number of computation paths
of length t from configuration C to configuration C ′, to instances of
the same problem but for paths of length t/b — just replace the exis-
tential quantifier in (3.1) by a summation over all possible choices of
the configurations Ci, and the universal quantifier by a product over
all choices of i. Setting t = ng and applying this strategy k = g/ε times
recursively with b = nε, we end up with trivial counting problems for
paths of length 1. The number of accepting computation paths on input
x can be expressed as an arithmetic formula with 2k alternating layers
of addition gates with fanin 2n (corresponding to all sequences of b

configurations of size n1−ε each) and multiplication gates with fanin b.
The formula is of size no more than 22kn and is logtime-uniform. The
values of the leaves can be computed in time almost-linear in n1−ε, so
in time linear in n.

The next step is to transform this arithmetic formula into a uniform
constant-depth threshold circuit of linear-exponential size that com-
putes the same number on the same inputs. We can do so by replacing
each addition and multiplication gate with logtime-uniform constant-
depth threshold circuitry. The existence of such circuitry is folklore in
the case of addition gates; for multiplication gates this was shown by
Hesse [27, 28], building on earlier work by Chiu [10, 11]. AND, OR, and
negation gates can be easily transformed into threshold gates, and the
latter into majority gates. We can also make sure the majority gates
all have fanin exactly 2m for some integer m = O(n). As a result, we

8.2 Connection with Quantum Algorithms 285

end up with a logtime-uniform circuit of size 2O(kn) that only consists
of majority gates with fanin 2m and has depth � − 1, where � = O(k) is
a constant. The circuit outputs many bits but we are only interested in
the bits that correspond to the two most significant bits of the output,
as they allow us to determine whether at least half of the computation
paths are accepting.

Finally, we transform the threshold circuit into a majority formula
with free variables x. We can describe a path from the output gate to an
input gate of the circuit by a sequence of binary strings y1,y2, . . . ,y�−1,
each of length m, where yi describes which child we pick at level i − 1.
Given a string y = y1,y2, . . . ,y�−1, we can determine the value of the
input gate y leads to in nondeterministic time O(n): guess the labels of
the gates on the path, verify them in deterministic time O(n) using the
logtime uniformity of the circuit, and compute the value of the input
gate the path leads to in deterministic time O(n). This almost gives
us a majority formula — we just need to replace the final calculation
by a fixed majority formula with free variables x, and y1,y2, . . . ,y�−1.
Since NT(n) ⊆ PT(n), we can do so by introducing an additional block
of variables y�, applying the last part of Lemma 2.1, and exploiting the
obliviousness of the Boolean formula ϕ it produces. This gives us the
Boolean formula ϕ(x,y1,y2, . . . ,y�) we need in time n1+o(1).

8.2 Connection with Quantum Algorithms

In terms of power the quantum model is believed to lie between ran-
domized machines with bounded error and randomized machines with
unbounded error. This is well-known in the time-bounded setting.
In the time- and space-bounded setting, van Melkebeek and Watson
recently showed how to efficiently simulate quantum machines on ran-
domized machines with unbounded error. Once we have that result, the
lower bounds of Theorem 8.1 readily translate into the lower bounds
of Theorem 1.8.

We first need to say a few words about the model of quantum com-
putation. We assume that the reader is familiar with the basic notions
and notation of quantum computing [35, 44]. We will not review those.

286 Quantum Algorithms

We do want to point out a few model-related aspects that become
pertinent when we care about concrete time and space bounds.

There are a number of choices to be made. First, which elementary
unitary operations with which transition amplitudes we can use. Sec-
ond, there is the issue of intermediate measurements: are they allowed
or can we only make a measurement at the end? Third, there are the
spatial constraints on the qubits on which the elementary operations
act: can we only operate on neighboring qubits or can we assume ran-
dom access? Finally, there is the question of whether the elementary
quantum operations that are performed should be oblivious to the input
and only depend on the input length (as in ordinary circuits), or can
depend on the input but be oblivious to the computation path (as in
circuits that are generated based on the input), or can depend on the
computation path (as in Turing machines).

For the purpose of proving meaningful lower bounds, we would like
our model to be as powerful as possible. The standard model of a
quantum Turing machines [8] does a good job but only accommodates
measurements at the end. Intermediate measurements are handled by
introducing ancilla qubits that are entangled with the measured qubit.
The entanglement prevents computation paths with different measure-
ment outcomes from interfering and therefore allows us to postpone
the measurement till the end. However, the ancilla qubits take up
space and can deteriorate the space complexity of the algorithm to
the extent that it becomes of the same order as its time complex-
ity. This is detrimental for establishing time–space lower bounds. Let
us also point out that important quantum algorithms like Shor’s do
make intermediate measurements, as does the simulation of random-
ized machines with bounded error on quantum machines. In particular,
if we want BPTS(t,s) ⊆ BQTS(t,s) to hold, we need to allow interme-
diate measurements.

Alternately, we can use quantum circuits consisting of elementary
unitary operations from a universal set and measurement operators
that act on a quantum register of size depending on the length of the
input. This is an appealing model for several reasons, including the fact
that algorithms like Shor’s are oblivious and can be naturally expressed
in it. The model also allows us to measure time and space in a simple

8.2 Connection with Quantum Algorithms 287

way, namely as the total number of operations and the number of qubits
in the register. These measures do not account for the resources needed
to generate the circuit, though. If we care about concrete time and
space bounds, we need to make sure that no complexity is hidden in
the generation of the circuit. We will do so by insisting that the time
and space needed to generate the circuit do not dominate the size and
width, respectively.

Definition 8.2. For all bounds t and s, we define BQTS(t,s) as the
class of languages decided by bounded-error quantum circuits consist-
ing of O(t) gates of type CNOT, H, G, G†, M, and Q that act on a
quantum register consisting of O(s) qubits and such that the type and
operands of the ith gate on a given input x can be generated in simul-
taneous time to(1) and space O(s). CNOT denotes the two-qubit gate
that performs a controlled not, H represents the Hadamard gate, G is
the one-qubit unitary gate with transition matrix[

1 0
0 3

5 + 4
5

√−1

]
,

G† denotes the adjoint of G, M is a one-qubit measurement gate, and
Q denotes the unitary query operator acting as follows on �logn� + 1
qubits: |i, b〉 → |i, b ⊕ xi〉, where xi denotes the ith bit of the input x.

The key points about the model are that it allows intermediate
measurements and random access to the input. The other details are
less important. In particular, the specific universal set consisting of
CNOT, H, G, and G† is chosen to convenience the derivation below
but is irrelevant. The Kitaev–Solovay Theorem [34] shows that we can
use any finite universal set that is closed under adjoint and such that
the transition amplitudes can be computed up to log t bits of accuracy
in time to(1) and space O(s) — we can simulate such computations in
our model with only a subpolynomial cost in time and a constant factor
cost in space.

Now that we have our model in place, we can prove the following
simulation.

288 Quantum Algorithms

Lemma 8.2 (van Melkebeek–Watson [41]). For all bounds t and s

BQTS(t,s) ⊆ PTS(t1+o(1),s + log t).

Lemma 8.2 combined with Theorem 8.1 immediately yields The-
orem 1.8. The proof of Lemma 8.2 is a modification of a simulation
due to Adleman et al. [1]. The latter authors show that BQT(t) ⊆
PT(t1+o(1)) by constructing nondeterministic machines in NT(t1+o(1))
whose accepting computation paths correspond to specific types of
computation paths through the quantum circuits. Their construction
does not handle intermediate measurements adequately as the authors
assume that all measurements are postponed using ancilla qubits. van
Melkebeek and Watson show how to accommodate intermediate mea-
surements in such a way that the nondeterministic machines run in
NTS(t1+o(1),s).

In order to prove Lemma 8.2, we construct a certain type of compu-
tation tree of the circuit on a given input x of length n. There is a level
in the tree corresponding to every gate and we label every node with
the configuration that the computation path from the root to that node
leads to. Note that there can be multiple nodes at a given level with the
same configuration label — this is what enables quantum interference.
We would like to set up the tree in such a way that the products of the
amplitudes along paths in the tree that are consistent with a prescribed
sequence µ of measurement outcomes can only take on a constant num-
ber of values. In order to achieve that, we exploit the special transition
amplitudes of our chosen universal set of unitary gates, and we mul-
tiplicate nodes compared to the natural computation tree. The nodes
at an H-level all have two children, corresponding to the two possible
base values of the qubit after the operation of the gate. We label the
edges with the corresponding gate transition amplitudes. At a G-level,
we introduce five children with edges labeled 1/5 in the case the qubit
is zero in the configuration of the node; otherwise we introduce seven
children of which three are connected with an edge labeled 1/5 and the
other four are connected with an edge labeled

√−1/5. A G†-level is
treated in a similar way. At a CNOT-, M-, and Q-level, every node has

8.2 Connection with Quantum Algorithms 289

only one child; the one edge is labeled 1. Note that this construction
realizes the goal we set out, namely that the transition amplitudes of
the paths can only take on a constant number of values. Given a path
π from the root to a leaf, let us denote by α(π) the product of all the
edge labels on that path. We can write α(π) as

α(π) =
a(π)

√
2

h(x)
5g(x)

,

where h(x) denotes the number of H-levels in the tree, and g(x) denotes
the number of G- and G†-levels, and a(π) only takes on the values of
the four complex roots of unity, namely ζ ∈ {1,−1,

√−1,−√−1}.
Let µ denote a fixed binary sequence. The probability that the ith

measurement gate outputs the bit µi for every i can be written as

∑
γ

∣∣∣∣∣∣
∑

π∼(µ,γ)

α(π)

∣∣∣∣∣∣
2

,

where γ ranges over all possible configurations and π ∼ (µ,γ) denotes
that the measurement outcomes on the path π are as prescribed in µ

and that the path ends in a leaf that is labeled with the configuration γ.
We can assume without loss of generality that the last measurement
determines acceptance. Thus, we can write the probability of accep-
tance as

1
2h(x)52g(x) ·

∑
µ ending in 1

∑
γ

∣∣∣∣∣∣
∑

π∼(µ,γ)

a(π)

∣∣∣∣∣∣
2

︸ ︷︷ ︸
(∗)︸ ︷︷ ︸

(∗∗)

.

Let us denote by Pζ(x,µ,γ) the number of paths π on input x that
satisfy π ∼ (µ,γ). We can construct a nondeterministic machine N that
counts Pζ(x,µ,γ) as follows: on input 〈x,µ,γ,ζ〉, N runs through the
computation tree on input x, checking for consistency with µ in case
of a measurement, and selecting an edge arbitrarily if it has a choice;
N keeps track of the value a(π) of the path it has constructed thus
far and of the current configuration; N accepts iff all the consistency

290 Quantum Algorithms

checks with µ are passed, the final configuration is γ, and a(π) = ζ at
that point. Note that #N(x,µ,γ,ζ) = Pζ(x,µ,γ), where #N(y) denotes
the number of accepting computation paths of the nondeterministic
machine N on input y. Given the uniformity conditions of the quantum
circuit, the machine N runs in time O(t1+o(1)) and space O(s + log t).
It needs to access each bit of µ only once and accesses them in order.
Since a(π) can only take on the values ζ ∈ {1,−1,

√−1,−√−1}, we can
rewrite (∗) as

|P1(x,µ,γ) − P−1(x,µ,γ) +
√−1P√−1(x,µ,γ) − √−1P−√−1(x,µ,γ)|2

=
∑
ζ4=1

Pζ(x,µ,γ)2

−2(P1(x,µ,γ)P−1(x,µ,γ) + P√−1(x,µ,γ)P−√−1(x,µ,γ)).

As a result, we can write (∗∗) as∑
ζ4=1

Sζ,ζ(x) − 2(S1,−1(x) + S√−1,−√−1(x)), (8.4)

where

Sζ,ζ′(x) =
∑

µ ending in 1

∑
γ

Pζ(x,µ,γ)Pζ′(x,µ,γ).

Now here is the crux: We can construct a nondeterministic machine
O such that #O(x,µ,γ,ζ,ζ ′) = Pζ(x,µ,γ)Pζ′(x,µ,γ) and such that
O(x,µ,γ,ζ,ζ ′) runs in time O(t1+o(1)) and space O(s + log t) and only
needs to access each bit of µ once.

If we have such a machine O, we can create for each of the terms
Sζ,ζ′ in (8.4) a nondeterministic Turing machine in NTS(t1+o(1),s +
log t) such that the number of accepting computation paths of that
machine on input x equals the corresponding term in (8.4). On input x,
the machine simply guesses and stores γ and then runs O(x,µ,γ,ζ,ζ ′),
guessing each bit of µ as needed by O without storing it. Note that the
latter is made possible by the fact that O only needs to access each bit
of µ once. Once we have all of those machines, we can combine them
to obtain machines M+ and M− of the same complexity such that the
probability of acceptance of x is given by

#M+(x) − #M−(x)
2h(x)52g(x) .

8.2 Connection with Quantum Algorithms 291

Combined with the fact that the functions h and g can be computed
in time t1+o(1) and space O(s), we can construct a machine M in
NTS(t1+o(1),s + log t) that has its number of accepting computation
paths offset by the right amount such that the fraction of accepting
computation paths is at least half iff the quantum circuit accepts x.
This finishes the proof of Lemma 8.2 modulo the construction of the
machine O.

For the construction of O the usual strategy runs N(x,µ,γ,ζ) fol-
lowed by a run of N(x,µ,γ,ζ ′) and accepts iff both runs accept. This
yields the correct count but does not do the job — O would need to
access each bit of µ twice, which would require the machines corre-
sponding to each of the terms in (8.4) to store µ and thereby use too
much space. However, we can execute the two runs in parallel, keeping
them in synch such that both runs access the same bit of µ at the same
point in time. This gives us the required machine O.

9
Future Directions

We have seen how the paradigm of indirect diagonalization from Chap-
ter 3 allows us to derive time–space lower bounds for well-motivated
problems on deterministic, nondeterministic, randomized, and quan-
tum models with random access. In each setting we focused on the sim-
plest computational problem for which we can establish nontrivial lower
bounds; for those we presented the state-of-the-art results. The time
lower bounds we obtained are still way below what we believe the true
time complexity to be even without explicit space bounds. Obtaining
nontrivial time lower bounds without space constraints seems beyond
the reach of the ideas we presented, as the arguments critically rely
on sublinear space bounds. Moreover, all the ingredients we use rela-
tivize and relative to the oracle of true fully quantified Boolean formu-
las all of the models we consider can be simulated deterministically in
quasi-linear time. There is good hope for quantitative improvements in
time–space lower bounds, though.

In the deterministic setting, there is a sense that a quadratic time
lower bound is the best we can hope the paradigm to give for satisfia-
bility on subpolynomial-space machines. Due to input size issues it is
not obvious that such a bound can be reached using the ingredients we

292

293

used. We have been able to alleviate some of those issues by exploit-
ing special properties of the divide-and-conquer process that underlies
the approach. There still seems to be room for further improvements.
First, there is some slack in the arguments due to the fact that some of
the intermediate results like Lemma 4.1 and Lemma 4.3 give improve-
ments for time bounds up to quadratic. We also only analyzed the
simplest cases of the alternation trading scheme, namely where we first
introduce all alternations to obtain a speedup and then remove then
in a linear fashion from the back to the front. We did extend our win-
dow during the alternation elimination phase from the last quantifier
block to the last two blocks but that remains rather myopic. Moreover,
there are more complicated processes than the linear ones we analyzed.
They may do better. Williams [60] implemented an automated search
for such processes by abstracting the properties of the two ingredients
from Chapter 3 that have been used in the arguments so far. A com-
puter can then exhaustively search for proofs with a given number
of applications of the corresponding rules and keep track of the one
that yields the strongest time lower bound for subpolynomial space.
The output exhibits patterns that, when extrapolated, lead to the best
results we currently have, but nothing better. This may be an indi-
cation that we need to exploit more of the special properties of the
divide-and-conquer process, such as the fact that the universal quan-
tifier in (3.6) only ranges over a logarithmic number of variables. The
arguments to date only exploit that fact that the number of variables
is linearly bounded. What else can we do if satisfiability is easy that
we can use in this context besides efficiently eliminating alternations?

The paradigm of indirect diagonalization also offers the possibility
to build in nonrelativizing ingredients. Very few nonrelativizing results
exist and they all derive from inclusion-type results like the PCP The-
orem [4]. We can plug in those results when we are deriving more and
more unlikely inclusions of complexity classes based on our contradic-
tion hypothesis. Does that help?

The situation in the nondeterministic setting is similar. In particu-
lar, the slack in Lemma 5.1 suggests that we may be able to boost the
exponent of the time lower bound for tautologies on nondeterministic
subpolynomial-space machines up to the golden ratio.

294 Future Directions

The lower bound situation in the nonuniform setting is, of course,
worse than in the uniform one. We know of no nontrivial lower bounds
for satisfiability on unrestricted fully nonuniform circuits. We have seen
how the indirect diagonalization paradigm can be used to obtain lower
bounds for circuits with natural uniformity conditions that are con-
siderably weaker than the corresponding circuit parameters. However,
the size lower bounds are only slightly super-linear. As we pointed out
in Section 1.1, we have much stronger lower bounds for satisfiability
on fully nonuniform restricted types of circuits, such as constant-depth
circuits, branching programs, and formulas. These results follow eas-
ily from known lower bounds for simple problems in nondeterministic
quasi-linear time. Given that those models have some connection to
space-bounded computation, it may be possible to use some of the ideas
in this survey to capitalize on the computational power of satisfiability
and improve the lower bounds for satisfiability on those models.

In the randomized setting with two-sided error, the simplest natu-
ral problem for which we have been able to establish nontrivial lower
bounds is Σ2SAT. The bounds match those that follow from the sim-
plest argument in the deterministic setting but not the current deter-
ministic record. Can we take advantage of the special properties of the
divide-and-conquer process in the randomized setting as we did in the
deterministic setting?

Apart from trying to match the deterministic bounds for the sim-
plest problem for which we can get nontrivial randomized bounds, we
would also like to handle simpler problems than Σ2SAT, e.g., satisfia-
bility. As we mentioned at the end of Section 7.2, we have made some
progress toward satisfiability by translating the known lower bound for
Σ2T(n) into a lower bound for MA1T(n), which lies between NT(n)
and Σ2T(n). The reason is that

MA1T(n) ⊆ BPTs(nd) ⇒ Σ2T(n) ⊆ BPTs(nd2+o(1)). (9.1)

Since we know how to rule out the right-hand side of (9.1) for d <
√

2,
we obtain nontrivial lower bounds for MA1T(n) on randomized
machines with two-sided error. One may wonder why we cannot sim-
ply replace MA1T(n) in (9.1) by NT(n) and that way obtain non-
trivial lower bounds for satisfiability on randomized machines with

295

two-sided error. After all, in the deterministic setting we know that
NT(n) ⊆ DTs(nd) implies that Σ2T(n) ⊆ DTs(nd2

). However, in the
time-bounded setting the best implication we know of that type is the
following:

NT(n) ⊆ BPT(nd) ⇒ Σ2T(n) ⊆ BPT(nd(d+1)), (9.2)

which does not allow us to obtain any nontrivial lower bounds for
NT(n) based on a quadratic lower bound for Σ2T(n). The additional
factor of nd comes from the overhead in the best known simulations
of Merlin–Arthur protocols by Arthur–Merlin protocols [6]. Suppose
that NT(n) ⊆ BPT(nd), and consider a Σ2T(n)-computation. Using the
hypothesis, we can replace the computation after the existential phase
by a BPT(nd)-computation, resulting in an overall Merlin–Arthur pro-
tocol that guesses O(n) bits and runs in time O(nd). We then transform
the Merlin–Arthur protocol into an equivalent Arthur–Merlin protocol.
As we discuss below, the best transformation we know blows up the
running time by the number of bits Merlin guesses, i.e., we obtain
an Arthur–Merlin protocol that runs in time O(nd+1). Applying the
hypothesis once more to the Merlin phase of the latter protocol results
in a final BPT(nd(d+1))-algorithm.

The most efficient way we know to transform a Merlin–Arthur pro-
tocol into an equivalent Arthur–Merlin protocol first reduces the error
probability of the Merlin–Arthur protocol to less than one out of the
number of possible messages Merlin can send to Arthur. Once the prob-
ability of convincing Arthur of an incorrect claim is so small, switching
the parties’ order does not give Merlin an unfair advantage. The error
reduction requires taking the majority vote of a number of parallel
trials which is of the order of the number of bits that Merlin sends to
Arthur, resulting in such an overhead factor for the final Arthur–Merlin
simulation. Other known transformations, e.g., based on extractors [24]
or on pseudorandom generators [47], involve overhead factors that are
at least as large. In fact, Diehl [16] argued that every simulation of
the above type that is blackbox — which all of the known simula-
tions are — has to incur an overhead factor of the number of bits
Merlin sends to Arthur. This suggest that we should either look for
non-blackbox transformations or exploit the space bound in a substan-

296 Future Directions

tial way in the transformation. As for the latter, Viola [58] established a
similar quadratic time lower bound for blackbox simulations of BPT(n)
on Σ2-machines, but we have seen in Section 7.1 that we can simulate
BPTs(n) on Σ2-machines in time n1+o(1).

In the quantum setting, the simplest problem for which we have non-
trivial lower bounds is MajMajSAT. The result follows from a similar
lower bound on randomized machines with unbounded error. One might
hope that our paradigm would allow us to deduce lower bounds for the
simpler problem MajSAT on randomized machines with unbounded
error. In the quantum setting we have some tools at our disposal that
may help. For example, we know that BQP is low for PP, i.e., PPBQP ⊆
PP [21]. Thus, an efficient quantum algorithm for MajSAT implies an
efficient quantum algorithm for MajMajSAT since the latter is in

PPPP ⊆ PPMajSAT ⊆ PPBQP ⊆ PP ⊆ PMajSAT ⊆ BQP.

Unfortunately, the lowness result involves time-expensive amplification
and the time bounds for MajMajSAT we can handle are only slightly
super-linear so we cannot conclude lower bounds for MajSAT right
away. There is hope, though.

A different problem we may be able to handle in the quantum setting
is Mod2SAT. A more ambitious goal would be to obtain lower bounds
on quantum machines for ΣkSAT or even for satisfiability. It seems
unlikely that our paradigm can yield those without first showing how
to efficiently simulate quantum computations in the polynomial-time
hierarchy, which we currently do not know and about which there is
not even a consensus in the community that such simulations should
exist.

Finally, besides quantitative improvements in the lower bounds for
relatively simple problems on various models of computation, there is
another direction we can take: establishing qualitatively much stronger
bounds for much harder problems. For example, in the deterministic
setting it makes sense to consider problems that are as close as possible
to linear space in power. For problems in linear space the space hier-
archy theorem trivially implies time lower bounds on sublinear-space
algorithms — no amount of time will suffice — so it does not make
sense to consider those. Good candidate problems include MajSAT

297

and Mod2SAT. By Toda’s Theorem [54], ΣkSAT efficiently reduces to
Mod2SAT under randomized reductions and to MajSAT under deter-
ministic reductions. In Section 4.2, we stated a time lower bound that
lies somewhere between nk and nk+1 for ΣkSAT on subpolynomial-
space machines. This suggests an approach for establishing super-
polynomial time lower bounds for algorithms that solve Mod2SAT or
MajSAT in subpolynomial space.

A critical question is whether the reductions from ΣkSAT to
Mod2SAT and MajSAT are sufficiently efficient. Recall that Toda’s
Theorem consists of two steps, namely (i) the inclusion of the
polynomial-time hierarchy in BPPMod2SAT and (ii) the inclusion of the
latter class in PPP. The first step seems to be the bottleneck for our
purposes. Say that the first step shows that

ΣkT(n) ⊆ BPT(nak)Mod2SAT (9.3)

for some constants ak. Given the above lower bounds for ΣkSAT we
need ak to be roughly under k to have any hope in succeeding. More-
over, having ak = o(k) suffices to realize our goal. This is because (9.3)
and the hypothesis that MajSAT has a DTs(nd)-algorithm lead to the
inclusions

ΠkT(nk) ⊆ BPT(nkak)Mod2SAT

⊆ DTs(nkak(d+1)d+o(1)) ⊆ ΣkT(nak(d+1)d+o(1)). (9.4)

The second inclusion follows by applying the hypothesis twice using the
fact that MajSAT allows us to efficiently compute Mod2SAT and sim-
ulate randomized computations with two-sided error. The last inclu-
sion follows from the simple speedup mentioned at the beginning of
Section 4.2. The resulting inclusion (9.4) contradicts Lemma 3.1 as
long as ak(d + 1)d < k, which happens for every d and large enough k

provided ak = o(k).
Toda’s original construction [54] yields ak = Θ(2k). It iterates a

quadratic randomized reduction from satisfiability to Mod2SAT based
on the Valiant–Vazirani randomized pruning procedure [57]. If we
replace that reduction by a quasi-linear variant [42], we can reduce
ak to k + o(1). Other proofs that yield about the same value for ak

298 Future Directions

exist (see [32], for example). Reducing ak further seems to require get-
ting around the same amplification bottleneck that underlies the effi-
cient transformation of Merlin–Arthur into equivalent Arthur–Merlin
protocols as discussed earlier in this section. Using operator nota-
tion, the variant of Toda’s construction yields the inclusion ΣkT(n) ⊆
(BP · ⊕)k · DT(n1+o(1)). Whereas before we had to efficiently swap
Arthur and Merlin operators, here we need to efficiently swap BP-
operators and parity-operators (⊕) so as to end up with a final BP · ⊕-
computation. We know how to do each swap at the cost of a factor n

in running time using amplification. The question is how to do better.

Acknowledgments

The author would like to thank Madhu Sudan for the opportunity and
incentive to write this survey, James Finlay for his patience while he
was writing it, all his coauthors for their collaboration and discussions
that shaped the understanding of the subject, Scott Diehl and Madhu
Sudan for their helpful comments, and — last but not least — Tom
Watson for his very careful proofreading and excellent suggestions.

299

References

[1] L. Adleman, J. DeMarrais, and M. Huang, “Quantum computability,” SIAM
Journal on Computing, vol. 26, pp. 1524–1540, 1997.

[2] M. Ajtai, “A non-linear time lower bound for Boolean branching programs,” in
Proceedings of the 40th IEEE Symposium on Foundations of Computer Science,
pp. 60–70, IEEE, 1999.

[3] E. Allender, M. Koucky, D. Ronneburger, S. Roy, and V. Vinay, “Time-space
tradeoffs in the counting hierarchy,” in Proceedings of the 16th IEEE Conference
on Computational Complexity, pp. 295–302, IEEE, 2001.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof verification
and the hardness of approximation problems,” Journal of the ACM, vol. 45,
no. 3, pp. 501–555, 1998.

[5] L. Babai, “Trading group theory for randomness,” in Proceedings of the 17th
ACM Symposium on the Theory of Computing, pp. 421–429, ACM, 1985.

[6] L. Babai and S. Moran, “Arthur-Merlin games: A randomized proof system, and
a hierarchy of complexity classes,” Journal of Computer and System Sciences,
vol. 36, pp. 254–276, 1988.

[7] P. Beame, M. Saks, X. Sun, and E. Vee, “Time-space trade-off lower bounds for
randomized computation of decision problems,” Journal of the ACM, vol. 50,
no. 2, pp. 154–195, 2003.

[8] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM Journal
on Computing, vol. 26, pp. 1411–1473, 1997.

[9] R. Boppana and M. Sipser, “Complexity of finite functions,” in Handbook of
Theoretical Computer Science, (J. van Leeuwen, ed.), pp. 758–804, MIT Press,
1990.

300

References 301

[10] A. Chiu, Complexity of Parallel Arithmetic Using The Chinese Remainder Rep-
resentation. Master’s thesis, University of Wisconsin-Milwaukee, 1995.

[11] A. Chiu, G. Davida, and B. Litow, “Division in logspace-uniform NC1,” Theo-
retical Informatics and Applications, vol. 35, pp. 259–276, 2001.

[12] A. Cohen and A. Wigderson, “Dispersers, deterministic amplification, and weak
random sources,” in Proceedings of the 30th IEEE Symposium on Foundations
of Computer Science, pp. 14–19, IEEE, 1989.

[13] S. Cook, “A hierarchy theorem for nondeterministic time complexity,” Journal
of Computer and System Sciences, vol. 7, pp. 343–353, 1973.

[14] S. Cook, “Short propositional formulas represent nondeterministic computa-
tions,” Information Processing Letters, vol. 26, pp. 269–270, 1988.

[15] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms.
MIT Press, 2nd ed., 2001.

[16] S. Diehl, “Lower bounds for swapping Arthur and Merlin,” in Proceedings of
the 11th International Workshop on Randomized Techniques in Computation,
pp. 449–463, Springer-Verlag, 2007.

[17] S. Diehl and D. van Melkebeek, “Time-space lower bounds for the polynomial-
time hierarchy on randomized machines,” SIAM Journal on Computing, vol. 36,
pp. 563–594, 2006.

[18] S. Diehl, D. van Melkebeek, and R. Williams, “A new time-space lower bound
for nondeterministic algorithms solving tautologies,” Tech. Rep. 1601, Depart-
ment of Computer Sciences, University of Wisconsin-Madison, 2007.

[19] L. Fortnow, “Time-space tradeoffs for satisfiability,” Journal of Computer and
System Sciences, vol. 60, pp. 337–353, 2000.

[20] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas, “Time-space lower
bounds for satisfiability,” Journal of the ACM, vol. 52, pp. 835–865, 2005.

[21] L. Fortnow and J. Rogers, “Complexity limitations on quantum computations,”
Journal of Computer and System Sciences, vol. 59, pp. 240–252, 1990.

[22] L. Fortnow and D. van Melkebeek, “Time-space tradeoffs for nondeterministic
computation,” in Proceedings of the 15th IEEE Conference on Computational
Complexity, pp. 2–13, IEEE, 2000.

[23] O. Gabber and Z. Galil, “Explicit constructions of linear-sized superconcentra-
tors,” Journal of Computer and System Sciences, vol. 22, pp. 407–420, 1981.

[24] O. Goldreich and D. Zuckerman, “Another proof that BPP ⊆ PH (and more),”
Tech. Rep. TR-97-045, Electronic Colloquium on Computational Complexity,
1997.

[25] J. Hastad, “The shrinkage exponent of de Morgan formulas is 2,” SIAM Journal
on Computing, vol. 27, pp. 48–64, 1998.

[26] F. Hennie and R. Stearns, “Two-tape simulation of multitape Turing
machines,” Journal of the ACM, vol. 13, pp. 533–546, 1966.

[27] W. Hesse, “Division is in uniform TC0,” in Proceedings of the 28th International
Colloquium On Automata, Languages and Programming, pp. 104–114, Springer-
Verlag, 2001.

[28] W. Hesse, E. Allender, and D. M. Barrington, “Uniform constant-depth thresh-
old circuits for division and iterated multiplication,” Journal of Computer and
System Sciences, vol. 65, pp. 695–712, 2002.

302 References

[29] R. Impagliazzo, N. Nisan, and A. Wigderson, “Pseudorandomness for network
algorithms,” in Proceedings of the 26th ACM Symposium on the Theory of
Computing, pp. 356–364, ACM, 1994.

[30] R. Impagliazzo and D. Zuckerman, “How to recycle random bits,” in Pro-
ceedings of the 30th IEEE Symposium on Foundations of Computer Science,
pp. 248–253, IEEE, 1989.

[31] R. Kannan, “Towards separating nondeterminism from determinism,” Mathe-
matical Systems Theory, vol. 17, pp. 29–45, 1984.

[32] R. Kannan, H. Venkateswaran, V. Vinay, and A. Yao, “A circuit-based proof of
Toda’s theorem,” Information and Computation, vol. 104, pp. 271–276, 1993.

[33] R. Karp and R. Lipton, “Turing machines that take advice,” L’Enseignement
Mathématique, vol. 28, no. 2, pp. 191–209, (A preliminary version appeared in
STOC 1980), 1982.

[34] A. Kitaev, “Quantum computations: Algorithms and error correction,” Russian
Mathematical Surveys, vol. 52, pp. 1191–1249, 1997.

[35] A. Kitaev, A. Shen, and M. Vyalyi, Classical and Quantum Computation.
American Mathematical Society, 2002.

[36] C. Lautemann, “BPP and the polynomial hierarchy,” Information Processing
Letters, vol. 17, pp. 215–217, 1983.

[37] R. Lipton and A. Viglas, “On the complexity of SAT,” in Proceedings of the 40th
IEEE Symposium on Foundations of Computer Science, pp. 459–464, IEEE,
1999.

[38] G. Margulis, “Explicit construction of concentrators,” Problems of Information
Transmission, vol. 9, pp. 325–332, 1973.

[39] D. van Melkebeek, “Time-space lower bounds for NP-complete problems,” in
Current Trends in Theoretical Computer Science, (G. Paun, G. Rozenberg, and
A. Salomaa, eds.), pp. 265–291, World Scientific, 2004.

[40] D. van Melkebeek and K. Pervyshev, “A generic time hierarchy for semantic
models with one bit of advice,” Computational Complexity, vol. 16, pp. 139–179,
2007.

[41] D. van Melkebeek and T. Watson, “A quantum time-space lower bound for
the counting hierarchy,” Tech. Rep. 1600, Department of Computer Sciences,
University of Wisconsin-Madison, 2007.

[42] A. Naik, K. Regan, and D. Sivakumar, “On quasilinear-time complexity the-
ory,” Theoretical Computer Science, vol. 148, pp. 325–349, 1995.

[43] V. Nepomnjascii, “Rudimentary predicates and Turing calculations,” Soviet
Mathematics–Doklady, vol. 11, pp. 1462–1465, 1970.

[44] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, 2000.

[45] N. Nisan, “Pseudorandom generators for space-bounded computation,” Com-
binatorica, vol. 12, pp. 449–461, 1992.

[46] N. Nisan, “RL ⊆ SC,” Computational Complexity, vol. 4, pp. 1–11, 1994.
[47] N. Nisan and A. Wigderson, “Hardness vs. randomness,” Journal of Computer

and System Sciences, vol. 49, pp. 149–167, 1994.
[48] N. Pippenger and M. Fischer, “Relations among complexity measures,” Journal

of the ACM, vol. 26, pp. 361–381, 1979.

References 303

[49] J. Robson, “An O(T logT) reduction from RAM computations to satisfiability,”
Theoretical Computer Science, vol. 82, pp. 141–149, 1991.

[50] W. Ruzzo, “Tree-size bounded alternation,” Journal of Computer and System
Sciences, vol. 21, pp. 218–235, 1980.

[51] W. Savitch, “Relationships between nondeterministic and deterministic tape
complexities,” Journal of Computer and System Sciences, vol. 4, pp. 177–192,
1970.

[52] J. Seiferas, M. Fischer, and A. Meyer, “Separating nondeterministic time com-
plexity classes,” Journal of the ACM, vol. 25, pp. 146–167, 1978.

[53] M. Sipser, “A complexity theoretic approach to randomness,” in Proceedings
of the 15th ACM Symposium on the Theory of Computing, pp. 330–335, ACM,
1983.

[54] S. Toda, “PP is as hard as the polynomial-time hierarchy,” SIAM Journal on
Computing, vol. 20, no. 5, pp. 865–877, 1991.

[55] J. Toran, “Complexity classes defined by counting quantifiers,” Journal of the
ACM, vol. 38, pp. 753–774, 1991.

[56] I. Tourlakis, “Time-space lower bounds for SAT on nonuniform machines,”
Journal of Computer and System Sciences, vol. 63, no. 2, pp. 268–287, 2001.

[57] L. Valiant and V. Vazirani, “NP is as easy as detecting unique solutions,”
Theoretical Computer Science, vol. 47, pp. 85–93, 1986.

[58] E. Viola, “On approximate majority and probabilistic time,” in Proceedings of
the 22nd IEEE Conference on Computational Complexity, pp. 155–168, IEEE,
2007.

[59] R. Williams, “Better time-space lower bounds for SAT and related problems,”
in Proceedings of the 20th IEEE Conference on Computational Complexity,
pp. 40–49, IEEE, 2005.

[60] R. Williams, Algorithms and resource requirements for fundamental problems.
PhD thesis, Carnegie Mellon Univesity, 2007.

[61] R. Williams, “Time-space tradeoffs for counting NP solutions modulo integers,”
in Proceedings of the 22nd IEEE Conference on Computational Complexity,
pp. 70–82, IEEE, 2007.

[62] C. Yap, “Some consequences of non-uniform conditions on uniform classes,”
Theoretical Computer Science, vol. 26, pp. 287–300, 1983.

[63] S. Zak, “A Turing machine time hierarchy,” Theoretical Computer Science,
vol. 26, pp. 327–333, 1983.

