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Abstract. Inductive logic programming (ILP) is built on a foundation
laid by research in other areas of computational logic. But in spite of this
strong foundation, at 10 years of age ILP now faces a number of new chal-
lenges brought on by exciting application opportunities. The purpose of
this paper is to interest researchers from other areas of computational
logic in contributing their special skill sets to help ILP meet these chal-
lenges. The paper presents five future research directions for ILP and
points to initial approaches or results where they exist. It is hoped that
the paper will motivate researchers from throughout computational logic
to invest some time into “doing” ILP.

1 Introduction

Inductive Logic Programming has its foundations in computational logic, includ-
ing logic programming, knowledge representation and reasoning, and automated
theorem proving. These foundations go well beyond the obvious basis in definite
clause logic and SLD-resolution. In addition ILP has heavily utilized such the-
oretical results from computational logic as Lee’s Subsumption Theorem [18],
Gottlob’s Lemma linking implication and subsumption [12], Marcinkowski and
Pacholski’s result on the undecidability of implication between definite clauses
[22], and many others. In addition to utilizing such theoretical results, ILP de-
pends crucially on important advances in logic programming implementations.
For example, many of the applications summarized in the next brief section
were possible only because of fast deductive inference based on indexing, par-
tial compilation, etc. as embodied in the best current Prolog implementations.
Furthermore, research in computational logic has yielded numerous important
lessons about the art of knowledge representation in logic that have formed the
basis for applications. Just as one example, definite clause grammars are cen-
tral to several ILP applications within both natural language processing and
bioinformatics.

ILP researchers fully appreciate the debt we owe to the rest of computational
logic, and we are grateful for the foundation that computational logic has pro-
vided. Nevertheless, the goal of this paper is not merely to express gratitude, but



also to point to the present and future needs of ILP research. More specifically,
the goal is to lay out future directions for ILP research and to attract researchers
from the various other areas of computational logic to contribute their unique
skill sets to some of the challenges that ILP now faces.! In order to discuss these
new challenges, it is necessary to first briefly survey some of the most challenging
application domains of the future. Section 2 provides such a review. Based on
this review, Section 3 details five important research directions and concomitant
challenges for ILP, and Section 4 tries to “close the sale” in terms of attracting
new researchers.

2 A Brief Review of Some Application Areas

One of the most important application domains for machine learning in general
is bioinformatics, broadly interpreted. This domain is particularly attractive for
(1) its obvious importance to society, and (2) the plethora of large and growing
data sets. Data sets obviously include the newly completed and available DNA se-
quences for C. elegans (nematode), Drosophila (fruitfly), and (depending on one’s
definitions of “completed” and “available”) man. But other data sets include
gene expression data (recording the degree to which various genes are expressed
as protein in a tissue sample), bio-activity data on potential drug molecules,
x-ray crystallography and NMR data on protein structure, and many others.
Bioinformatics has been a particularly strong application area for ILP, dating
back to the start of Stephen Muggleton’s collaborations with Mike Sternberg
and Ross King [29,16]. Application areas include protein structure prediction
[29, 37], mutagenicity prediction [17], and pharmacophore discovery [7] (discov-
ery of a 3D substructure responsible for drug activity that can be used to guide
the search for new drugs with similar activity). ILP is particularly well-suited
for bioinformatics tasks because of its abilities to take into account background
knowledge and structured data and to produce human-comprehensible results.
For example, the following is a potential pharmacophore for ACE inhibition (a
form of hypertension medication), where the spacial relationships are described
through pairwise distances.?

Molecule A is an ACE inhibitor if:
molecule A contains a zinc binding site B, and
molecule A contains a hydrogen acceptor C, and
the distance between B and C is 7.9 +/- .75 Angstroms, and
molecule A contains a hydrogen acceptor D, and
the distance between B and D is 8.5 +/- .75 Angstroms, and
the distance between C and D is 2.1 +/- .75 Angstroms, and
molecule A contains a hydrogen acceptor E, and
the distance between B and E is 4.9 +/- .75 Angstroms, and

! Not to put too fine a point on the matter, this paper contains unapologetic prosely-
tizing.

%2 Hydrogen acceptors are atoms with a weak negative charge. Ordinarily, zinc-binding
would be irrelevant; it is relevant here because ACE is one of several proteins in
the body that typically contains an associated zinc ion. This is an automatically
generated translation of an ILP-generated clause.



Fig. 1. ACE inhibitor number 1 with highlighted 4-point pharmacophore.

the distance between C and E is 3.1 +/- .75 Angstroms, and
the distance between D and E is 3.8 +/- .75 Angstroms.

Figures 1 and 2 show two different ACE inhibitors with the parts of pharma-
cophore highlighted and labeled.

A very different type of domain for machine learning is natural language pro-
cessing (NLP). This domain also includes a wide variety of tasks such as part-
of-speech tagging, grammar learning, information retrieval, and information ex-
traction. Arguably, natural language translation (at least, very rough-cut trans-
lation) is now a reality—witness for example the widespread use of Altavista’s
Babelfish. Machine learning techniques are aiding in the construction of informa-
tion extraction engines that fill database entries from document abstracts (e.g.,
[3]) and from web pages (e.g., WhizBang! Labs, http://www.whizbanglabs.com).
NLP became a major application focus for ILP in particular with the ESPRIT
project ILP2. Indeed, as early as 1998 the majority of the application papers at
the ILP conference were on NLP tasks.

A third popular and challenging application area for machine learning is
knowledge discovery from large databases with rich data formats, which might
contain for example satellite images, audio recordings, movie files, etc. While
Dzeroski has shown how ILP applies very naturally to knowledge discovery from
ordinary relational databases [6], advances are needed to deal with multimedia
databases.

ILP has advantages over other machine learning techniques for all of the
preceding application areas. Nevertheless, these and other potential applications
also highlight the following shortcomings of present ILP technology.



Fig. 2. ACE inhibitor number 2 with highlighted 4-point pharmacophore.

— Other techniques such as hidden Markov models, Bayes Nets and Dynamic
Bayes Nets, and bigrams and trigrams can expressly represent the probabil-
ities inherent in tasks such as part-of-speech tagging, alignment of proteins,
robot maneuvering, etc. Few ILP systems are capable of representing or
processing probabilities.?

— ILP systems have higher time and space requirements than other machine
learning systems, making it difficult to apply them to large data sets. Alter-
native approaches such as stochastic search and parallel processing need to
be explored.

— ILP works well when data and background knowledge are cleanly expressible
in first-order logic. But what can be done when databases contain images,
audio, movies, etc.? ILP needs to learn lessons from constraint logic program-
ming regarding the incorporation of special-purpose techniques for handling
special data formats.

— In scientific knowledge discovery, for example in the domain of bioinformat-
ics, it would be beneficial if ILP systems could collaborate with scientists
rather than merely running in batch mode. If ILP does not take this step,
other forms of collaborative scientific assistants will be developed, supplant-
ing ILP’s position within these domains.

3 It should be noted that Stephen Muggleton and James Cussens have been pushing
for more attention to probabilities in ILP. Stephen Muggleton initiated this direction
with an invited talk at ILP’95 and James Cussens has a recently-awarded British
EPSRC project along these lines. Nevertheless, litte attention has been paid to this
shortcoming by other ILP researchers, myself included.



In light of application domains and the issues they raise, the remainder of
this paper discusses five directions for future research in ILP. Many of these
directions require fresh insights from other areas of computational logic. The
author’s hope is that this discussion will prompt researchers from other areas to
begin to explore ILP.*

3 Five Directions for ILP Research

Undoubtedly there are more than five important directions for ILP research. But
five directions stand out clearly at this point in time. They stand out not only
in the application areas just mentioned, but also when examining current trends
in AT research generally. These areas are

— incorporating explicit probabilities into ILP

— stochastic search

— building special-purpose reasoners into ILP

— enhancing human-computer interaction to make ILP systems true collabora-
tors with human experts

parallel execution using commodity components

Each of these research directions can contribute substantially to the future
widespread success of ILP. And each of these directions could benefit greatly
from the expertise of researchers from other areas of computational logic. This
section discusses these five research directions in greater detail.

3.1 Probabilistic Inference: ILP and Bayes Nets

Bayesian Networks have largely supplanted traditional rule-based expert sys-
tems. Why? Because in task after task we (AI practitioners) have realized that
probabilities are central. For example, in medical diagnosis few universally true
rules exist and few entirely accurate laboratory experiments are available. In-
stead, probabilities are needed to model the task’s inherent uncertainty. Bayes
Nets are designed specifically to model probability distributions and to rea-
son about these distributions accurately and (in some cases) efficiently. Conse-
quently, in many tasks including medical diagnosis [15], Bayes Nets have been
found to be superior to rule-based systems. Interestingly, inductive inference, or
machine learning, has turned out to be a very significant component of Bayes Net
reasoning. Inductive inference from data is particularly important for developing
or adjusting the conditional probability tables (CPTs) for various network nodes,
but also is used in some cases even for developing or modifying the structure of
the network itself.

4 1t is customary in technical papers for the author to refer to himself in the third
person. But because the present paper is an invited paper expressing the author’s
opinions, the remainder will be much less clumsy if the author dispenses with that
practice, which I now will do.



But not all is perfection and contentment in the world of Bayes Nets. A
Bayes Net is less expressive than first-order logic, on a par with propositional
logic instead. Consequently, while a Bayes Net is a graphical representation, it
cannot represent relational structures. The only relationships captured by the
graphs are conditional dependencies among probabilities. This failure to capture
other relational information is particularly troublesome when using the Bayes
Net representation in learning. For a concrete illustration, consider the task of
pharmacophore discovery. It would be desirable to learn probabilistic predic-
tors, e.g., what is the probability that a given structural change to the molecule
fluoxetine (Prozac) will yield an equally effective anti-depressant (specifically,
serotonin reuptake inhibitor)? To build such a probabilistic predictor, we might
choose to learn a Bayes Net from data on serotonin reuptake inhibitors. Unfor-
tunately, while a Bayes Net can capture the probabilistic information, it cannot
capture the structural properties of a molecule that are predictive of biological
activity.

The inability of Bayes Nets to capture relational structure is well known
and has led to attempts to extend the Bayes Net representation [8,9] and to
study inductive learning with such an extended representation. But the result-
ing extended representations are complex and yet fall short of the expressivity
of first-order logic. An interesting alternative for ILP researchers to examine is
learning clauses with probabilities attached. It will be important in particular
to examine how such representations and learning algorithms compare with the
extended Bayes Net representations and learning algorithms. Several candidate
clausal representations have been proposed and include probabilistic logic pro-
grams, stochastic logic programs, and probabilistic constraint logic programs;
Cussens provides a nice survey of these representations [5]. Study already has
begun into algorithms and applications for learning stochastic logic programs
[27], and this is an exciting area for further work. In addition, the first-order
representation closest to Bayes Nets is that of Ngo and Haddawy. The remain-
der of this subsection points to approaches for, and potential benefits of, learning
these clauses in particular.

Clauses in the representation of Ngo and Haddawy may contain random
variables as well as ordinary logical variables. A clause may contain at most one
random variable in any one literal, and random variables may appear in body
literals only if a random variable appears in the head. Finally, such a clause also
has a Bayes Net fragment attached, which may be thought of as a constraint. This
fragment has a very specific form. It is a directed graph of node depth two (edge
depth one), with all the random variables from the clause body as parents of the
random variable from the clause head.® Figure 3 provides an example of such a
clause as might be learned in pharmacophore discovery (CPT not shown). This
clause enables us to specify, through a CPT, how the probability of a molecule
being active depends on the particular values assigned to the distance variables

5 This is not exactly the definition provided by Ngo and Haddawy, but it is an equiv-
alent one. Readers interested in deductive inference with this representation are
encouraged to see [31, 30].



D1, D2, and D3. In general, the role of the added constraint in the form of a
Bayes net fragment is to define a conditional probability distribution over the
random variable in the head, conditional on the values of the random variables
in the body. When multiple such clauses are chained together during inference,
a larger Bayes Net is formed that defines a joint probability distribution over
the random variables.

drug(Molecule,Activity_Level):-
contains_hydrophobe(M ol ecule,Hydrophobe),
contains_basic_nitrogen(M olecule,Nitrogen),
contains_hydrogen_acceptor(Molecule,Acceptor),
distance(Molecule,Hydrophobe,Nitrogen,D1),
distance(Molecule,Hydrophobe,A cceptor,D2),
distance(Molecule,Nitrogen,Acceptor,D3).

Activity Level

Fig. 3. A clause with a Bayes Net fragment attached (CPT not included). The random
variables are Activity_Level, D1, D2, and D3. Rather than using a hard range in which
the values of D1, D2, and D3 must fall, as the pharmacophores described earlier, this
new representation allows us to describe a probability distribution over Activity_Level in
terms of the values of D1, D2, and D3. For example, we might assign higher probabilities
to high Activity_Level as D1 gets closer to 3 Angstroms from either above or below.
The CPT itself might be a linear regression model, i.e. a linear function of D1, D2, and
D3 with some fixed variance assumed, or it might be a discretized model, or other.

I conjecture that existing ILP algorithms can effectively learn clauses of this
form with the following modification. For each clause constructed by the ILP
algorithm, collect the positive examples covered by the clause. Each positive
example provides a value for the random variable in the head of the clause,
and because the example is covered, the example together with the background
knowledge provides values for the random variables in the body. These values,
over all the covered positive examples, can be used as the data for constructing
the conditional probability table (CPT) that accompanies the attached Bayes
Net fragment. When all the random variables are discrete, a simple, standard
method exists for constructing CPTs from such data and is described nicely in
[14]. If some or all of the random variables are continuous, then under certain
assumptions again simple, standard methods exist. For example, under one set
of assumptions linear regression can be used, and under another naive Bayes can
be used. In fact, the work by Srinivasan and Camacho [35] on predicting levels
of mutagenicity and the work by Craven and colleagues [4,3] on information
extraction can be seen as special cases of this proposed approach, employing
linear regression and naive Bayes, respectively.

While the approach just outlined appears promising, of course it is not the
only possible approach and may not turn out to be the best. More generally,
ILP and Bayes Net learning are largely orthogonal. The former handles rela-



tional domains well, while the latter handles probabilities well. And both Bayes
Nets and ILP have been applied successfully to a variety of tasks. Therefore,
it is reasonable to hypothesize the existence and utility of a representation and
learning algorithms that effectively capture the advantages of both Bayes net
learning and ILP. The space of such representations and algorithms is large, so
combining Bayes Net learning and ILP is an area of research that is not only
promising but also wide open for further work.

3.2 Stochastic Search

Most ILP algorithms search a lattice of clauses ordered by subsumption. They
seek a clause that maximizes some function of the size of the clause and coverage
of the clause, i.e. the numbers of positive and negative examples entailed by the
clause together with the background theory. Depending upon how they search
this lattice, these ILP algorithms are classified as either bottom-up (based on
least general generalization) or top-down (based on refinement). Algorithms are
further classified by whether they perform a greedy search, beam search, admissi-
ble search, etc. In almost all existing algorithms these searches are deterministic.
But for other challenging logic/AI tasks outside ILP, stochastic searches have
consistently outperformed deterministic searches. This observation has been re-
peated for a wide variety of tasks, beginning with the 1992 work of Kautz,
Selman, Levesque, Mitchell, and others on satisfiability using algorithms such
as GSAT and WSAT (WalkSAT) [34,33]. Consequently, a promising research
direction within ILP is the use of stochastic search rather than deterministic
search to examine the lattice of clauses. A start has been made in stochastic
search for ILP and this section describes that work. Nevertheless many issues
remain unexamined, and I will mention some of the most important of these at
the end of this section.

ILP algorithms face not one but two difficult search problems. In addition to
the search of the lattice of clauses, already described, simply testing the coverage
of a clause involves repeated searches for proofs—“if I assume this clause is true,
does a proof exist for that example?” The earliest work on stochastic search in
ILP (to my knowledge) actually addressed this latter search problem. Sebag and
Rouveirol [32] employed stochastic matching, or theorem proving, and obtained
efficiency improvements over Progol in the prediction of mutagenicity, without
sacrificing predictive accuracy or comprehensibility. More recently, Botta, Gior-
dana, Saitta, and Sebag have pursued this approach further, continuing to show
the benefits of replacing deterministic matching with stochastic matching [11,
2].

But at the center of ILP is the search of the clause lattice, and surprisingly
until now the only stochastic search algorithms that have been tested have been
genetic algorithms. Within ILP these have not yet been shown to significantly
outperform deterministic search algorithms. I say it is surprising that only GAs
have been attempted because for other logical tasks such as satisfiability and
planning almost every other approach outperforms GAs, including simulated
annealing, hill-climbing with random restarts and sideways moves (e.g. GSAT),



and directed random walks (e.g. WSAT) [33]. Therefore, a natural direction for
ILP research is to use these alternative forms of stochastic search to examine
the lattice of clauses. The remainder of this section discusses some of the issues
involved in this research direction, based on my initial foray in this direction with
Ashwin Srinivasan that includes testing variants of GSAT and WSAT tailored
to ILP.

The GSAT algorithm was designed for testing the satisfiability of Boolean
CNF formulas. GSAT randomly draws a truth assignment over the n proposi-
tional variables in the formula and then repeatedly modifies the current assign-
ment by flipping a variable. At each step all possible flips are tested, and the flip
that yields the largest number of satisfied clauses is selected. It may be the case
that every possible flip yields a score no better (in fact, possibly even worse)
than the present assignment. In such a case a flip is still chosen and is called
a “sideways move” (or “downward move” if strictly worse). Such moves turn
out to be quite important in GSAT’s performance. If GSAT finds an assignment
that satisfies the CNF formula, it halts and returns the satisfying assignment.
Otherwise, it continues to flip variables until it reaches some pre-set maximum
number of flips. It then repeats the process by drawing a new random truth as-
signment. The overall process is repeated until a satisfying assignment is found
or a pre-set maximum number of iterations is reached.

Our ILP variant of this algorithm draws a random clause rather than a
random truth assignment. Flips involve adding or deleting literals in this clause.
Applying the GSAT methodology to ILP in this manner raises several important
points. First, in GSAT scoring a given truth assignment is very fast. In contrast,
scoring a clause can be much more time consuming because it involves repeated
theorem proving. Therefore, it might be beneficial to combine the “ILP-GSAT”
algorithm with the type of stochastic theorem proving mentioned above. Second,
the number of literals that can be built from a language often is infinite, so
we cannot test all possible additions of a literal. Our approach has been to
base any given iteration of the algorithm on a “bottom clause” built from a
“seed example,” based on the manner in which the ILP system PROGOL [26]
constrains its search space. But there might be other alternatives for constraining
the set of possible literals to be added at any step. Or it might be preferable to
consider changing literals rather than only adding or deleting them. Hence there
are many alternative GSAT-like algorithms that might be built and tested.

Based on our construction of GSAT-like ILP algorithms, one can imagine
analogous WSAT-like and simulated annealing ILP algorithms. Consider WSAT
in particular. On every flip, with probability p (user-specified) WSAT makes an
randomly-selected efficacious flip instead of a GSAT flip. An efficacious flip is a
flip that satisfies some previously-unsatisfied clause in the CNF formula, even if
the flip is not the highest-scoring flip as required by GSAT. WSAT outperforms
GSAT for many satisfiability tasks because the random flips make it less likely to
get trapped in local optima. It will be interesting to see if the benefit of WSAT
over GSAT for satisfiability carries over to ILP. The same issues mentioned above
for ILP- GSAT also apply to ILP-WSAT.



It is too early in the work to present concrete conclusions regarding stochastic
ILP. Rather the goal of this section has been to point to a promising direction
and discuss the space of design alternatives to be explored. Researchers with
experience in stochastic search for constraint satisfaction and other logic/Al
search tasks will almost certainly have additional insights that will be vital to
the exploration of stochastic search for ILP.

3.3 Special-purpose Reasoning Mechanisms

One of the well-known success stories of computational logic is constraint logic
programming. And one of the reasons for this success is the ability to integrate
logic and special purpose reasoners or constraint solvers. Many ILP applications
could benefit from the incorporation of special-purpose reasoning mechanisms.
Indeed, the approach advocated in Section 3.1 to incorporating probabilities
in ILP can be thought of as invoking special purpose reasoners to construct
constraints in the form of Bayes Net fragments. The work by Srinivasan and
Camacho mentioned there uses linear regression to construct a constraint, while
the work by Craven and Slattery uses naive Bayes techniques to construct a
constraint. The point that is crucial to notice is that ILP requires a “constraint
constructor,” such as linear regression, in addition to the constraint solver re-
quired during deduction. Let’s now turn to consideration of tasks where other
types of constraint generators might be useful.

Consider the general area of knowledge discovery from databases. Suppose
we take the standard logical interpretation of a database, where each relation is
a predicate, and each tuple in the relation is a ground atomic formula built from
that predicate. Dzeroski and Lavrac show how ordinary ILP techniques are very
naturally suited to this task, if we have an “ordinary” relational database. But
now suppose the database contains some form of complex objects, such as im-
ages. Simple logical similarities may not capture the important common features
across a set of images. Instead, special-purpose image processing techniques may
be required, such as those described by Leung and colleagues [20,19]. In addi-
tion to simple images, special-purpose constraint constructors might be required
when applying ILP to movie (e.g. MPEG) or audio (e.g. MIDI) data, or other
data forms that are becoming ever more commonplace with the growth of mul-
timedia. For example, a fan of the Bach, Mozart, Brian Wilson, and Elton John
would love to be able to enter her/his favorite pieces, have ILP with a constraint
generator build rules to describe these favorites, and have the rules suggest other
pieces or composers s/he should access. As multimedia data becomes more com-
monplace, ILP can remain applicable only if it is able to incorporate special-
purpose constraint generators.

Alan Frisch and I have shown that the ordinary subsumption ordering over
formulas scales up quite naturally to incorporate constraints [10]. Nevertheless,
that work does not address some of the hardest issues, such as how to ensure the
efficiency of inductive learning systems based on this ordering and how to design
the right types of constraint generators. These questions require much further
research involving real-world applications such as multimedia databases.



One final point about special purpose reasoners in ILP is worth making.
Constructing a constraint may be thought of as inventing a predicate. Predi-
cate invention within ILP has a long history [28, 39,40, 25]. General techniques
for predicate invention encounter the problem that the space of “inventable”
predicates is unconstrained, and hence allowing predicate invention is roughly
equivalent to removing all bias from inductive learning. While removing bias
may sound at first to be a good idea, inductive learning in fact requires bias
[23,24]. Special purpose techniques for constraint construction appear to make
it possible to perform predicate invention in way that is limited enough to be
effective [35, 3].

3.4 Interaction with Human Experts

To discover new knowledge from data in fields such as telecommunications,
molecular biology, or pharmaceuticals, it would be beneficial if a machine learn-
ing system and a human expert could act as a team, taking advantage of the
computer’s speed and the expert’s knowledge and skills. ILP systems have three
properties that make them natural candidates for collaborators with humans in
knowledge discovery:

Declarative Background Knowledge ILP systems can make use of declara-
tive background knowledge about a domain in order to construct hypotheses.
Thus a collaboration can begin with a domain expert providing the learning
system with general knowledge that might be useful in the construction of
hypotheses. Most ILP systems also permit the expert to define the hypothe-
sis space using additional background knowledge, in the form of a declarative
bias.

Natural descriptions of structured examples Feature-based learning sys-
tems require the user to begin by creating features to describe the examples.
Because many knowledge discovery tasks involve complex structured exam-
ples, such as molecules, users are forced to choose only composite features
such as molecular weight—thereby losing information—or to invest substan-
tial effort in building features that can capture structure (see [36] for a
discussion in the context of molecules). ILP systems allow a structured ex-
ample to be described naturally in terms of the objects that compose it,
together with relations between those objects. The 2-dimensional structure
of a molecule can be represented directly using its atoms as the objects and
bonds as the relations; 3-dimensional structure can be captured by adding
distance relations.

Human-Comprehensible Output ILP systems share with propositional-logic
learners the ability to present a user with declarative, comprehensible rules
as output. Some ILP systems can return rules in English along with visual
aids. For example, the pharmacophore description and corresponding figures
in Section 2 were generated automatically by PROGOL.

Despite the useful properties just outlined, ILP systems—Ilike other machine
learning systems—have a number of shortcomings as collaborators with humans



in knowledge discovery. One shortcoming is that most ILP systems return a sin-
gle theory based on heuristics, thus casting away many clauses that might be
interesting to a domain expert. But the only currently existing alternative is
the version space approach, which has unpalatable properties that include in-
efficiency, poor noise tolerance, and a propensity to overwhelm users with too
large a space of possible hypotheses. Second, ILP systems cannot respond to a
human expert’s questions in the way a human collaborator would. They operate
in simple batch mode, taking a data set as input, and returning a hypothesis
on a take-it-or-leave-it basis. Third, ILP systems do not question the input data
in the way a human collaborator would, spotting surprising (and hence possibly
erroneous) data points and raising questions about them. Some ILP systems will
flag mutually inconsistent data points but to my knowledge none goes beyond
this. Fourth, while a human expert can provide knowledge-rich forms of hypoth-
esis justification, for example relating a new hypothesis to existing beliefs, ILP
systems merely provide accuracy estimates as the sole justification.

To build upon ILP’s strengths as a technology for human-computer collabo-
ration in knowledge discovery, the above shortcomings should be addressed. ILP
systems should be extended to display the following capabilities.

1. maintain and summarize alternative hypotheses that explain or describe
the data, rather than providing a single answer based on a general-purpose
heuristic;

2. propose to human experts practical sequences of experiments to refine or
distinguish between competing hypotheses;

3. provide non-numerical justification for hypotheses, such as relating them
to prior beliefs or illustrative examples (in addition to providing numerical
accuracy estimates);

4. answer an expert’s questions regarding hypotheses;

5. consult the expert regarding anomalies or surprises in the data.

Addressing such human-computer interface issues obviously requires a variety of
logical and AI expertise. Thus contributions from other areas of computational
logic, such as the study of logical agents, will be vital. While several projects
have recently begun that investigate some of these issues,® developing collab-
orative systems is an ambitious goal with more than enough room for many
more researchers. And undoubtedly other issues not mentioned here will become
apparent as this work progresses.

3.5 Parallel Execution

While ILP has numerous advantages over other types of machine learning, in-
cluding advantages mentioned at the start of the previous section, it has two

5 Stephen Muggleton has a British EPSRC project on closed-loop learning, in which
the human is omitted entirely. While this seems the reverse of a collaborative system,
it raises similar issues, such as maintaining competing hypotheses and automatically
proposing experiments. I am beginning a U.S. National Science Foundation project
on collaborative systems with (not surprisingly) exactly the goals above.



particularly notable disadvantages—run time and space requirements. Fortu-
nately for ILP, at the same time that larger applications are highlighting these
disadvantages, parallel processing “on the cheap” is becoming widespread. Most
notable is the widespread use of “Beowulf clusters” [1] and of “Condor pools”
[21], arrangements that connect tens, hundreds, or even thousands of personal
computers or workstations to permit parallel processing. Admittedly, parallel
processing cannot change the order of the time or space complexity of an algo-
rithm. But most ILP systems already use broad constraints, such as maximum
clause size, to hold down exponential terms. Rather, the need is to beat back
the large constants brought in by large real-world applications.

Yu Wang and David Skillicorn recently developed a parallel implementation
of PROGOL under the Bulk Synchronous Parallel (BSP) model and claim su-
perlinear speedup from this implementation [38]. Alan Wild worked with me at
the University of Louisville to re-implement on a Beowulf cluster a top-down
ILP search for pharmacophore discovery, and the result was a linear speedup
[13]. The remainder of this section described how large-scale parallelism can be
achieved very simply in a top-down complete search ILP algorithm. This was the
approach taken in [13]. From this discussion, one can imagine more interesting
approaches for other types of top-down searches such as greedy search.

The ideal in parallel processing is a decrease in processing time that is a lin-
ear function, with a slope near 1, of the number of processors used. (In some rare
cases it is possible to achieve superlinear speed-up.) The barriers to achieving
the ideal are (1) overhead in communication between processes and (2) compe-
tition for resources between processes. Therefore, a good parallel scheme is one
where the processes are relatively independent of one another and hence require
little communication or resource sharing. The key observation in the design of
the parallel ILP scheme is that two competing hypotheses can be tested against
the data completely independently of one another. Therefore the approach ad-
vocated here is to distribute the hypothesis space among different processors
for testing against the data. These processors need not communicate with one
another during testing, and they need not write to a shared memory space.

In more detail, for complete search a parallel ILP scheme can employ a
master-worker design, where the master assigns different segments of the hy-
pothesis space to workers that then test hypotheses against the data. Workers
communicate back to the master all hypotheses achieving a pre-selected mini-
mum valuation score (e.g. 95 % accuracy) on the data. As workers become free,
the master continues to assign new segments of the space until the entire space
has been explored. The only architectural requirements for this approach are (1)
a mechanism for communication between the master and each worker and (2)
read access for each worker to the data. Because data do not change during a
run, this scheme can easily operate under either a shared memory or message
passing architecture; in the latter, we incur a one-time overhead cost of initially
communicating the data to each worker. The only remaining overhead, on either
architecture, consists of the time spent by the master and time for master-worker
communication. In “needle in a haystack” domains, which are the motivation



for complete search, one expects very few hypotheses to be communicated from
workers to the master, so overhead for the communication of results will be low.
If it also is possible for the master to rapidly segment the hypothesis space in
such a way that the segments can be communicated to the workers succinctly,
then overall overhead will be low and the ideal of linear speed-up can be realized.

4 Conclusions

ILP has attracted great interest within the machine learning and AT communi-
ties at large because of its logical foundations, its ability to utilize background
knowledge and structured data representations, and its comprehensible results.
But most of all, the interest has come from ILP’s application successes. Nev-
ertheless, ILP needs further advances to maintain this record of success, and
these advances require further contributions from other areas of computational
logic. System builders and parallel implementation experts are needed if the ILP
systems of the next decade are to scale up to the next generation of data sets,
such as those being produced by Affymetrix’s (TM) gene expression microar-
rays and Celera’s (TM) shotgun approach to DNA sequencing. Researchers on
probability and logic are required if ILP is to avoid being supplanted by the
next generation of extended Bayes Net learning systems. Experts on constraint
satisfaction and constraint logic programming have the skills necessary to bring
successful stochastic search techniques to ILP and to allow ILP techniques to
extend to multimedia databases. The success of ILP in the next decade (notice I
avoided the strong temptation to say “next millennium”) depends on the kinds
of interactions being fostered at Computational Logic 2000.
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