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Abstract

In this paper, we introducedynamic histograms, which are constructed and maintained in-
crementally. We develop several dynamic histogram construction algorithms and show that
they come close to static histograms in quality. Our experimental study covers a wide range
of datasets and update patterns, including histogram maintenance in a shared-nothing envi-
ronment. Building upon the insights offered by the dynamic algorithms, we also propose a
new static histogram construction algorithm that is very fast and generates histograms that are
close in quality to the highly accurate (but expensive to construct!) V-Optimal histograms.

1 Introduction

The cost of executing a relational operator is a function of the sizes of the tuple streams that are input to
the operator, which for intermediate operators are in turn determined by selectivities of the previous oper-
ators. The more complex a query is, the more important it is tohave precise intermediate size estimates.
Otherwise, errors in the size estimates will grow intolerably (exponentially in the number of joins [2] in
the worst case), and the optimizer’s estimates may be completely wrong.

To estimate selectivities of query predicates, one needs tohave some information about the data dis-
tributions of numerical attributes referred to in the predicates. There have been several proposals in the
literature on how to maintain concise information about data distributions [14], including histograms,
sampling, and parametric techniques. The most common technique in commercial systems is a histogram.
Histogramsare approximations to data distributions; they partition the data into subsets (calledbuckets)
and maintain some aggregate information within each bucket.

Currently, histograms are static structures: they are created from scratch periodically and their creation
is based on looking at the entire data distribution as it exists each time. This creates problems, however,
as data stored in DBMSs usually varies with time. If new data arrives at a high rate and old data is
likewise deleted, a histogram’s accuracy may deteriorate fast as the histogram becomes older, and the
optimizer’s effectiveness may be lost. Hence, how often a histogram is reconstructed becomes very critical,
but choosing the right period is a hard problem, as the following trade-off exists:� If the period is too long, histograms may become outdated.� If the period is too short, updates of the histogram may incura high overhead.

In this paper, we propose what we believe is the most elegant solution to the problem, i.e., main-
taining dynamic histogramswithin given limits of memory space. Dynamic histograms arecontinuously
updateable, closely tracking changes to the actual data. Weconsider two of the best static histograms



proposed in the literature [9], namely V-Optimal and Compressed, and modify them. The new histograms
are naturally calledDynamic V-Optimal (DVO)andDynamic Compressed (DC). In addition, we modi-
fied V-Optimal’s partition constraint to create theStatic Average-Deviation Optimal (SADO)andDynamic
Average-Deviation Optimal (DADO)histograms.

We compare the effectiveness of dynamic histograms with Approximate Histograms [10], which are
based onReservoir Sampling[1]. Experimental results clearly show that the Dynamic Average-Deviation
Optimal histogram is the most effective approach to capturing evolving data sets. We study a wide range
of datasets and data updating patterns, as well as histogrammaintenance in a distributed shared-nothing
environment, and include a comparison with the best known static histogram techniques.

The concept of dynamic histograms, the algorithms for maintaining such histograms, and the evalua-
tion of their effectiveness is the main contribution of thispaper. However, a second important contribution
is a highly effective, inexpensively computed class ofstatichistograms, calledSuccessive Similar Bucket
Merge(SSBM) histograms. Based upon the same intuitions underlying our dynamic histogram algorithms,
the static SSBM histograms are comparable in quality to the highly accurate (but expensive to construct!)
V-Optimal histograms. (We note that the static SADO histograms are also proposed here for the first time.)

The rest of this paper is organized as follows. We briefly discuss related work and review relevant
histogram definitions in Section 2. We then present our first dynamic histogram, DC, in Section 3. We
present the DVO and DADO dynamic histograms (and the static SADO histogram) in Section 4, and the
highly effective SSBM static histogram in Section 5. Finally, we discuss dynamic histogram maintenance
in a shared nothing environment in Section 8, and then outline future work.

2 Previous Work

Recent work on Approximate Histograms [10] has the same objectives as ours but takes a very different
approach. It considers versions of Equi-Depth and Compressed histograms constructed from a reservoir
sample [1]. The idea is to maintain a large reservoir sample (called the ‘backing sample’) on disk and a
small approximate histogram in the main memory. Equi-Depth(and Compressed) histograms used for this
purpose are approximate since they do not maintain equi-count buckets but the deviations in the bucket
counts must not exceed certain thresholdT . During the insertions or deletions of data, both in memory
structure and the reservoir sample are updated. When the count in some bucket exceeds the thresholdT ,
an attempt is made to split this bucket and merge one neighboring pair. If this cannot be done (because the
merge would exceedT ), the existing approximate histogram is discarded and a newone is built from the
reservoir sample. We compare dynamic histograms with Approximate Histograms in later sections.

Another dynamic technique for approximating distributions is the Birch clustering algorithm [3]. Birch
was originally designed for detection of clusters in large multidimensional data distributions, and later
extended to approximate the data distributions themselvesusing kernel theory[4]. The basic building
block of Birch is thecluster, which plays a role analogous to the bucket in a histogram. All Birch clusters
have a common radius, which makes them similar to Equi-Widthhistogram buckets. It has been shown
earlier [8] that Equi-Width histogram are in most cases inferior to Equi-Depth histogram, which are in
turn inferior to the V-Optimal and Compressed histograms. Hence, for one-dimensional distributions, we
expect the best histograms to be superior to Birch. We included Birch in our experimental study, and found
that the best histograms indeed significantly outperformedBirch; due to lack of space, we do not discuss
Birch further.
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2.1 A Framework for Histograms

A histogram approximates a data distribution by partitioning it into buckets and summarizing each bucket
by some concise information on the attribute values that fall in the bucket and their corresponding fre-
quencies. Typically, each bucket has the minimum and (optionally) the maximum value in the bucket, a
count of the data points it contains, and possibly the numberof unique values it contains. This information
is enough to generate an approximation of the distribution inside the bucket, assuming that within each
bucket the following hold: points have fallen uniformly in the value range of the bucket (uniform distri-
bution assumption); every value within the bucket value range has appeared in the data (continuous value
assumption). Regarding the value distribution, there are indeed better assumptions than the continuous
value assumption [9], but we have chosen this one due to its simplicity.

The following three dimensions are used to describe histograms in the histogram framework described
in [9], which we use in our presentation:1 (1) Sort Parameter:Conceptually, the data distribution elements
are sorted on their corresponding values of the histogram’ssort parameter; the histogram buckets are then
contiguous, non-overlapping groups in that sorted order.(2) Source Parameter:Used to determine where
in the sort-parameter order bucket borders are placed.(3) Partition Constraint: A constraint on source
parameter values that characterizes a histogram class.

3 Dynamic Compressed (DC) Histogram

A Compressed histogram stores some number of points in singleton buckets while the rest of them are par-
titioned as in an Equi-Sum histogram [8, 9]. In this paper, weconcentrate on Compressed(V,F) histograms,
i.e., the frequencies determine the buckets (source parameter). Therefore, singleton buckets are justified
for values whose frequency exceedsN=n (N is the total number of points,n is the number of buckets).
In the rest of this paper, we call singleton bucketssingular and equi-depth bucketsregular. Note that an
Equi-Depth histogram is a special case of a Compressed histogram, with no singular buckets. A bucket of
a Dynamic Compressed (DC) histogram records its left borderand the number of points it contains.

The general idea behind all dynamic histograms is to relax histogram constraints up to a certain point,
after which the histogram is reorganized in order to meet constraints. A DC histogram is constructed as
follows. Initially, n distinct points are loaded into the histogram, each definingan individual bucket (n is
the number of buckets we can maintain, given available memory). After this ‘loading’ phase, every new
value is inserted into the appropriate bucket, possibly extending the leftmost or rightmost border to do so.
When the regular buckets end up having radically different counts, thus violating the partition constraint
of Compressed histograms, repartitioning occurs. Repartitioning is quite simple: it uses the point counts
that are maintained in each bucket of the histogram and respecifies bucket boundaries so that the partition
constraint is satisfied again. During this process, some regular buckets may become singular and vice
versa, depending on whether or not they satisfy the criterion 
ount > N=n, and, of course, have width
equal to one.

An example of repartitioning a DC histogram (with no singular buckets) is shown if Figure 1. Repar-
titioning is done in such a way that the total area and number of buckets remain the same. (Area of each
bucket in Figure 1 is shown above the bucket.) Before repartitioning, the area underneath each bucket was
significantly different. After repartitioning, all such areas are equalized. In this example, all buckets are
regular both before and after repartitioning, but in general this is not the case.

The above captures the essential mechanics of the DC histogram. The question that remains is when
repartitioning should be done. Doing it after every point received will result in both unacceptable per-
formance degradation and probably poor histogram quality,since repartitioning introduces errors in the1For the referees’ convenience, we have included a summary ofthis framework in Appendix A.
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Figure 1: Bucket redistribution in DC histogram. Number above bucket is its area.

histogram due to the uniformity assumptions employed within each bucket. In fact, histogram quality may
be in even higher jeopardy, since random oscillations in theorder in which data is received could cause
“false alarms”, triggering the modification of the bucket boundaries unnecessarily.

What is needed is a test that will trigger repartitioning only when the Compressed partition constraint
is significantlyviolated, i.e., when the counts in the regular buckets vary significantly. In statistical terms,
repartitioning should occur when the following hypothesis(called thenull hypothesis) is found to be false:

Counts in regular buckets are uniformly distributed.

The standard test used for this purpose is theChi-squaretest. The Chi-square metric is�2 =Xi (
i � Ci)2
i ; (1)

where each(Ci) is the experimentally determined number of events of some category i, and 
i is the
expected number of events according to the null hypothesis.In our context,(Ci) is the count of points in
each regular bucketi, and
i is the average count in regular buckets. A large value of�2 indicates that the
null hypothesis is unlikely to hold. Thelevel of significance� is the probability of rejecting a true null
hypothesis, i.e., considering the null hypothesis as falsewhen it is actually true. Given a value of�2, the
significance level of the Chi-square test is given by the wellknownChi-square probability function[7].

Based on the above, setting an upper bound on the deviation ofa histogram from the Compressed
partition constraint before repartitioning is triggered is equivalent to setting a lower bound�min on the
significance level. The lower�min is set, the less frequent redistributions will be. Clearly,setting�min
to 0 would effectively freeze the initial histogram and never allow any repartitioning. On the other hand,
setting�min to 1 would trigger repartitioning after every insertion. Inour performance evaluation, we
have found that the algorithm is quite insensitive to the value of�min, as long as it is much less than 1. In
our experiments, we have set�min = 10�6. Pseudo-code for the DC algorithm is presented in Figure 2.

3.1 Cost

Recall thatN is the number of data points andn is the number of buckets. Processing a new point
requires finding the appropriate bucket by binary search andincreasing its counter (costO(log n) for
each point,O(N log n) total). Depending on the order in which data is read, the bucket borders may
occasionally be reorganized. Repartitioning essentiallycostsO(n) each time, so assuming that it is done
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Algorithm DC (data stream, number of bucketsn) f
// Maintains an array of buckets that approximate numericalrecords
// seen on a potentially unbounded data stream.
// Each bucket stores its left border and the count
 of points in it.
// The number of points read is denoted byN .

read the first n distinct points;
set the bucket borders between them;
do until end of filef

read the new point x;
if x is beyond the range of end bucketsf

extend the appropriate regular bucket up to x;g
insert x into appropriate bucket;
if Probability(�2) < �min f

degrade singular buckets with
 < N=n to regular;
redistribute the regular buckets to equalize their counts;
promote regular buckets with width one and
 > N=n to singular;ggg

Figure 2: DC algorithm

relatively infrequently, the overall cost of DC isO(N log n). Note that this is much lower than the cost of
constructing a static Compressed histogram, which isO(N logN). For potentially lower accuracy, higher
efficiency is obtained.

The space that is required by a DC histogram is the same as for its static counterpart. For each bucket,
it stores its left border and the count of points in it. Its right border is assumed to be the left border of the
next bucket. Altogether, the space requirement is(n+ 1) � sizeof(data type) + n � sizeof(
ounter type)
4 Dynamic V-Optimal and DADO Histograms

A V-Optimal histogram minimizes (over all buckets) the variance between the source-parameter values
within each bucket [8]. In this paper, we concentrate on V-Optimal(V,F) histograms, i.e., again the fre-
quencies determine the buckets (source parameter). Therefore, the histograms considered minimize the
quantity � = nXi=1 piVi; (2)

wheren denotes the number of buckets,pi is the number of frequencies in bucketi, andVi is the variance
of frequencies in theith bucket. Expanding Eq. (2) further, we see that V-Optimal histograms essentially
minimize � = nXi=1Xj (fij � f i)2; (3)

5



wherefij denotes frequency of thejth value in theith bucket, andf i is the average frequency in that
bucket. Here, we assume thatj ranges over all possible domain values within theith bucket.

Note that unlike the Compressed partition constraint, we cannot check the V-Optimal constraint just
by looking at the aggregate information that is typically stored in each bucket (left border and count, or
equivalently average frequency). Eq. (3) requires that theset of the individual frequenciesfij in each
bucket be known. Clearly, storing the entire set is unrealistic and defeats the purpose of using histograms.
One has to settle for some approximation that is, nevertheless, more detailed than the average frequency,
since the latter would always generate zero� in Eq. (3). Our approximation consists of dividing each
bucket into two parts of equal value-range width, calledsub-buckets, and storing the individual counts of
points that belong in each sub-bucket. We have also tried other alternatives by combining different choices
in the following dimensions:� dividing each bucket into more than two parts;� usingequi-depthdivisions instead ofequi-widthdivisions.

Experimentation has shown that all alternatives with a small number of sub-buckets (two or three) have
comparable performance, with finer subdivisions being worse. Intuitively, this trend is to be expected
because, for example, with a large number of equi-width sub-buckets histograms become more equi-width
than V-Optimal in nature. Given the empirical “optimality”of our approximation, we do not discuss any
other alternatives in this paper.

With the above internal bucket structure in place, the DVO algorithm is able to approximate the dy-
namic minimization of Eq. (3) using two operations:� Splittinga bucket along the sub-bucket border to generate two new buckets. The sub-buckets of each

new bucket have equal counts. Since each of the new buckets has zero�, splitting never increases�.� Merging two neighboring buckets to generate a single new bucket. Thesub-bucket counts of the
new bucket are calculated based on the counts and ranges of the original buckets. Straightforward
manipulation of Eq. (3) shows that the� of the new bucket is greater than or equal to the sum of the� of the original buckets. Hence, merging never decreases�.

Since the memory used for a histogram is fixed, repartitioning in the DVO algorithm consists of a split-
merge pair, i.e., splitting a high-� bucket and merging two neighboring buckets of similar characteristics.
The resulting change�� in overall� (Eq. (3)) is equal to�� = �M � �S= Xj (fMj � fM )2 �Xk (fSk � fS)2; (4)

wherej runs over all values in the two merged buckets,fM is the average frequency of these values,k
runs over all values of the split bucket, andfS is the average frequency of these values. The bucket to be
split and the two buckets to be merged are selected from all possible candidates so that�� is minimized.
If min�� is positive, repartitioning is not done.

The above description captures the essential mechanics of the DVO histogram. The question that
remains is when repartitioning should be done. This is determined by comparingmin�� with some upper
bound beyond which repartitioning will not be triggered. This upper bound has to be non-positive, as
positive values ofmin�� imply that the original histogram is better than any other one can obtain by a
split-merge pair. In our experiments, we have made the most aggressive choice and set this upper bound
equal to 0.
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The definition ofmin�� does not lend itself to efficient calculation. Fortunately,one can show that
identifying the triple of buckets involved in the split-merge operations (one to be split and two to be
merged) that generatesmin�� (if min�� < 0) can be found in linear time.

Theorem 4.1 If min�� < 0, then the bucket to split is the one with the largest�.
Sketch of Proof If �� < 0, then the best pair to merge cannot include the bucket with the largest�,
because no other bucket could counter this� and make�� < 0. Assume that�� is minimal but the bucket
to split (S) is not the one with the largest�. Clearly, this cannot be true, sinceS could be replaced by the
bucket with the largest� resulting in an even lower value of��, which implies that the original�� is not
minimal. Hence, by contradiction, the statement of the theorem must be true.2

Similarly, one can prove that the pair to be merged is the one that has the minimal combined�.
Pseudo-code for the DVO algorithm is presented in Figure 3. It uses the efficientmin�� < 0 evalua-

tion algorithm mentioned above. As before, the input parameter is the number of bucketsn.

ProcedureDVO (data stream, # of bucketsn) f
// Maintains an array of buckets that approximate numericalrecords
// seen on a potentially unbounded data stream
// Each bucket stores its left border and counters for its twosub-buckets.

read first n points and create buckets between them;
do until end of filef

read next point (x);
if x is beyond the range of the end bucketsf

Create a new bucket just for this point;// borrow one bucket
Bucketb = findBestToMerge(buckets);
mergeb andb.next;// one bucket lessg elsef
insert x into appropriate bucket;
Buckets = findBestToSplit(buckets);
Bucketm = findBestToMerge(buckets);
if (�(s) > �(m + m.next))f

split s;
mergem andm.next;gggg

ProcedurefindBestToSplit(DVO histogram)f
// Return the bucket with highest�g
ProcedurefindBestToMerge(DVO histogram)f
// Return the bucketb such that the� of b bucket combined
// with its successor is smallest among all the pairs.g

Figure 3: DVO (DADO) algorithm
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4.1 Dynamic Average-Deviation Optimal (DADO) Histogram

The original definition of the V-Optimal histogram calls forthe minimization of the sum of the squares of
the deviations of frequencies from their average (Eq. (3)).Nevertheless, our experimental results (see, for
example, Fig. 9) indicate that better results are achieved by minimizing the sum of the absolute values of
these deviations instead: � = nXi=1Xj jfij � f ij: (5)

A histogram with this partition constraint is called StaticAverage-Deviation Optimal (SADO) and the
corresponding dynamic version is called Dynamic Average-Deviation Optimal (DADO). Eq. (5) is a more
robust estimate of the deviations than Eq. (2). In other words, � as defined in Eq. (5) is less sensitive
to the frequency outliers. (Outliers are the data points farfrom the average.) We expect input data to
possibly have large random oscillations in frequencies andconsequently outliers may be common. This
would explain why the DADO histogram is on average better than the DVO histogram, especially in the
skewed distributions. There are no random oscillations during the construction of static histograms and
therefore there is essentially no difference between the static V-optimal and the static Average-Deviation
optimal histograms. The DADO algorithm, and all the resultspresented above remain the same as the
DVO version provided that the square is replaced by absolutevalues.

4.2 Example of DADO (or DVO) Operation

Figure 4a shows a DADO histogram with five buckets. There are two sub-buckets (counters) per bucket,
and bucket borders are marked by vertical lines. The second bucket from the left has high� because its
counters are very different. Assume that the next point readis number 3, which is inserted into the left
sub-bucket of the second bucket. Recalculatingmin�� produces a negative value, because the� in the
second bucket is larger than the combined� in the third and fourth buckets. This triggers a split of the
second bucket and a merge of the third and fourth buckets. Fig. 4b shows the result. Note that the counters
in the merged bucket are deduced from the old configuration while the counters in each of the buckets that
resulted from the split are set equal.
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4.3 Note on Buckets vs. Sub-Buckets

By looking at the typical DADO histogram (Figure 4), one may argue that what we call “buckets” may
be eliminated from the algorithm completely and what we call“sub-buckets” may be considered the true
buckets. This is certainly a valid alternative view of the problem, but one needs to be cautious. The DADO
histogram does not treat sub-buckets symmetrically; for example, large� of sub-bucket counters within
a single bucket is considered harmful, but large� between two neighboring sub-buckets that belong to
distinct buckets is ignored. This asymmetry is actually themain strength of the DADO algorithm, as it
tends to place bucket borders at points where there are greatdifferences in frequencies, and conversely, it
spreads buckets across the smooth parts of the distribution. Therefore, even if one treats sub-buckets as
the basic building blocks, one would still need some notion of “super-structure” in order to capture the
AD-Optimal partition constraint; some notion of hierarchyin the bucket structure is necessary.

4.4 Cost

Clearly, the main loop of DADO is executed once for each pointread, i.e.,N times. The key operation in
that loop in terms of cost is the identification of bucketss andm (Figure 3), which as we have shown, can
be done in time linear in the number of bucketsn. Hence, the overall cost of DADO isO(Nn), larger than
the cost of DC, which isO(N log n).

The space required by a DADO histogram is also slightly larger than that of a DC histogram (for
the same number of buckets), because it stores its left border and two counters, one for each sub-bucket.
Therefore, the total space requirement is(n+ 1) � sizeof(data type) + 2 � n � sizeof(
ounter type)
5 A New Static Histogram Algorithm

The DADO merge technique suggests a new way of constructing static histograms, as described next.
Initially, load all the data in an exact histogram (one bucket for each non empty distinct point). After the
loading phase, successively merge the neighboring bucketswith the smallest�M , as defined in Eq. 4. The
algorithm starts merging the most similar buckets first (with small�M ) and proceeds until the requested
target number of buckets is left unmerged. We call such (static) histogramsSuccessive Similar Bucket
Merge(SSBM) histograms.

Performance comparison of SSBM histograms to various static histograms is shown later in Figs. 9,
10, 11, and 12. We found that SSBM is comparable in performance to V-optimal(V, F) histogram, which
is one of the best known histograms, but is much cheaper to construct. The cost of SSBM construction is
quadratic in the number of distinct attribute values, rather than exponential (as for V-optimal).

6 How to Measure the Quality of a Histogram?

Clearly, there are many ways to evaluate the performance of ahistogram, and in general there is no defini-
tive answer to the question of which algorithm is the best. One can only say which algorithm is best under
certain test data and evaluation metrics. In the following subsections we present our test distributions and
the metric that we believe to be the most suited for comparingdifferent histograms.
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6.1 Performance Parameters: Data Distribution and Memory

We evaluated the algorithms using a parametrizable data distribution, in order to measure trends in their
relative behavior as the parameters are changed.

Many real distributions obey the Zipf [15] and Normal laws. Motivated by this, we have created
distributions that contain clusters of data, characterized by the position of their center, their size, and shape.
The Zipf law governs positions and sizes of clusters. Correlation between cluster sizes and separations was
chosen from three alternatives: no correlation, positive correlation, and negative correlation. The shape
of clusters was chosen from three distributions: uniform, normal, and exponential. The width of clusters
was parameterized by variable standard deviation�. We did not detect significant variations in algorithm
performance along the following dimensions: correlation between cluster sizes and separations, the shape
of clusters, and the number of clusters. Therefore, all the performance results presented in this paper have
the following data distribution parameters fixed: (1)CS, cluster shape (distribution), fixed to Normal. (2)SF , spread frequency correlation, fixed to random. (3)C, the number of distinct clusters, fixed to 2000 or
to 50. Parameters that were varied are listed below:� Z, the Zipf parameter of the skew in the distribution of cluster sizes.� S, the Zipf parameter of the skew in the distribution of cluster centers.� �, the standard deviation within the clusters, if zero, each cluster has a single value.

By changing these parameters, it is possible to capture manydifferent distributions. Essentially, our
test distributions look very much like the ones from [9], with the addition of a parameterized cluster width
(�). Finally, we note that we varied the amount of memory (M ) available for histogram construction.

6.2 What is a Good Evaluation Metric?

To evaluate the quality of a histogram we compared the original data distribution to the approximate
data distribution represented by the histogram, using agoodness-of-fittest. The two most widely used
goodness-of-fit tests are the Chi-Square and Kolmogorov-Smirnov tests. The Chi-Square test is usually
used when the data involves categories (e.g., colors), and the Kolmogorov-Smirnov (KS) test [12] is the
most generally accepted test for numeric distributions.

It should be emphasized that we only use the statistical metrics associated with the respective tests, and
not their associated probability functions. That is, we just measure goodness-of-fit without worrying about
the significance of the deviation. Significance is irrelevant because we are interested only in the relative
performance of the algorithms.

The KS statistic for two distributions is defined asD = max�1<x<1 j P1(x)� P2(x) j (6)

whereP (x) is the cumulative distribution function.
One can always group the data into bins and use the Chi-Squarestatistic on the the numeric distribution.

Grouping involves a loss of information and moreover the choice of how to group the data is arbitrary.
KS statistic does not require any unnecessary categorization and is also independent of any kind of re-
parameterizations of the domain axis.

The KS statistic has an intuitive interpretation: It is the maximum error in selectivity of a range predi-
cate posed against the histogram rather than the original data. Unfortunately, there is no similarly intuitive
interpretation for the Chi-Square statistic.
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We have also tried the error metric suggested in [9],E = 100N X
all queries

jSq � S0qjSq (7)

whereSq andS0q are the actual and the estimated size of the query result, respectively. This error met-
ric, although different from KS, gave similar results in terms of relative performance of our histogram
construction algorithms. We preferred the KS statistic because the metric in Eq. (7) obviously depends
on the test set of queries. For example, Eq. (7) would give different error for the set of range queries
(attribute < value) depending howvalue is distributed. Two obvious choices forvalue distribution
are uniform and the data distribution itself. Also, open range queries (attribute < value) would give
different results than close range queries (low < attribute < high). To avoid any bias towards any of
these queries, we have turned to the KS statistic as an established test for comparing two distributions.

7 Performance Evaluation

We have evaluated all algorithms along the three broad classes of tests:

1. Parameterized synthetic distributions:

(a) random insertions

(b) sorted insertions

(c) random insertions intermixed with random deletions

(d) random insertions followed by random deletions

(e) sorted insertions followed by sorted deletions

2. Real-world distribution. This data was collected by a mail order company through the period of
time. The data contains only insertion in approximately random order.

In order to make fair comparisons,all of the algorithms were given the same amount of main memory.
In addition, we gave the Approximate Compressed (AC) histogram the disk space equal to twenty times
the main memory (by default), following the suggestion by authors of [10]. (We have also tried other
disk-space factors, as shown later in Fig. 14.) To obtain thebest quality AC histogram possible, we set
the
 performance parameter to -1. This causes recomputation at every update, which in general gives the
best quality histogram, but the worst performance in terms of speed, according to [10].

We compare all algorithms on a parameterized family of data distributions. The test data was a file of
100,000 integer numbers, spread over the interval [0..5000] according to the parameters of the distribution
(S, Z, ...). All the histograms are initially empty and are populated by numbers drawn from the test
distribution in a random order. After all insertions are done, the histogram distribution is compared to the
original distribution using KS statistic as an error metric. We chose the following reference distribution: (S
= 1,Z = 1,� = 2, Memory = 1 KB), and changed all the parameters, one at a time. Every test configuration
was generated ten times (by starting from a different seed for the random number generators used in data
set generation) and evaluated based on the average of ten measured KS statistics.

7.1 Random Insertions From Synthetic Distributions

Figures 5, 6, 7, and 8 show the performance of various histograms under a workload of random insertions,
and can be summarized as follows:
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Figure 6: KS statistic as a function ofZ
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Figure 7: KS statistic as a function of� 0
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Figure 8: Error vs. available memory

DADO histogram has the best behavior among dynamic histograms. The algorithm works better for very
high skews because in this case it can afford to create buckets with only one value in them, thus
capturing large parts of distribution with almost perfect precision. On average, maximal error of the
1KB DADO histogram is below 0.5% of the relation size.

DVO histogram has similar behavior to the DADO histogram but it is consistently worse in quality. A
likely reason for this was given in Section 4.1.

AC histogram has on average worse behavior than both DADO and DVO (in spite of the advantage of
extra disk space and the favorable setting of
 = �1). Oscillations in quality for variousS, Z, �,
andM are results of random fluctuations. Notice that for larger values of memoryM (Figure 8),
the AC histogram becomes even less effective compared to theDADO histograms.

DC histogram behaves roughly as its static counterpart with larger errors, as expected. In general, errors
are small for low skews (because any histogram is good at uniform distributions) and high skews
(because singular buckets capture most of the data). Along the same lines, errors are small for low� because it effectively increases the skew of the distribution. Similarly, errors are low at large�
because it makes distribution uniform. The DC histogram hasthe most difficulty with intermediate

12



�. We found that this large increase in error for intermediateskews are accompanied by large
number of border relocations. Border relocations certainly introduce errors because new border
positions are calculated under assumption of uniform distribution within each bucket. Distributions
with larger skews have large random oscillations that causeunnecessary border relocations. The
Chi-square test helps to reduce border relocations due to random oscillations but does not eliminate
them completely. Unnecessary relocations are the primary source of errors of the DC histogram.
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Figure 10: KS statistic as a function ofZ
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Figure 12: Error vs. available memory

The above results were obtained using random insertions from the underlying distributions.
Since the experiments presented above indicate that the DADO algorithm has the best performance, it

is of interest to compare it to the best static algorithms, such as Compressed (SC) and V-Optimal (SVO). In
addition, we have implemented the new static Average-Deviation Optimal (SADO) and Successive Similar
Bucket Merge (SSBM) algorithms. All the static histograms are of the same size as memory given to the
DADO histogram. Construction of a SC histogram requires sorting of the input data set and for this purpose
it was given as much memory (disk space) as needed. Similarly, the SVO, SADO and SSBM histograms
require enough memory to fit all the data points. Results of this comparison are shown in Figures 9, 10,
11, and 12. From these figures we can see that the DADO algorithm comes close to the performance of
its static counterpart and is very comparable to the SC algorithm. Optimizing for Average-Deviation or
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Variance seems not to make any difference in the static case but it makes a significant difference in the
dynamic case, as explained in Sec. 4.1. Performance of the SSBM histogram is comparable to the SVO,
however the cost of constructing the SSBM histogram is much smaller (quadratic in the number of distinct
attribute values) than that of SVO (exponential in the number of buckets). Comparison of execution times
is shown in Fig. 13.

Finally, we have performed disk-space sensitivity analysis of the approximate compressed histogram
and the results are shown in Fig. 14. Numbers after “AC” denote the factor by which the disk space is
larger than main memory space. Although the performance of the AC histogram increases as the disk-
space factor increases, it is still worse than that of the DADO histogram, even for a factor as big as 60.
Notice that the quality of the AC histogram slowly convergesto that of the SC histogram as the size of the
sample approaches the data size.
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7.2 Sorted Insertions From Synthetic Distributions

In this section we present the results with insertions givenin the same order as the domain values they
represent (Fig. 15). Fig. 15 is a reproduction of Fig. 6 except for sorted insertion of data. Sorted insertions
are more difficult to capture correctly for DADO and DC histograms because the distribution of received
points is constantly changing. This is in contrast to randominsertions, where the distribution of received
points is static, modulo random oscillations. On the other hand, AC histogram with
 = �1 handles
sorted insertions with the same precision as random insertions. This is because the reservoir sampling is
”blind” on the input order, and when
 = �1 histogram is recomputed at any modification of the reservoir
sample. We conclude from these results that although the performance of the best dynamic histogram
DADO worsens with sorted input, it is still comparable or better than the AC histogram.

All the preceding error measurements were obtained after a given data set was completely read into a
specific histogram. The following section presents the performance of histograms while the data is being
read.

7.2.1 Histogram’s Precision Degradation as the Data Size Increases

The following discussion relates to any histogram (static or dynamic) that maintains borders and point
counts for each bucket. Initially, as only a few tuples are inserted into a histogram, the distribution is cap-
tured precisely. Histograms remain accurate as long as we can store each distinct point in a separate bucket
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and still have enough buckets to represent empty spaces between these points. When even more distinct
points are inserted, histograms become an approximation tothe data distribution. Initially, approximation
becomes worse with the increase of the data size, but in general we expect this approximation to stabilize.
For example, the maximal error of equi-depth histogram, measured by the KS statistics, is limited to1=�
where� is the number of buckets. In the following experiment, we have measured the error of various
histograms for certain fractions of the data loaded. I.e., we measure the error when 5% of the data is read,
10% and so on.

Results of our experiments are shown in Fig. 16 and conforms the preceeding analysis. In these
experiments we have measured KS statistics for 1KB DADO, Approximate Compressed (with 20KB disk
space) and Static Compressed histograms for the reference distribution described in Section 6.1. Data was
given in sorted order and the error was recorded for fractions of data being read. Each point represents the
average of 10 measurements.

It can be seen from Fig 16 that DADO histogram reaches a stablepoint after which the error does not
significantly increase with additional insertions.

7.3 Deletions and Insertions

Deletion is simply the inverse of insertion and is naturallyhandled by decrementing the appropriate coun-
ters in the buckets of the DADO or DC histograms. Random (uniform) deletions do not significantly affect
the performance of these two algorithms. On the other hand, frequent random deletions in general deteri-
orate performance of the AC histogram because they reduce the size of the backing sample. This trend is
clearly shown in Fig. 17.

However, we found that performance of DADO for deletions that follow sorted insertions suffers when
the majority of data is deleted. In this case, counters in some buckets of the DADO histogram become zero
and no additional points can be removed from them. This essentially means that some data was spilled
over to the neighboring buckets. Since the point must be removed from somewhere, we find the closest
bucket to the deleted point and decrement its counter. This policy works when the bucket overspilling is
likely to occur to the left or to the right of the bucket in question (which is the case for random insertions).
Unfortunately, for sorted insertions, bucket overspilling occurs only to the bucket closer to the center of
the histogram, since the insertions always happen at the edge of the histogram. We were not able to correct
this problem, but it is our opinion that the circumstance under which it occurs (sorted insertions and heavy
deletions) are rare.
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7.3.1 Histogram’s Precision Degradation as the Data Size Increases

We monitored the performance of DADO histogram through time, in a similar fashion as in Sec. 7.2.1,
with the addition of 25% deletion rate. In this experiment, the data was inserted in sorted order, after every
insertion one tuple was chosen randomly to be deleted with the probability of 25%. We omit the results,
which are similar to the experiments without deletions (Fig. 16).

7.4 Real-World Data

We have measured performance of all algorithms on a real datatrace obtained from a mail order company.
The data file contains 61,105 records (240 KB) that representdollar amounts for each order and is shown
in Figure 19. The results are shown in Figure 19. As expected,this figure does not deviate much from the
corresponding figure for synthetic data (Fig. 8). It is interesting that KS statistic for DADO is very good
for low memory (less than 1KB) but does not drop quite as quickly as1=M . This may be caused by the
very “spiky” nature of the data. We observe that while the DADO histogram has captured the outline of the
data quickly, it obviously needs much more memory to capturethis many spikes. The same observation
appears to partially hold for DC also.
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8 Global Histograms in a Shared-nothing Environment

In a distributed environment (such as the World Wide Web) large unions of tables with the same schema
have been proposed as a model of scalable semantic integration [16]. Unions of tables are also present in
the shared-nothing architecture for parallel databases, because data in such systems are partitioned across
all the nodes.

Assuming that each union member has a histogram, it is desirable to build a global histogram, at the
union level, using a limited amount of memory. A union histogram can be built by simply superimposing
member histograms. The final histogram has a bucket border wherever either of the input histograms has
a bucket border. Notice that this process does not involve any loss of information (the final histogram is
as precise as the member histograms) and can be applied to an yhistogram (static or dynamic). However,
a composite histogram constructed using superposition mayhave a large number of buckets, and in some
situations it may be desirable to reduce its size. To reduce the number of buckets, one can simply treat the
histogram as a data set to be partitioned and use any partitioning strategy, such as equi-depth or V-optimal.

In addition to the approach of building the global histogramby merging the local histograms, described
above, we can merge all the data first and then construct the global histogram directly. We now evaluate
this tradeoff carefully.

We assume that histograms are of SSBM(V, F) class, and the merging technique used is also SSBM.
For this purpose, all the histograms were given the same amount of memoryM (by default 250 bytes),
variations of which are shown in Fig. 20. Union members have data which is distributed within some
range according to a Zipf distribution parametrized byZFreq, by default 1 (see Fig. 21). The attribute
range of each union member is uniformly and randomly distributed. Number of data in each member is a
zipf distribution with parameterZSite, by default 0 (see Fig. 23. Finally, the number of membersNSite
was varied from the default value of 5 (see Fig. 22). Based on these figures, we conclude that the resulting
histograms from each alternative are approximately of the same quality.

9 Conclusion

We have developed two new histograms that can be incrementally maintained: DC and DADO. The DADO
histogram showed stable behavior and came very close to the best static histograms in terms of how well
they approximated the data distribution. Its performance is superior to that of Approximate Compressed
and DC histograms when given the same amount of main memory, and furthermore, its error rate declines
faster than the sampling error with increases in available memory. Dynamic histograms adapt equally well
to both insertions and deletions of new data. We believe thatthe above observations are reliable indications
that the Dynamic Average-Deviation Optimal histogram is probably the most robust and effective alterna-
tive for capturing evolving data sets. We also introduced a new static histogram, SSBM, that is close to
the highly accurate V-Optimal histogram in estimation quality, but is far cheaper to compute. The most
important direction of our future work is the extension of the DC and DADO algorithms to more than one
dimension.
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A Histogram Definitions

A complete classification of the entire space of (static) histograms can be found elsewhere [9]. We review
here only those histograms that are relevant to this paper.

Of the four orthogonal dimensions that define the space of allhistograms [9], the following three are
critical for our work:

1. Sort Parameter:For a data distribution element, this is a function of the corresponding attribute
value and/or frequency. Conceptually, the data distribution elements are sorted on their corre-
sponding values of the histogram’s sort parameter; the histogram buckets are then contiguous, non-
overlapping groups in that sorted order.

2. Source Parameter:For a data distribution element, this is also a function of the corresponding
attribute value and/or frequency. It is used in determiningexactly where in the sort-parameter order
bucket borders are placed.

3. Partition Constraint:This is a constraint that the source parameter values must satisfy to determine
a unique histogram. It is typically a mathematical formula.

According to this classification, we identify a histogram using the following notation: PartitionCon-
straint(Sort parameter, Source parameter). Some of the typical sort and source parameters of a data
distribution element are the attribute value (V), the frequency (F), and the spread (S), which is the distance
of the attribute value from the next largest value in the distribution. The following are some of the most
important partition constraints:� Equi-Sum: The sum of the source values in each bucket is equal;� Compressed: Some number of the highest source values are stored individually in singleton buckets;

the rest of the source values are partitioned based on an Equi-Sum histogram; and
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� V-Optimal: The quantity
PnjVj is minimized, wherenj is the number of elements in thejth bucket

andVj is the variance of the source values in thejth bucket.

The traditionalEqui-Widthhistogram is essentially theEqui-Sum(V, S)histogram, because it partitions the
attribute value axis (V) so that the value range of each bucket is equal (S). Also, the traditionalEqui-Depth
histogram is essentially theEqui-Sum(V, F)histogram, because it partitions the attribute value axis (V) so
that each bucket has the same number of elements (F). In this work, we concentrate onV-Optimal(V, F)
andCompressed(V, F)histograms, which we simply refer to as Compressed and V-Optimal, respectively.
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Figure 24: (a) Data distribution, (b) Histogram 1, (c) Histogram 2

To illustrate the above, Figures 24b and 24c show two different histograms for the data distribution of
Figure 24a. Roughly, Histogram 1 is Equi-Sum(V,F), i.e., Equi-Depth, and Histogram 2 is V-Optimal(V,F)
That is, for both histograms, buckets are contiguous and non-overlapping ranges along thex axis. In
addition, Histogram 1 equalizes the total number of points in each bucket, while Histogram 2 minimizes
(over all buckets) the variance in the number of points per value within each bucket. Note how different
partition constraints can give very different histograms on the same data distribution, even with the same
sort and source parameters. Likewise, one could obtain verydifferent histograms by making different
choices on those parameters.
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