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Inductive Logic Programming:
The Problem Specification

• Given:
– Examples: first-order atoms or definite clauses,

each labeled positive or negative.

– Background knowledge: in the form of a
definite clause theory.

– Language bias: constraints on the form of
interesting new clauses.

ILP Specification (Continued)

• Find:
– A hypothesis h that meets the language

constraints and that, when conjoined with B,
entails (implies) all of the positive examples but
none of the negative examples.

• To handle real-world issues such as noise,
we often relax the requirements, so that h
need only entail significantly more positive
examples than negative examples.
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A Common Approach

• Use a greedy covering algorithm.
– Repeat while some positive examples remain

uncovered (not entailed):
• Find a good clause (one that covers as many

positive examples as possible but no/few negatives).

• Add that clause to the current theory, and remove
the positive examples that it covers.

• ILP algorithms use this approach but vary in
their method for finding a good clause.

A Difficulty

• Problem: It is undecidable in general
whether one definite clause implies another,
or whether a definite clause together with a
logical theory implies a ground atom.

• Approach: Use subsumption rather than
implication.
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Subsumption for Literals
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Least Generalization of Terms
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Least Generalization of Terms
(Continued)

• Examples:
– lgg(a,a) = a

– lgg(X,a) = Y

– lgg(f(a,b),g(a)) = Z

– lgg(f(a,g(a)),f(b,g(b))) = f(X,g(X))

• lgg(t1,t2,t3) = lgg(t1,lgg(t2,t3)) =
lgg(lgg(t1,t2),t3): justifies finding the lgg of a
set of terms using the pairwise algorithm.

Least Generalization of Literals
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Lattice of Literals

• Consider the following partially ordered set.

• Each member of the set is an equivalence
class of literals, equivalent under variance.

• One member of the set is greater than
another if and only if one member of the
first set subsumes one member of the
second (can be shown equivalent to saying:
if and only if every member of the first set
subsumes every member of the second).

Lattice of Literals (Continued)

• For simplicity, we now will identify each
equivalence class with one (arbitrary)
representative literal.

• Add elements TOP and BOTTOM to this
set, where TOP is greater than every literal,
and every literal is greater than BOTTOM.

• Every pair of literals has a least upper
bound, which is their lgg.
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Lattice of Literals (Continued)

• Every pair of literals has a greatest lower
bound, which is their greatest common
instance (the result of applying their most
general unifier to either literal, or BOTTOM
if no most general unifier exists.)

• Therefore, this partially ordered set satisfies
the definition of a lattice.
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Least Generalization of Clauses
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Example

The lgg of the following two clauses

and

is:

p a f a p b b p b f b

p f a f a p f a b p a f a
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Lattice of Clauses

• We can construct a lattice of clauses in a
manner analogous to our construction of
literals.

• Again, the ordering is subsumption; again
we group clauses into variants; and again
we add TOP and BOTTOM elements.

• Again the least upper bound is the lgg, but
the greatest lower bound is just the union
(clause containing all literals from each).

Lattice of Clauses for the Given
Hypothesis Language

active(X)

active(X) :- active(X) :- active(X) :-
has-hydrophobic(X,A) has-donor(X,A) has-acceptor(X,A)

active(X) :- active(X) :- active(X) :-
has-hydrophobic(X,A), has-donor(X,A), has-acceptor(X,A),
has-donor(X,B), has-donor(X,B), has-donor(X,B),
distance(X,A,B,5.0) distance(X,A,B,4.0) distance(X,A,B,6.0)

. . .
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Incorporating Background
Knowledge: Saturation

• Recall that we wish to find a hypothesis
clause h that together with the background
knowledge B will entail the positive
examples but not the negative examples.

• Consider an arbitrary positive example e.
Our hypothesis h together with B should
entail e: B∧h � e. We can also write this
as h � B → e.

Saturation (Continued)

• If e is an atom (atomic formula), and we
only use atoms from B, then B → e is a
definite clause.

• We call B → e the saturation of e with
respect to B.
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Saturation (Continued)

• Recall that we approximate entailment by
subsumption.

• Our hypothesis h must be in that part of the
lattice of clauses above (subsuming) B → e.

Alternative Derivation of
Saturation

• From B∧h � e by contraposition: B ∧{¬e}
� ¬ h.

• Again by contraposition: h � ¬ (B ∧ ¬e)

• So by DeMorgan’s Law: h � ¬ B ∨ e

• If e is an atom (atomic formula), and we
only use atoms from B, then ¬ B ∨ e is a
definite clause.
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Overview of Some ILP
Algorithms

• GOLEM (bottom-up): saturates every
positive example and then repeatedly takes
lggs as long as the result does not cover a
negative example.

• PROGOL, ALEPH (top-down): saturates
first uncovered positive example, and then
performs top-down admissible search of the
lattice above this saturated example.
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Algorithms (Continued)

• FOIL (top-down): performs greedy top-
down search of the lattice of clauses (does
not use saturation).

• LINUS/DINUS: strictly limit the
representation language, convert the task to
propositional logic, and use a propositional
(single-table) learning algorithm.


