Dynamic Histograms: Capturing Evolving Data Sets

Donko Donjerkovic, Yannis loannidis, Raghu Ramakrishnan
Department of Computer Sciences, University of Wiscongiadison
{donko, yanni s, raghu}@s. w sc. edu

Abstract

In this paper, we introducdynamic histogramswhich are constructed and maintained in-
crementally. We develop several dynamic histogram coaotitnu algorithms and show that
they come close to static histograms in quality. Our expenital study covers a wide range
of datasets and update patterns, including histogram erante in a shared-nothing envi-
ronment. Building upon the insights offered by the dynanigoathms, we also propose a
new static histogram construction algorithm that is vest fnd generates histograms that are
close in quality to the highly accurate (but expensive tostet!) V-Optimal histograms.

1 Introduction

The cost of executing a relational operator is a functiorhefgizes of the tuple streams that are input to
the operator, which for intermediate operators are in t@tenined by selectivities of the previous oper-
ators. The more complex a query is, the more important it isaee precise intermediate size estimates.
Otherwise, errors in the size estimates will grow intoléyalexponentially in the number of joins [2] in
the worst case), and the optimizer's estimates may be coetplerong.

To estimate selectivities of query predicates, one neetiee some information about the data dis-
tributions of numerical attributes referred to in the peadés. There have been several proposals in the
literature on how to maintain concise information aboutaddistributions [14], including histograms,
sampling, and parametric techniques. The most commonitpehin commercial systems is a histogram.
Histogramsare approximations to data distributions; they partitiba tata into subsets (callédicket3
and maintain some aggregate information within each bucket

Currently, histograms are static structures: they aretedsfiom scratch periodically and their creation
is based on looking at the entire data distribution as ittexeach time. This creates problems, however,
as data stored in DBMSs usually varies with time. If new datves at a high rate and old data is
likewise deleted, a histogram’s accuracy may deterioragt &s the histogram becomes older, and the
optimizer’s effectiveness may be lost. Hence, how ofterstogram is reconstructed becomes very critical,
but choosing the right period is a hard problem, as the faliguirade-off exists:

¢ If the period is too long, histograms may become outdated.
¢ If the period is too short, updates of the histogram may irgchigh overhead.

In this paper, we propose what we believe is the most elegdutian to the problem, i.e., main-
taining dynamic histogramsvithin given limits of memory space. Dynamic histograms ewatinuously
updateable, closely tracking changes to the actual datacdfnsider two of the best static histograms



proposed in the literature [9], namely V-Optimal and Conggesl, and modify them. The new histograms
are naturally calledynamic V-Optimal (DVOjand Dynamic Compressed (DCn addition, we modi-
fied V-Optimal’s partition constraint to create tBéatic Average-Deviation Optimal (SAD@)dDynamic
Average-Deviation Optimal (DADQ)jistograms.

We compare the effectiveness of dynamic histograms withréygmate Histograms [10], which are
based orReservoir Samplingl]. Experimental results clearly show that the Dynamic rage-Deviation
Optimal histogram is the most effective approach to captuevolving data sets. We study a wide range
of datasets and data updating patterns, as well as histagi@nienance in a distributed shared-nothing
environment, and include a comparison with the best knoaticstistogram techniques.

The concept of dynamic histograms, the algorithms for na@mimig such histograms, and the evalua-
tion of their effectiveness is the main contribution of thagper. However, a second important contribution
is a highly effective, inexpensively computed classiattic histograms, calle@uccessive Similar Bucket
Merge(SSBM) histograms. Based upon the same intuitions unagriyur dynamic histogram algorithms,
the static SSBM histograms are comparable in quality to thlelyraccurate (but expensive to construct!)
V-Optimal histograms. (We note that the static SADO hishogs are also proposed here for the first time.)

The rest of this paper is organized as follows. We briefly ukscrelated work and review relevant
histogram definitions in Section 2. We then present our figsiathic histogram, DC, in Section 3. We
present the DVO and DADO dynamic histograms (and the st&ID@ histogram) in Section 4, and the
highly effective SSBM static histogram in Section 5. Figalle discuss dynamic histogram maintenance
in a shared nothing environment in Section 8, and then aufliture work.

2 Previous Work

Recent work on Approximate Histograms [10] has the samectites as ours but takes a very different
approach. It considers versions of Equi-Depth and Comedekstograms constructed from a reservoir
sample [1]. The idea is to maintain a large reservoir sanga#édd the ‘backing sample’) on disk and a
small approximate histogram in the main memory. Equi-Dépttd Compressed) histograms used for this
purpose are approximate since they do not maintain equitdouckets but the deviations in the bucket
counts must not exceed certain threshld During the insertions or deletions of data, both in memory
structure and the reservoir sample are updated. When thé sosome bucket exceeds the threshld
an attempt is made to split this bucket and merge one neigttbpair. If this cannot be done (because the
merge would exceed), the existing approximate histogram is discarded and agreis built from the
reservoir sample. We compare dynamic histograms with Agprate Histograms in later sections.

Another dynamic technique for approximating distribusasithe Birch clustering algorithm [3]. Birch
was originally designed for detection of clusters in largeltidimensional data distributions, and later
extended to approximate the data distributions themsalgasy kernel theory[4]. The basic building
block of Birch is thecluster, which plays a role analogous to the bucket in a histograrhBié¢h clusters
have a common radius, which makes them similar to Equi-Whikkogram buckets. It has been shown
earlier [8] that Equi-Width histogram are in most casesriofeto Equi-Depth histogram, which are in
turn inferior to the V-Optimal and Compressed histograment¢, for one-dimensional distributions, we
expect the best histograms to be superior to Birch. We iredugirch in our experimental study, and found
that the best histograms indeed significantly outperforBiech; due to lack of space, we do not discuss
Birch further.



2.1 A Framework for Histograms

A histogram approximates a data distribution by partitignit into buckets and summarizing each bucket
by some concise information on the attribute values thatifathe bucket and their corresponding fre-
qguencies. Typically, each bucket has the minimum and (oalip) the maximum value in the bucket, a
count of the data points it contains, and possibly the nurabenique values it contains. This information
is enough to generate an approximation of the distributteide the bucket, assuming that within each
bucket the following hold: points have fallen uniformly inet value range of the buckeair(iform distri-
bution assumption every value within the bucket value range has appeardukiniata ¢ontinuous value
assumption Regarding the value distribution, there are indeed beatssumptions than the continuous
value assumption [9], but we have chosen this one due tanitglisity.

The following three dimensions are used to describe hiatogrin the histogram framework described
in [9], which we use in our presentatioh:(1) Sort ParameterConceptually, the data distribution elements
are sorted on their corresponding values of the histograorsparameter; the histogram buckets are then
contiguous, non-overlapping groups in that sorted orf@®rSource Parametelsed to determine where
in the sort-parameter order bucket borders are pla¢ayl Partition Constraint: A constraint on source
parameter values that characterizes a histogram class.

3 Dynamic Compressed (DC) Histogram

A Compressed histogram stores some number of points inetorgbuckets while the rest of them are par-
titioned as in an Equi-Sum histogram [8, 9]. In this papercamcentrate on Compressed(V,F) histograms,
i.e., the frequencies determine the buckets (source paeand herefore, singleton buckets are justified
for values whose frequency exceelign (N is the total number of points; is the number of buckets).
In the rest of this paper, we call singleton bucksitsgular and equi-depth bucketegular. Note that an
Equi-Depth histogram is a special case of a Compressedyragin with no singular buckets. A bucket of
a Dynamic Compressed (DC) histogram records its left baadérthe number of points it contains.

The general idea behind all dynamic histograms is to relatoram constraints up to a certain point,
after which the histogram is reorganized in order to meestramts. A DC histogram is constructed as
follows. Initially, n distinct points are loaded into the histogram, each definmgndividual bucket« is
the number of buckets we can maintain, given available mgméfter this ‘loading’ phase, every new
value is inserted into the appropriate bucket, possiblgring the leftmost or rightmost border to do so.
When the regular buckets end up having radically differenints, thus violating the partition constraint
of Compressed histograms, repartitioning occurs. Rejmaring is quite simple: it uses the point counts
that are maintained in each bucket of the histogram and cémsebucket boundaries so that the partition
constraint is satisfied again. During this process, somelaedpuckets may become singular and vice
versa, depending on whether or not they satisfy the critetimnt > N/n, and, of course, have width
equal to one.

An example of repartitioning a DC histogram (with no singlackets) is shown if Figure 1. Repar-
titioning is done in such a way that the total area and numbbuckets remain the same. (Area of each
bucket in Figure 1 is shown above the bucket.) Before rejmaring, the area underneath each bucket was
significantly different. After repartitioning, all sucheas are equalized. In this example, all buckets are
regular both before and after repartitioning, but in gehtma is not the case.

The above captures the essential mechanics of the DC hastogrhe question that remains is when
repartitioning should be done. Doing it after every pointaiged will result in both unacceptable per-
formance degradation and probably poor histogram quaite repartitioning introduces errors in the

'For the referees’ convenience, we have included a summahjsoframework in Appendix A.
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Figure 1: Bucket redistribution in DC histogram. Numberabbucket is its area.

histogram due to the uniformity assumptions employed widgch bucket. In fact, histogram quality may
be in even higher jeopardy, since random oscillations inaifger in which data is received could cause
“false alarms”, triggering the modification of the buckeubdaries unnecessarily.

What is needed is a test that will trigger repartitioningyowhen the Compressed partition constraint
is significantlyviolated, i.e., when the counts in the regular buckets vaywificantly. In statistical terms,
repartitioning should occur when the following hypothdsialled thenull hypothesisis found to be false:

Counts in regular buckets are uniformly distributed.
The standard test used for this purpose is@hésquaretest. The Chi-square metric is

ci — Cy)?
=yl G @
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where eachC;) is the experimentally determined number of events of sonegoay i, and¢; is the
expected number of events according to the null hypothésisur context,(C;) is the count of points in
each regular bucket ande; is the average count in regular buckets. A large valug’ahdicates that the
null hypothesis is unlikely to hold. Thievel of significancev is the probability of rejecting a true null
hypothesis, i.e., considering the null hypothesis as falsen it is actually true. Given a value gf, the
significance level of the Chi-square test is given by the Wediwn Chi-square probability functiofi7].
Based on the above, setting an upper bound on the deviatianhidtogram from the Compressed
partition constraint before repartitioning is triggeredequivalent to setting a lower boug,;, on the
significance level. The lowet,,;, is set, the less frequent redistributions will be. Cleasbttingo,,in
to 0 would effectively freeze the initial histogram and neabow any repartitioning. On the other hand,
setting a.,,in, 10 1 would trigger repartitioning after every insertion. dar performance evaluation, we
have found that the algorithm is quite insensitive to theigaifa,,,;,,, as long as it is much less than 1. In
our experiments, we have sef,;, = 10~5. Pseudo-code for the DC algorithm is presented in Figure 2.

3.1 Cost

Recall that/V is the number of data points andis the number of buckets. Processing a new point
requires finding the appropriate bucket by binary search inogasing its counter (co$P(logn) for
each point,O(N logn) total). Depending on the order in which data is read, the éublorders may
occasionally be reorganized. Repartitioning essent@iistsO(n) each time, so assuming that it is done
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Algorithm DC (data stream, number of bucket} {

/l Maintains an array of buckets that approximate numeriealords
// seen on a potentially unbounded data stream.

/I Each bucket stores its left border and the couof points in it.

/I The number of points read is denoted/ly

read the first n distinct points;
set the bucket borders between them;
do until end of file{

read the new point x;
if x is beyond the range of end buckéts

extend the appropriate regular bucket up to x;
}

insert x into appropriate bucket;

if Probability(x?) < aumin {
degrade singular buckets with< N/n to regular;
redistribute the regular buckets to equalize their counts;
promote regular buckets with width one and- N /n to singular;

Figure 2: DC algorithm

relatively infrequently, the overall cost of DC §3(/V log n). Note that this is much lower than the cost of
constructing a static Compressed histogram, whieh(i& log V). For potentially lower accuracy, higher
efficiency is obtained.

The space that is required by a DC histogram is the same as ftatic counterpart. For each bucket,
it stores its left border and the count of points in it. Itshtigporder is assumed to be the left border of the
next bucket. Altogether, the space requirement is

(n+ 1) * sizeof (data_type) + n * sizeof (counter_type)

4 Dynamic V-Optimal and DADO Histograms

A V-Optimal histogram minimizes (over all buckets) the @ate between the source-parameter values
within each bucket [8]. In this paper, we concentrate on \th@al(V,F) histograms, i.e., again the fre-
guencies determine the buckets (source parameter). Dierdahe histograms considered minimize the

guantity
i=1

wheren denotes the number of buckets,is the number of frequencies in buckeindV; is the variance
of frequencies in theth bucket. Expanding Eq. (2) further, we see that V-Optinisidgrams essentially
minimize

e=> > (fij— ) (3)

i=1 j



where f;; denotes frequency of thith value in theith bucket, andf; is the average frequency in that
bucket. Here, we assume thatanges over all possible domain values within itiebucket.

Note that unlike the Compressed patrtition constraint, wenoacheck the V-Optimal constraint just
by looking at the aggregate information that is typicallgretl in each bucket (left border and count, or
equivalently average frequency). Eq. (3) requires thatstteof the individual frequencies; in each
bucket be known. Clearly, storing the entire set is unréealend defeats the purpose of using histograms.
One has to settle for some approximation that is, nevedbglaore detailed than the average frequency,
since the latter would always generate zerm Eq. (3). Our approximation consists of dividing each
bucket into two parts of equal value-range width, cabeth-bucketsand storing the individual counts of
points that belong in each sub-bucket. We have also triegt alkernatives by combining different choices
in the following dimensions:

¢ dividing each bucket into more than two parts;
e usingequi-depthdivisions instead oéqui-widthdivisions.

Experimentation has shown that all alternatives with a kmahber of sub-buckets (two or three) have
comparable performance, with finer subdivisions being eortuitively, this trend is to be expected
because, for example, with a large number of equi-widthlsutkets histograms become more equi-width
than V-Optimal in nature. Given the empirical “optimalitgf our approximation, we do not discuss any
other alternatives in this paper.

With the above internal bucket structure in place, the DV@bathm is able to approximate the dy-
namic minimization of Eq. (3) using two operations:

e Splittinga bucket along the sub-bucket border to generate two newebsickhe sub-buckets of each
new bucket have equal counts. Since each of the new bucketzeha, splitting never increases

e Merging two neighboring buckets to generate a single new bucket. stibebucket counts of the
new bucket are calculated based on the counts and ranges ofiginal buckets. Straightforward
manipulation of Eq. (3) shows that thef the new bucket is greater than or equal to the sum of the
e of the original buckets. Hence, merging never decreases

Since the memory used for a histogram is fixed, repartitignimthe DVO algorithm consists of a split-
merge pair, i.e., splitting a highbucket and merging two neighboring buckets of similar cbimnstics.
The resulting changde in overalle (Eq. (3)) is equal to

Ae = ey — €5
= Y (i = Fu)? =D (fsx — Fs), (4)
J k

where; runs over all values in the two merged buckets, is the average frequency of these values,
runs over all values of the split bucket, ajid is the average frequency of these values. The bucket to be
split and the two buckets to be merged are selected from afliple candidates so that is minimized.

If min Ac is positive, repartitioning is not done.

The above description captures the essential mechanidseddVO histogram. The question that
remains is when repatrtitioning should be done. This is datexd by comparingnin Ae with some upper
bound beyond which repartitioning will not be triggered. iSkipper bound has to be non-positive, as
positive values ofnin Ae imply that the original histogram is better than any othee can obtain by a
split-merge pair. In our experiments, we have made the ngmgieasive choice and set this upper bound
equal to 0.



The definition ofmin Ae does not lend itself to efficient calculation. Fortunatege can show that
identifying the triple of buckets involved in the split-nger operations (one to be split and two to be
merged) that generatesin Ae (if min Ae < 0) can be found in linear time.

Theorem 4.1 If min Ae < 0, then the bucket to split is the one with the largest

Sketch of Proof If Ae < 0, then the best pair to merge cannot include the bucket wighdlgeste,
because no other bucket could counter thamd makeAe < 0. Assume that\e is minimal but the bucket
to split (S) is not the one with the largest Clearly, this cannot be true, sinéecould be replaced by the
bucket with the largest resulting in an even lower value &e, which implies that the originale is not
minimal. Hence, by contradiction, the statement of the is@omust be true D

Similarly, one can prove that the pair to be merged is the bathas the minimal combined

Pseudo-code for the DVO algorithm is presented in Figuré @sés the efficientnin Ae < 0 evalua-
tion algorithm mentioned above. As before, the input patemis the number of buckets

Procedure DVO (data stream, # of buckets {
/l Maintains an array of buckets that approximate numeriealords
/l seen on a potentially unbounded data stream
/l Each bucket stores its left border and counters for its $wib-buckets.
read first n points and create buckets between them;
do until end of file{
read next point (x);
if x is beyond the range of the end buckéts
Create a new bucket just for this pointporrow one bucket
Bucketb = findBestToMerge(buckets);
mergeb andb.next;// one bucket less
} else{
insert x into appropriate bucket;
Buckets = findBestToSplit(buckets);
Bucketm = findBestToMerge(buckets);
if (e(s) > e(m + m.next)){
split s;
mergem andm.next;

}
}
ProcedurefindBestToSpli{(DVO_histogram){
/I Return the bucket with highest
}
ProcedurefindBestToMergéDVO _histogram){
/I Return the buckeét such that the: of b bucket combined
// with its successor is smallest among all the pairs.

}
Figure 3: DVO (DADO) algorithm



4.1 Dynamic Average-Deviation Optimal (DADO) Histogram

The original definition of the V-Optimal histogram calls filie minimization of the sum of the squares of
the deviations of frequencies from their average (Eq. (SBvertheless, our experimental results (see, for
example, Fig. 9) indicate that better results are achieyeahinimizing the sum of the absolute values of

these deviations instead: .
f:ZZ‘fij*fi\- (5)
i=1 j

A histogram with this partition constraint is called Stateerage-Deviation Optimal (SADO) and the
corresponding dynamic version is called Dynamic AveragwiBtion Optimal (DADO). Eq. (5) is a more
robust estimate of the deviations than Eq. (2). In other wiordhs defined in Eq. (5) is less sensitive
to the frequency outliers. (Outliers are the data pointsfriam the average.) We expect input data to
possibly have large random oscillations in frequencies @equently outliers may be common. This
would explain why the DADO histogram is on average bettenttiee DVO histogram, especially in the
skewed distributions. There are no random oscillationsnduthe construction of static histograms and
therefore there is essentially no difference between ttics-optimal and the static Average-Deviation
optimal histograms. The DADO algorithm, and all the respitssented above remain the same as the
DVO version provided that the square is replaced by absohitees.

4.2 Example of DADO (or DVO) Operation

Figure 4a shows a DADO histogram with five buckets. Thereweesub-buckets (counters) per bucket,
and bucket borders are marked by vertical lines. The secankeb from the left has high because its
counters are very different. Assume that the next point isadumber 3, which is inserted into the left
sub-bucket of the second bucket. Recalculatinig Ae produces a negative value, becausectire the
second bucket is larger than the combireid the third and fourth buckets. This triggers a split of the
second bucket and a merge of the third and fourth buckets 4Bighows the result. Note that the counters
in the merged bucket are deduced from the old configuratiafewtne counters in each of the buckets that
resulted from the split are set equal.
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Figure 4. Example of DADO split & merge reorganization; (&fdre, (b) after



4.3 Note on Buckets vs. Sub-Buckets

By looking at the typical DADO histogram (Figure 4), one mague that what we call “buckets” may
be eliminated from the algorithm completely and what we talb-buckets” may be considered the true
buckets. This is certainly a valid alternative view of theldem, but one needs to be cautious. The DADO
histogram does not treat sub-buckets symmetrically; femgxe, large: of sub-bucket counters within

a single bucket is considered harmful, but laegbetween two neighboring sub-buckets that belong to
distinct buckets is ignored. This asymmetry is actually itie@n strength of the DADO algorithm, as it
tends to place bucket borders at points where there are djifesxences in frequencies, and conversely, it
spreads buckets across the smooth parts of the distribulibarefore, even if one treats sub-buckets as
the basic building blocks, one would still need some notibfsaper-structure” in order to capture the
AD-Optimal partition constraint; some notion of hierardhythe bucket structure is necessary.

4.4 Cost

Clearly, the main loop of DADO is executed once for each pmad, i.e./NV times. The key operation in
that loop in terms of cost is the identification of bucke@ndm (Figure 3), which as we have shown, can
be done in time linear in the number of bucketsdHence, the overall cost of DADO 8(Nn), larger than
the cost of DC, which i$) (N logn).

The space required by a DADO histogram is also slightly lathan that of a DC histogram (for
the same number of buckets), because it stores its left bariktwo counters, one for each sub-bucket.
Therefore, the total space requirement is

(n+ 1) * sizeof (data_type) + 2 x n x sizeof (counter_type)

5 A New Static Histogram Algorithm

The DADO merge technique suggests a new way of constructatg istograms, as described next.
Initially, load all the data in an exact histogram (one budke each non empty distinct point). After the
loading phase, successively merge the neighboring buektitshe smallest,,, as defined in Eq. 4. The
algorithm starts merging the most similar buckets first ijwgitnalle;;) and proceeds until the requested
target number of buckets is left unmerged. We call suchithistogramsSuccessive Similar Bucket
Merge(SSBM) histograms.

Performance comparison of SSBM histograms to variouscstésétograms is shown later in Figs. 9,
10, 11, and 12. We found that SSBM is comparable in performamd/-optimal(V, F) histogram, which
is one of the best known histograms, but is much cheaper tstrwmb. The cost of SSBM construction is
guadratic in the number of distinct attribute values, rathan exponential (as for V-optimal).

6 How to Measure the Quality of a Histogram?

Clearly, there are many ways to evaluate the performancéistagram, and in general there is no defini-
tive answer to the question of which algorithm is the beste @ only say which algorithm is best under
certain test data and evaluation metrics. In the followinlgsgctions we present our test distributions and
the metric that we believe to be the most suited for compatifigrent histograms.



6.1 Performance Parameters: Data Distribution and Memory

We evaluated the algorithms using a parametrizable databdigon, in order to measure trends in their
relative behavior as the parameters are changed.

Many real distributions obey the Zipf [15] and Normal laws.otiated by this, we have created
distributions that contain clusters of data, charactérizgthe position of their center, their size, and shape.
The Zipf law governs positions and sizes of clusters. Cati@h between cluster sizes and separations was
chosen from three alternatives: no correlation, positweeadation, and negative correlation. The shape
of clusters was chosen from three distributions: uniforornmal, and exponential. The width of clusters
was parameterized by variable standard deviatioVe did not detect significant variations in algorithm
performance along the following dimensions: correlati@teen cluster sizes and separations, the shape
of clusters, and the number of clusters. Therefore, all #réopmance results presented in this paper have
the following data distribution parameters fixed: (1Y, cluster shape (distribution), fixed to Normal. (2)
SF, spread frequency correlation, fixed to random.{3}he number of distinct clusters, fixed to 2000 or
to 50. Parameters that were varied are listed below:

e 7, the Zipf parameter of the skew in the distribution of clusizes.
e S, the Zipf parameter of the skew in the distribution of clustenters.
e o, the standard deviation within the clusters, if zero, edakter has a single value.

By changing these parameters, it is possible to capture rdéfieyent distributions. Essentially, our
test distributions look very much like the ones from [9], mhe addition of a parameterized cluster width
(o). Finally, we note that we varied the amount of memary)(available for histogram construction.

6.2 Whatis a Good Evaluation Metric?

To evaluate the quality of a histogram we compared the algitata distribution to the approximate
data distribution represented by the histogram, usimgp@dness-of-fitest. The two most widely used
goodness-of-fit tests are the Chi-Square and KolmogorowrBmtests. The Chi-Square test is usually
used when the data involves categories (e.g., colors), lm#&aolmogorov-Smirnov (KS) test [12] is the
most generally accepted test for numeric distributions.

It should be emphasized that we only use the statisticalicsetssociated with the respective tests, and
not their associated probability functions. That is, we jaeasure goodness-of-fit without worrying about
the significance of the deviation. Significance is irreléva@acause we are interested only in the relative
performance of the algorithms.

The KS statistic for two distributions is defined as

D= max |P(z)— Py(x)| (6)
—oo<r<oo
where P (x) is the cumulative distribution function.

One can always group the data into bins and use the Chi-Ssjaditic on the the numeric distribution.
Grouping involves a loss of information and moreover theich@f how to group the data is arbitrary.
KS statistic does not require any unnecessary categanizatid is also independent of any kind of re-
parameterizations of the domain axis.

The KS statistic has an intuitive interpretation: It is thaximum error in selectivity of a range predi-
cate posed against the histogram rather than the origitsal efortunately, there is no similarly intuitive
interpretation for the Chi-Square statistic.
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We have also tried the error metric suggested in [9],

>

: Sq
all queries

1S, — S,

= 100 al (7)

E

where S, and S'q are the actual and the estimated size of the query resuftectigely. This error met-
ric, although different from KS, gave similar results inrtex of relative performance of our histogram
construction algorithms. We preferred the KS statisticdose the metric in Eq. (7) obviously depends
on the test set of queries. For example, Eq. (7) would givierifit error for the set of range queries
(attribute < walue) depending howalue is distributed. Two obvious choices fonlue distribution
are uniform and the data distribution itself. Also, opengamueries dttribute < wvalue) would give
different results than close range querigs( < attribute < high). To avoid any bias towards any of
these queries, we have turned to the KS statistic as an iskidbltest for comparing two distributions.

7 Performance Evaluation

We have evaluated all algorithms along the three broadetasstests:
1. Parameterized synthetic distributions:

(&) random insertions

(b) sorted insertions

(c) random insertions intermixed with random deletions
(d) random insertions followed by random deletions

(e) sorted insertions followed by sorted deletions

2. Real-world distribution. This data was collected by almaier company through the period of
time. The data contains only insertion in approximatelyd@n order.

In order to make fair comparisonall of the algorithms were given the same amount of main mgmor
In addition, we gave the Approximate Compressed (AC) histogthe disk space equal to twenty times
the main memory (by default), following the suggestion byhats of [10]. (We have also tried other
disk-space factors, as shown later in Fig. 14.) To obtairbtst quality AC histogram possible, we set
the~ performance parameter to -1. This causes recomputatioreat apdate, which in general gives the
best quality histogram, but the worst performance in terfrepeed, according to [10].

We compare all algorithms on a parameterized family of datidutions. The test data was a file of
100,000 integer numbers, spread over the interval [0..p8€brding to the parameters of the distribution
(S, Z, ...). All the histograms are initially empty and are popethby numbers drawn from the test
distribution in a random order. After all insertions are dpthe histogram distribution is compared to the
original distribution using KS statistic as an error metki¢e chose the following reference distributior$ (
=1,7=1,0=2,Memory =1 KB), and changed all the parameters, one ate fiiviery test configuration
was generated ten times (by starting from a different seeth@®orandom number generators used in data
set generation) and evaluated based on the average of tsumed S statistics.

7.1 Random Insertions From Synthetic Distributions

Figures 5, 6, 7, and 8 show the performance of various hiatogrunder a workload of random insertions,
and can be summarized as follows:
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Figure 7: KS statistic as a function of Figure 8: Error vs. available memory

DADO histogram has the best behavior among dynamic histograhesalgorithm works better for very
high skews because in this case it can afford to create mekigh only one value in them, thus
capturing large parts of distribution with almost perfertq@sion. On average, maximal error of the
1KB DADO histogram is below 0.5% of the relation size.

DVO histogram has similar behavior to the DADO histogram bus icdnsistently worse in quality. A
likely reason for this was given in Section 4.1.

AC histogram has on average worse behavior than both DADO ard [0 spite of the advantage of
extra disk space and the favorable settingygE —1). Oscillations in quality for various, 7, o,
and M are results of random fluctuations. Notice that for largdu@a of memoryM (Figure 8),
the AC histogram becomes even less effective compared DAEO histograms.

DC histogram behaves roughly as its static counterpart witietaerrors, as expected. In general, errors
are small for low skews (because any histogram is good abrmitlistributions) and high skews
(because singular buckets capture most of the data). Almmgdme lines, errors are small for low
o because it effectively increases the skew of the distidoutiSimilarly, errors are low at large
because it makes distribution uniform. The DC histogramthasmost difficulty with intermediate
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o. We found that this large increase in error for intermediskews are accompanied by large
number of border relocations. Border relocations cenaintroduce errors because new border
positions are calculated under assumption of uniformifigion within each bucket. Distributions
with larger skews have large random oscillations that causecessary border relocations. The
Chi-square test helps to reduce border relocations duenttora oscillations but does not eliminate
them completely. Unnecessary relocations are the prinmce of errors of the DC histogram.

Fixed Z=1 SD=1 C=50 M=0.14 Fixed S=1 SD=1 C=50 M=0.14
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Figure 9: KS statistic as a function §f Figure 10: KS statistic as a function &f
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Figure 11: KS statistic as a function ef Figure 12: Error vs. available memory

The above results were obtained using random insertions fine underlying distributions.

Since the experiments presented above indicate that the@a&forithm has the best performance, it
is of interest to compare it to the best static algorithmshsas Compressed (SC) and V-Optimal (SVO). In
addition, we have implemented the new static Average-Dievi@dptimal (SADO) and Successive Similar
Bucket Merge (SSBM) algorithms. All the static histograms af the same size as memory given to the
DADO histogram. Construction of a SC histogram requiresisgiof the input data set and for this purpose
it was given as much memory (disk space) as needed. Similady\5VO, SADO and SSBM histograms
require enough memory to fit all the data points. Results isf¢bmparison are shown in Figures 9, 10,
11, and 12. From these figures we can see that the DADO algodtimes close to the performance of
its static counterpart and is very comparable to the SC gkgor Optimizing for Average-Deviation or
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Variance seems not to make any difference in the static cais# imakes a significant difference in the
dynamic case, as explained in Sec. 4.1. Performance of tBM3fstogram is comparable to the SVO,
however the cost of constructing the SSBM histogram is muatdller (quadratic in the number of distinct
attribute values) than that of SVO (exponential in the nundbduckets). Comparison of execution times
is shown in Fig. 13.

Finally, we have performed disk-space sensitivity analgsithe approximate compressed histogram
and the results are shown in Fig. 14. Numbers after “AC” derbe factor by which the disk space is
larger than main memory space. Although the performancéeC histogram increases as the disk-
space factor increases, it is still worse than that of the DAllstogram, even for a factor as big as 60.
Notice that the quality of the AC histogram slowly convergeshat of the SC histogram as the size of the
sample approaches the data size.

Fixed SZ=1 FZ=1 SD=1 C=200 Fixed Z=1 SD=2 C=1000 M=1
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10 | 0.002 | R
0 x 0 . . . . P
01 015 02 025 03 035 04 045 0.5 0 0.5 1 1.5 2 25 3
Memory [KB] S
Figure 13: Typical execution times Figure 14: Sensitivity to available disk space

7.2 Sorted Insertions From Synthetic Distributions

In this section we present the results with insertions givethe same order as the domain values they
represent (Fig. 15). Fig. 15 is a reproduction of Fig. 6 exéepsorted insertion of data. Sorted insertions
are more difficult to capture correctly for DADO and DC histagns because the distribution of received
points is constantly changing. This is in contrast to randiosertions, where the distribution of received
points is static, modulo random oscillations. On the othemdy AC histogram withy = —1 handles
sorted insertions with the same precision as random isetti This is because the reservoir sampling is
"blind” on the input order, and whetn = —1 histogram is recomputed at any modification of the reservoir
sample. We conclude from these results that although tHerpgance of the best dynamic histogram
DADO worsens with sorted input, it is still comparable ortbethan the AC histogram.

All the preceding error measurements were obtained aftéremglata set was completely read into a
specific histogram. The following section presents thequar@nce of histograms while the data is being
read.

7.2.1 Histogram’s Precision Degradation as the Data Size tmeases

The following discussion relates to any histogram (staticlynamic) that maintains borders and point
counts for each bucket. Initially, as only a few tuples asented into a histogram, the distribution is cap-
tured precisely. Histograms remain accurate as long as wetoge each distinct point in a separate bucket
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Figure 15: Sorted insertions. Figure 16: Error vs. volume of inserts

and still have enough buckets to represent empty spaceebetiiese points. When even more distinct
points are inserted, histograms become an approximatitdmetdata distribution. Initially, approximation
becomes worse with the increase of the data size, but in glemerexpect this approximation to stabilize.
For example, the maximal error of equi-depth histogram, sue=d by the KS statistics, is limited 1g 3
where g is the number of buckets. In the following experiment, weéhaveasured the error of various
histograms for certain fractions of the data loaded. |.e.measure the error when 5% of the data is read,
10% and so on.

Results of our experiments are shown in Fig. 16 and confolmspteceeding analysis. In these
experiments we have measured KS statistics for 1IKB DADO réximate Compressed (with 20KB disk
space) and Static Compressed histograms for the referéstcdution described in Section 6.1. Data was
given in sorted order and the error was recorded for frastimidata being read. Each point represents the
average of 10 measurements.

It can be seen from Fig 16 that DADO histogram reaches a sgeatte after which the error does not
significantly increase with additional insertions.

7.3 Deletions and Insertions

Deletion is simply the inverse of insertion and is natur&landled by decrementing the appropriate coun-
ters in the buckets of the DADO or DC histograms. Random ¢unij deletions do not significantly affect
the performance of these two algorithms. On the other haaduént random deletions in general deteri-
orate performance of the AC histogram because they redecsizk of the backing sample. This trend is
clearly shown in Fig. 17.

However, we found that performance of DADO for deletiong fblow sorted insertions suffers when
the majority of data is deleted. In this case, counters inesbutkets of the DADO histogram become zero
and no additional points can be removed from them. This ¢éisflgnmeans that some data was spilled
over to the neighboring buckets. Since the point must be vechérom somewhere, we find the closest
bucket to the deleted point and decrement its counter. Tdlisypworks when the bucket overspilling is
likely to occur to the left or to the right of the bucket in gtiea (which is the case for random insertions).
Unfortunately, for sorted insertions, bucket overspglioccurs only to the bucket closer to the center of
the histogram, since the insertions always happen at the@dbe histogram. We were not able to correct
this problem, but it is our opinion that the circumstanceamalhich it occurs (sorted insertions and heavy
deletions) are rare.
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Figure 17: Error vs. volume of random deletes Figure 18: Random deletes after sorted inserts

7.3.1 Histogram’s Precision Degradation as the Data Size tmeases

We monitored the performance of DADO histogram through timea similar fashion as in Sec. 7.2.1,
with the addition of 25% deletion rate. In this experimehg tlata was inserted in sorted order, after every
insertion one tuple was chosen randomly to be deleted wélpthbability of 25%. We omit the results,
which are similar to the experiments without deletions (Hif).

7.4 Real-World Data

We have measured performance of all algorithms on a realtdate obtained from a mail order company.
The data file contains 61,105 records (240 KB) that repredeliar amounts for each order and is shown
in Figure 19. The results are shown in Figure 19. As expechasifigure does not deviate much from the
corresponding figure for synthetic data (Fig. 8). It is iemg that KS statistic for DADO is very good
for low memory (less than 1KB) but does not drop quite as duiek 1/M. This may be caused by the
very “spiky” nature of the data. We observe that while the BA\Bistogram has captured the outline of the
data quickly, it obviously needs much more memory to capthi® many spikes. The same observation
appears to partially hold for DC also.

Mail Order Data Performance comparison
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Figure 19: Mail Order Data
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8 Global Histograms in a Shared-nothing Environment

In a distributed environment (such as the World Wide Weh)daunions of tables with the same schema
have been proposed as a model of scalable semantic integfa€]. Unions of tables are also present in
the shared-nothing architecture for parallel databasssause data in such systems are partitioned across
all the nodes.

Assuming that each union member has a histogram, it is désita build a global histogram, at the
union level, using a limited amount of memory. A union histog can be built by simply superimposing
member histograms. The final histogram has a bucket borderewér either of the input histograms has
a bucket border. Notice that this process does not involyel@ss of information (the final histogram is
as precise as the member histograms) and can be applied tbistogram (static or dynamic). However,
a composite histogram constructed using superpositioniragg a large number of buckets, and in some
situations it may be desirable to reduce its size. To redue@timber of buckets, one can simply treat the
histogram as a data set to be partitioned and use any pairiiigtrategy, such as equi-depth or V-optimal.

In addition to the approach of building the global histogitayrmerging the local histograms, described
above, we can merge all the data first and then construct dimlghistogram directly. We now evaluate
this tradeoff carefully.

We assume that histograms are of SSBM(V, F) class, and thgimgetlechnique used is also SSBM.
For this purpose, all the histograms were given the same anafumemoryM (by default 250 bytes),
variations of which are shown in Fig. 20. Union members haat dvhich is distributed within some
range according to a Zipf distribution parametrized Dy, .,, by default 1 (see Fig. 21). The attribute
range of each union member is uniformly and randomly disted. Number of data in each member is a
zipf distribution with parametefg;;., by default 0 (see Fig. 23. Finally, the number of memhk€s;.
was varied from the default value of 5 (see Fig. 22). Basedhesd figures, we conclude that the resulting
histograms from each alternative are approximately of #meesquality.

9 Conclusion

We have developed two new histograms that can be increrentaintained: DC and DADO. The DADO
histogram showed stable behavior and came very close toeitestatic histograms in terms of how well
they approximated the data distribution. Its performargcsuiperior to that of Approximate Compressed
and DC histograms when given the same amount of main mentahfuathermore, its error rate declines
faster than the sampling error with increases in availaldenary. Dynamic histograms adapt equally well
to both insertions and deletions of new data. We believettiesibove observations are reliable indications
that the Dynamic Average-Deviation Optimal histogram islgably the most robust and effective alterna-
tive for capturing evolving data sets. We also introducedwa static histogram, SSBM, that is close to
the highly accurate V-Optimal histogram in estimation @yabut is far cheaper to compute. The most
important direction of our future work is the extension o& thC and DADO algorithms to more than one
dimension.
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A Histogram Definitions

A complete classification of the entire space of (staticjdgisgams can be found elsewhere [9]. We review
here only those histograms that are relevant to this paper.

Of the four orthogonal dimensions that define the space dfistbgrams [9], the following three are
critical for our work:

1. Sort Parameter:For a data distribution element, this is a function of theregponding attribute
value and/or frequency. Conceptually, the data distridvulements are sorted on their corre-
sponding values of the histogram’s sort parameter; thedyam buckets are then contiguous, non-
overlapping groups in that sorted order.

2. Source ParameterFor a data distribution element, this is also a function & torresponding
attribute value and/or frequency. It is used in determirergctly where in the sort-parameter order
bucket borders are placed.

3. Partition Constraint: This is a constraint that the source parameter values mtistysto determine
a unique histogram. It is typically a mathematical formula.

According to this classification, we identify a histogramingsthe following notation: PartitionCon-
straint(Sort parameter, Source parameterpome of the typical sort and source parameters of a data
distribution element are the attribute value (V), the frelgey (F), and the spread (S), which is the distance
of the attribute value from the next largest value in theritigtion. The following are some of the most
important partition constraints:

e Equi-Sum The sum of the source values in each bucket is equal;

¢ CompressedSome number of the highest source values are stored ingilydin singleton buckets;
the rest of the source values are partitioned based on anE&guihistogram; and
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frequency

e V-Optimal The quantity) _ n;V; is minimized, where; is the number of elements in thith bucket
andVj is the variance of the source values in fitie bucket.

The traditionalEqui-Widthhistogram is essentially tHequi-Sum(V, Shistogram, because it partitions the
attribute value axis (V) so that the value range of each Hislegqual (S). Also, the tradition&8qui-Depth
histogram is essentially tHequi-Sum(V, Fhistogram, because it partitions the attribute value aXjss6
that each bucket has the same number of elements (F). In thls we concentrate oW-Optimal(V, F)
andCompressed(V, Bistograms, which we simply refer to as Compressed and Vh@htrespectively.

Original data distribution Equi-depth histogram V-optimal histogram
4 4 ¢ 4
3t 3t 3
2t 1 2t 2t
1t 11 11
. L | I RN 5 s O
12345678910 123456 78910 123456 78910
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Figure 24: (a) Data distribution, (b) Histogram 1, (c) Hoptam 2

To illustrate the above, Figures 24b and 24c show two diffehéstograms for the data distribution of
Figure 24a. Roughly, Histogram 1 is Equi-Sum(V,F), i.e.uEDepth, and Histogram 2 is V-Optimal(V,F)
That is, for both histograms, buckets are contiguous andaverlapping ranges along theaxis. In
addition, Histogram 1 equalizes the total number of pointsach bucket, while Histogram 2 minimizes
(over all buckets) the variance in the number of points pérevavithin each bucket. Note how different
partition constraints can give very different histogranmstiee same data distribution, even with the same
sort and source parameters. Likewise, one could obtain difigrent histograms by making different
choices on those parameters.
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