
Learning Bayesian Networks

www.biostat.wisc.edu/~page/cs760/

Goals for the lecture
you should understand the following concepts

•  the Bayesian network representation
•  inference by enumeration
•  variable elimination inference
•  junction tree (clique tree) inference
•  Markov chain Monte Carlo (MCMC)
•  Gibbs sampling
•  the parameter learning task for Bayes nets
•  the structure learning task for Bayes nets
•  maximum likelihood estimation
•  Laplace estimates
•  m-estimates

Goals for the lecture
you should understand the following concepts

•  missing data in machine learning
•  hidden variables
•  missing at random
•  missing systematically

•  the EM approach to imputing missing values in Bayes net
parameter learning

•  K-means clustering algorithm as another example of EM
•  the Chow-Liu algorithm for structure search
•  structure learning as search
•  Kullback-Leibler divergence
•  the Sparse Candidate algorithm
•  the naïve Bayes classifier
•  the Tree Augmented Network (TAN) algorithm

Bayesian network example

•  Consider the following 5 binary random variables:
B = a burglary occurs at your house
E = an earthquake occurs at your house
A = the alarm goes off
J = John calls to report the alarm
M = Mary calls to report the alarm

•  Suppose we want to answer queries like what is
P(B | M, J) ?

Bayesian network example

Burglary Earthquake

Alarm

JohnCalls MaryCalls

B E t f

t t 0.95 0.05

t f 0.94 0.06

f t 0.29 0.71

f f 0.001 0.999

P (A | B, E)

t f

0.001 0.999

P (B)
t f

0.001 0.999

P (E)

A t f

t 0.9 0.1

f 0.05 0.95

P (J | A)
A t f

t 0.7 0.3

f 0.01 0.99

P (M | A)

Bayesian networks

•  a BN consists of a Directed Acyclic Graph (DAG) and
a set of conditional probability distributions

•  in the DAG
–  each node denotes random a variable
–  each edge from X to Y represents that X directly

influences Y	

–  formally: each variable X is independent of its non-

descendants given its parents

•  each node X has a conditional probability distribution
(CPD) representing P(X | Parents(X))	

Bayesian networks

•  a BN provides a compact representation of a joint
probability distribution

P(X1, …, Xn) = P(Xi | Parents(Xi

i=1

n

∏))

P(X1, …, Xn) = P(X1) P(Xi | X1

i=2

n

∏ , …, Xi−1))

•  using the chain rule, a joint probability distribution can be
expressed as

Bayesian networks

P(B,E,A, J,M) = P(B)×
 P(E)×
 P(A | B,E)×
 P(J | A)×
 P(M | A)

•  a standard representation of the joint distribution for the
Alarm example has 25 = 32 parameters

•  the BN representation of this distribution has 20 parameters

Burglary Earthquake

Alarm

JohnCalls MaryCalls

Bayesian networks
•  consider a case with 10 binary random variables

•  How many parameters does a BN with the following
graph structure have?

•  How many parameters does the standard table
representation of the joint distribution have?

= 42

= 1024

2

4 4

4
4 4

4

4 8 4

Advantages of the Bayesian
network representation

•  Captures independence and conditional independence
where they exist

•  Encodes the relevant portion of the full joint among
variables where dependencies exist

•  Uses a graphical representation which lends insight into
the complexity of inference

The inference task in Bayesian networks

Given: values for some variables in the network (evidence),
and a set of query variables

Do: compute the posterior distribution over the query
variables

•  variables that are neither evidence variables nor query
variables are hidden variables

•  the BN representation is flexible enough that any set can
be the evidence variables and any set can be the query
variables

Inference by enumeration

•  Fix the evidence variables (that is, ignore
CPD entries inconsistent with the given
setting for the evidence variables)

•  For each setting of the query variable(s) sum

out the remaining variables

•  Normalize the resulting numbers

Inference by enumeration example

A	

B	
 E	

M	
J	

•  let a denote A=true, and ¬a denote A=false	

•  suppose we’re given the query: P(b | j, m)	

 “probability the house is being burglarized given that John

and Mary both called”
•  from the graph structure we can first compute:

P(b, j,m) = P(b)P(e)P(a | b,e)P(j | a)P(m | a)
a
∑

e
∑

sum over possible
values for E and A	

variables (e, ¬e, a, ¬a)

Inference by enumeration

B E P(A)

t t 0.95

t f 0.94

f t 0.29

f f 0.001

P(B)

0.001

P(E)

0.001

A P(J)

t 0.9

f 0.05

A P(M)

t 0.7

f 0.01

P(b, j,m) = P(b)P(e)P(a | b,e)P(j | a)P(m | a)
a
∑

e
∑

 = P(b) P(e)P(a | b,e)P(j | a)P(m | a)
a
∑

e
∑

= 0.001× (0.001× 0.95 × 0.9 × 0.7 +
 0.001× 0.05 × 0.05 × 0.01+
 0.999 × 0.94 × 0.9 × 0.7 +
 0.999 × 0.06 × 0.05 × 0.01)

e, a	

e, ¬a	

¬e, a	

¬ e, ¬ a	

B	
 E	
 A	
 J	
 M	

A	

B	
 E	

M	
J	

•  now do equivalent calculation for P(¬b, j, m)	

•  and determine P(b | j, m)

Inference by enumeration

P(b | j,m) = P(b, j,m)
P(j,m)

=
P(b, j,m)

P(b, j,m)+ P(¬b, j,m)

Variable Elimination Procedure

•  The initial potentials are the CPTs in BN.
•  Repeat until only query variable remains:

–  Choose another variable to eliminate.
–  Multiply all potentials that contain the variable.
–  If no evidence for the variable then sum the

variable out and replace original potential by the
new result.

–  Else, remove variable based on evidence.
•  Normalize remaining potential to get the final

distribution over the query variable.

This link between V.E. and J.T. due to d’Ambrosio.

Junction Trees: Motivation

•  Standard algorithms (e.g., variable elimination)
are inefficient if the undirected graph underlying
the Bayes Net contains cycles.

•  We can avoid cycles if we turn highly-
interconnected subsets of the nodes into
“supernodes.”

A Running Example for the Steps in
Constructing a Junction Tree

Imagine we start with a Bayes Net having the following structure.

Step 1: Make the Graph Moral
Add an edge between non-adjacent (unmarried)
parents of the same child.

Step 2: Remove Directionality

Step 3: Triangulate the Graph
Repeat while there exists a cycle of length > 3 with no chord:

Add a chord (edge between two non-adjacent
vertices in such a cycle).

Step 3: Triangulate the Graph
Repeat while there exists a cycle of length > 3 with no
chord joining vertices that are not adjacent in the cycle:

Add an edge (chord) between two non-adjacent
vertices in such a cycle.

Step 3: Triangulate the Graph
Repeat while there exists a cycle of length > 3 with no
chord joining vertices that are not adjacent in the cycle:

Add an edge (chord) between two non-adjacent
vertices in such a cycle.

Is it Triangulated Yet?

It appears to be triangulated, but how can we be sure?

Triangulation Checking

The following algorithm terminates with

success if and only if the graph is triangulated. It processes each node,

and the time to process a node is quadratic in the number of adjacent nodes.

Choose any node in the graph and label it 1.

For i = 2 to n (total number of nodes in the graph):

 Choose the node with the most labeled neighbors and label it i.

 If any two labeled neighbors of i are not adjacent to each other, FAIL.

SUCCEED.

MaximumCardinalitySearch

Is it Triangulated Yet?

It appears to be triangulated, but how can we be sure?

1

Is it Triangulated Yet?

It appears to be triangulated, but how can we be sure?

1 2

Is it Triangulated Yet?

It appears to be triangulated, but how can we be sure?

1 2

3

Is it Triangulated Yet?

It appears to be triangulated, but how can we be sure?

1 2

3 4

Is it Triangulated Yet?

It appears to be triangulated, but how can we be sure?

1 2

3 4

5

Is it Triangulated Yet?

It appears to be triangulated, but how can we be sure?

1 2

3 4

5

6

It is Not Triangulated

No edge between nodes 5 and 6, both of which are parents of 7.

1 2

3 4

5

6

7

Fixing the Faulty Cycle

1 2

3 4

5

6

7

Continuing our Check...

Must restart algorithm. Ordering might change, or we might have.

1 2

3 4

5

6

7

introduced a new cycle. Imagine repeating procedure with this graph.

Continuing our Check...

Following our earlier change, 5 is now a neighbor of 6. When we reach

1 2

3 4

5

6

7

6 we see that its neighbors 5 and 3 are not adjacent -- another fix...

Fixing this Problem

Adding an edge between the non-adjacent parents 3 and 5

1 2

3 4

5

6

7

of 6 provides a missing chord as below.

Continuing our Check...

We now have the graph below. Restarting, everything is fine

1 2

3 4

5

6

7

through node 7 as below. As we continue, we end up adding
two more edges and finally succeeding with ...

The Following is Triangulated

1 2

3 4

5

6

7

8

9

10 11

12

Triangulation: Key Points

•  Previous algorithm is an efficient checker, but not
necessarily best way to triangulate.

•  In general, many triangulations may exist. The
only efficient algorithms are heuristic.

•  Jensen and Jensen (1994) showed that any scheme
for exact inference (belief updating given
evidence) must perform triangulation (perhaps
hidden as in Draper 1995).

Definitions

•  Complete graph or node set: all nodes are
adjacent.

•  Clique: maximal complete subgraph.
•  Simplicial node: node whose set of neighbors is a

complete node set.

Step 4: Build Clique Graph

1 2

3 4

5

6

7

8

9

10 11

12

Find all cliques in the moralized, triangulated graph. A clique
becomes a node in the clique graph. If two cliques intersect
below, they are joined in the clique graph by an edge
labeled with their intersection from below (shared nodes).

The Clique Graph

C1
1,2,3

C2
2,3,4,5

C7
5,7,9,10

C3
3,4,5,6

C4
4,5,6,7

C8
9,10,11

C9
6,8,12

C5
5,6,7,8

C6
5,7,8,9

2,3

3 3,4,5

5

4,5

4,5,6
5,7

9,10

9
5,7,9

5,7

6 6
8
5,6,7

6,8

5,7,8

The label of an edge between two cliques is called the separator.

5,6

5 5

5,7

5
5

Junction Trees

•  A junction tree is a subgraph of the clique graph
that (1) is a tree, (2) contains all the nodes of the
clique graph, and (3) satisfies the junction tree
property.

•  Junction tree property: For each pair U, V of
cliques with intersection S, all cliques on the path
between U and V contain S.

Clique Graph to Junction Tree

•  We can perform exact inference efficiently on a
junction tree (although CPTs may be large). But
can we always build a junction tree? If so, how?

•  Let the weight of an edge in the clique graph be
the cardinality of the separator. Than any
maximum weight spanning tree is a junction tree
(Jensen & Jensen 1994).

Step 5: Build the Junction Tree

C1
1,2,3

C2
2,3,4,5

C7
5,7,9,10

C3
3,4,5,6

C4
4,5,6,7

C8
9,10,11

C9
6,8,12

C5
5,6,7,8

C6
5,7,8,9

2,3

3,4,5

4,5,6

9,10
5,7,9

5,6,7

6,8

5,7,8

Step 6: Choose a Root

C7
5,7,9,10

C4
4,5,6,7

C8
9,10,11

C6
5,7,8,9

C1
1,2,3

C2
2,3,4,5

C3
3,4,5,6

3,4,5

2,3

C9
6,8,12

C5
5,6,7,8
6,8

5,6,7 5,7,8

4,5,6
5,7,9

9,10

Step 7: Populate Clique Nodes

•  For each distribution (CPT) in the original Bayes
Net, put this distribution into one of the clique
nodes that contains all the variables referenced by
the CPT. (At least one such node must exist
because of the moralization step).

•  For each clique node, take the product of the
distributions (as in variable elimination).

Better Triangulation Algorithm
Specifically for Bayes Nets, Based on

Variable Elimination

•  Repeat until no nodes remain:
–  If the graph has a simplicial node, eliminate it (consider

it “processed” and remove it together with all its
edges).

–  Otherwise, find the node whose elimination would give
the smallest potential possible. Eliminate that node,
and note the need for a “fill-in” edge between any two
non-adjacent nodes in the resulting potential.

•  Add the “fill-in” edges to the original graph.

Find Cliques while Triangulating
(or in triangulated graph)

•  While executing the previous algorithm: for each
simplicial node, record that node with all its
neighbors as a possible clique. (Then remove that
node and its edges as before.)

•  After recording all possible cliques, throw out any
one that is a subset of another.

•  The remaining sets are the cliques in the
triangulated graph.

•  O(n3), guaranteed correct only if graph is
triangulated.

Choose Root, Assign CPTs

DEFBCD.7 .3
.6.4

.5 .5

.4 .6

.1 .5
.5.9 .6 .2

.4 .8ABC

CDE

.007.003
.648.162 .018.072

.063.027

CD DE

BC

a
¬a

¬d B|d B|
b

¬b

e C| ¬e C|
c

¬c

de e ¬e¬e
¬d

f D E| ,
¬ f D E| ,

b ¬b
cc ¬c¬c

P()A,B,C

P()E C|

P()D B|

P()F D E| ,

Junction Tree Inference Algorithm

•  Incorporate Evidence: For each evidence
variable, go to one table that includes that
variable. Set to 0 all entries in that table that
disagree with the evidence.

•  Upward Step: For each leaf in the junction tree,
send a message to its parent. The message is the
marginal of its table, ...

J.T. Inference (Continued)

•  (Upward Step continued)… summing out any
variable not in the separator. When a parent
receives a message from a child, it multiplies its
table by the message table to obtain its new table.
When a parent receives messages from all its
children, it repeats the process (acts as a leaf).
This process continues until the root receives
messages from all its children.

J.T. Inference (Continued)

•  Downward Step: (Roughly reverses the upward
process, starting at the root.) For each child, the
root sends a message to that child. More
specifically, the root divides its current table by
the message received from that child, marginalizes
the resulting table to the separator, and sends the
result of this marginalization to the child. When
a ...

J.T. Inference (Continued)

•  (Downward Step continued)… child receives a
message from its parent, multiplying this message
by the child’s current table will yield the joint
distribution over the child’s variables (if the child
does not already have it). The process repeats (the
child acts as root) and continues until all leaves
receive messages from their parents.

One Catch for Division

•  At times we may find ourselves needing to divide
by 0.

•  We can verify that whenever this occurs, we are
dividing 0 by 0.

•  We simply adopt the convention that for this
special case, the result will be 0 rather than
undefined.

Build Junction Tree for BN Below

A

D E

F

CB

.1 .9

.9
.9
.1

.1

.7

.3 .8
.2

.7 .3

.4 .6

.5 .5

.4 .6

.1 .5
.5.9 .6 .2

.4 .8

a

a

¬a

¬a
b A|

¬b A|

a ¬a
c A|

¬c A|

¬d B|d B|
b

¬b

e C| ¬e C|
c

¬c

de e ¬e¬e
¬d

f D E| ,
¬ f D E| ,

Inference Example (assume no
evidence): Going Up

.081.099
.651.169

1.0 1.0
1.0 1.0

DEFBCD

ABC

CDE
CD DE

BC

.330

.124.126
.420

¬dd
c
¬c

|e |¬ e
|d
|¬ d

b
¬b

c ¬c
P()B,C

P(D,E)|
P()C D,

Status After Upward Pass

.1 .5
.5.9 .6 .2

.4 .8

.007.003
.648.162 .018.072

.063.027

DEFBCD

ABC

CDE
CD DE

BC

.068.101
.024.057 .069.030

.260.391

.062.062
.198.132 .168.252

.063.063

b
¬b

c
¬d

e ¬e

P()A,B,C

P()C D E, ,P()B C D, ,

P()F D E| ,

e
d
¬c

¬e

¬dd
c

¬c

d ¬d

Going Back Down

.194.260

.231.315

DEFBCD

ABC

CDE
CD DE

BC

1.0 1.0

Will have no
effect - ignore

¬dd
e

¬e
c ¬c .194 .231

.260 .315

Status After Downward Pass

.019.130
.130.175 .139.063

.092.252

.007.003
.648.162 .018.072

.063.027

DEFBCD

ABC

CDE
CD DE

BC

.068.101
.024.057 .069.030

.260.391

.062.062
.198.132 .168.252

.063.063

b
¬b

c
¬d

e ¬e

P()A,B,C

P()C D E, ,P()B C D, ,

P(,)D E,F

e
d
¬c

¬e

¬dd
c

¬c

d ¬d

d ¬dee ¬e ¬e
f

¬ f
b ¬b

c c¬c ¬c
a

¬a

Answering Queries: Final Step

•  Having built the junction tree, we now can ask
about any variable. We find the clique node
containing that variable and sum out the other
variables to obtain our answer.

•  If given new evidence, we must repeat the
Upward-Downward process.

•  A junction tree can be thought of as storing the
subjoints computed during elimination.

Significance of Junction Trees

•  “…only well-understood, efficient, provably
correct method for concurrently computing
multiple queries (AI Mag’99).”

•  As a result, they are the most widely-used and
well-known method of inference in Bayes Nets,
although…

•  Junction trees soon may be overtaken by
approximate inference using MCMC.

The Link Between Junction Trees and
Variable Elimination

•  To eliminate a variable at any step, we combine all
remaining distributions (tables) indexed on
(involving) that variable.

•  A node in the junction tree corresponds to the
variables in one of the tables created during
variable elimination (the other variables required
to remove a variable).

•  An arc in the junction tree shows the flow of data
in the elimination computation.

Junction Trees/Variable Elim.

•  We can use different orderings in variable
elimination -- affects efficiency.

•  Each ordering corresponds to a junction tree.
•  Just as some elimination orderings are more

efficient than others, some junction trees are better
than others. (Recall our mention of heuristics for
triangulation.)

Recall Variable Elimination Example

A

D E

F

CB

.1 .9

.9
.9
.1

.1

.7

.3 .8
.2

.7 .3

.4 .6

.5 .5

.4 .6

.1 .5
.5.9 .6 .2

.4 .8

a

a

¬a

¬a
b A|

¬b A|

a ¬a
c A|

¬c A|

¬d B|d B|
b

¬b

e C| ¬e C|
c

¬c

de e ¬e¬e
¬d

f D E| ,
¬ f D E| ,

First Eliminated Variable A

A

D E

F

CB
.007.003

.648.162 .018.072
.063.027

.169.651

.081.099

a
¬a

b ¬b
c ¬c c ¬c

b
¬b

c ¬c
A∑

P P P P() = () () ()A,B,C B|A C|A A

P()B,C

Next Eliminated Variable B

D E

F

CB
.068.101

.024.057 .069.030
.260.391

.124.126

.330.420

b
¬b

c
¬dd

¬c

d ¬d
B∑

¬dd

c
¬c

P P P() = () ()B,C,D D|B B,C

P()C,D

Next Eliminated Variable C

D E

F

C
.062.062

.198.132 .168.252
.063.063

.194.260

.231.315

c
¬c

d
¬ee

¬d

e ¬e
C∑

¬ee

d
¬d

P P P() = () ()C,D,E E|C C,D

P()D E,

Left us with P(D,E,F)

D E

F

.019.130
.130.175 .139.063

.092.252f
¬ f

d
¬ee

¬d
¬ee

P P P() = (|) ()D,E F F D,E D E, ,

Corresponding Moralized, Triangulated
Graph...

A

D E

F

CB

Notice how the cliques correspond to the 3-variable joint tables
we created during the variable elimination steps. We could
replace the CD arc by a BE arc; we could eliminate C before B.

Approximate (Monte Carlo) Inference
in Bayes Nets

•  Basic idea: Let’s repeatedly sample
according to the distribution represented by
the Bayes Net. If in 400/1000 draws, the
variable X is true, then we estimate that the
probability X is true is 0.4.

•  To sample according to Bayes Net, just set
the variables one at a time using a total
ordering consistent with the partial...

Monte Carlo (continued)

•  (Samping continued)… ordering represented
by the underlying DAG of the Net. In this
way, when we wish to draw the value for X
we already have the values of its parents, so
we can find the probabilities to use from the
CPT for X.

•  This approach is simple to implement using a
pseudorandom number generator.

So it seems we’re done, right?

•  Wrong: what if we take into account evidence
(observed values for variables)?

•  If the evidence happens to be in the “top”
nodes of the network (nodes with no parents),
we’re still fine. Otherwise...

•  No efficient general method exists for
sampling according to the new distribution
based on the evidence. (There are inefficient
ways, e.g., compute full joint.)

Rejection Sampling

•  One natural option for sampling with evidence
is to use our original sampling approach, and
just throw out (reject) any setting that does
not agree with the evidence. This is rejection
sampling.

•  Problem: if evidence involves many variables,
most of our draws will be rejected (few will
agree with the evidence).

Likelihood Weighting

•  Another approach is to set the evidence
variables, sample the others with the original
Monte Carlo approach, and then correct for
improbable combinations by weighting each
setting by its probability.

•  Disadvantage: with many evidence variables,
probabilities become vanishingly small. We
don’t sample the more probable events very
thoroughly.

Markov Chain Monte Carlo

•  Key idea: give up on independence in
sampling.

•  Generate next setting probabilistically based
on current setting (Markov chain).

•  Metropolis-Hastings Algorithm for the general
case, Gibbs Sampler for Bayes Nets in
particular. Key property: detailed balance
yields stationary distribution.

Gibbs Sampling by Example

Smoking

Heart
Disease

Lung
Disease

Shortness
of Breath

P(s)

0.2
S P(h)

T

F

0.6

0.1

S P(l)

T

F

0.8

0.1
H L P(b)
T T

F T
T F

F F

0.9
0.8
0.7
0.1

Gibbs Sampling Example
(Continued)

•  Let our query be P(HeartDisease | smoking,
shortnessOfBreath). That is, we know we’ve
been smoking (Smoking=True) and we know
we’re experiencing shortness of breath
(ShortnessOfBreath=True), and we wish the
know the probability that we have heart
disease.

•  Might as well keep a tally for LungDisease
while we’re at it.

Other Decisions

•  Let’s assume we use an off-the-shelf
pseudorandom number generator for the
range [0..1].

•  We can loop through the non-evidence
variables in a pre-established order or
randomly, uniformly. Let’s go with the latter.
Tally at each step. (If the former, we could
tally at each step or each iteration.)

Other Decisions (Continued)

•  One chain or many: let’s go with one.
•  Length or burn-in: ordinarily 500-1000, but

let’s go with 2 (don’t tally for original setting
or setting after first step).

•  Initial values: let’s say all True. Note that
Smoking and ShortnessOfBreath must be
initialized to True, since this is our evidence.
The initial settings for non-evidence variables
are arbitrary.

Other Decisions (Continued)

•  Use of random numbers in selecting a
variable to draw. We have only two non-
evidence variables: HeartDisease and
LungDisease. Let’s adopt a policy that a
random number greater than 0.5 leads us to
draw a value for LungDisease, and a random
number of 0.5 or less leads us to draw for
HeartDisease.

Other Decisions (Continued)

•  Use of random numbers in selecting values of
variables. Since all our variables are
Boolean, our distributions will be over the
values <True,False> and will have the form
<P(True),1-P(True)>. If our random number
is less than or equal to P(True), then we will
set the variable to True, and otherwise we will
set it to False.

A Final Supposition for our Example

•  Having made all our choices, the only other
factor that will affect the activity of the Gibbs
Sampling algorithm is the sequence of
random numbers that we draw.

•  Let’s suppose our sequence of random
numbers begins 0.154, 0.383, 0.938, 0.813,
0.273, 0.739, 0.049, 0.233, 0.743, 0.932,
0.478, 0.832, …

Round 1

•  Our first random number is 0.154, so we will
draw a value for HeartDisease.

•  To draw the value, we must first determine
the distribution for HeartDisease given its
Markov Blanket.

•  First, we compute a value for True. We
multiply P(heartDisease|smoking) by
P(shortnessOfBreath | heartDisease,
lungDisease). Notice we take LungDisease

Round 1 (Continued)

•  (Continued)… to be True because that is its
current setting. (We use the current settings
of all variables in the Markov Blanket.) This
product is (0.6)(0.9) = 0.54.

•  Next we repeat the process for
HeartDisease=False. We multiply the
probability that HeartDisease is False given
smoking by the probability of
shortnessOfBreath given HeartDisease is

Round 1 (Continued)

•  (Continued)… False and LungDisease is
True. The resulting product is (0.4)(0.7) =
0.28.

•  We now normalize <0.54,0.28> to get the
probability distribution <0.66,0.34>. Hence
we will set HeartDisease to True if and only if
our random number is at most 0.66. It is
0.383, so HeartDisease remains True.

Round 2

•  Our next random number is 0.938, so we next
will draw a value for LungDisease given the
current settings for the other variables.

•  To obtain a value for LungDisease=True, we
multiply P(lungDisease | smoking) by
P(shortnessOfBreath | heartDisease,
lungDisease). (Recall that True is our current
setting for HeartDisease and True

Round 2 (Continued)

•  (Continued)… is our candidate setting for
LungDisease. This product is (0.8)(0.9) =
0.72.

•  Similarly, for LungDisease=False, we multiply
P(LungDisease=False | smoking) by
P(shortnessOfBreath | heartDisease,
LungDisease=False). This product is (0.2)
(0.8) = 0.16.

Round 2 (Continued)

•  Normalizing <0.72, 0.16> we get the
distribution <0.82, 0.18>.

•  Our next random number is 0.813, so we
(barely) keep LungDisease set to True.

•  This is the first round after our burn-in, so we
record the frequencies. We now have counts
of 0 for HeartDisease and LungDisease set to
False, and counts of 1 for each of these set to
True.

Round 3

•  Our next random number is 0.273, so we
draw a value for HeartDisease next.

•  Because all the variables have the same
value as the last time we drew for
HeartDisease, the distribution is the same:
<0.66, 0.34>. Our next random number is
0.739, so we set HeartDisease to False.

Round 3 (Continued)

•  Updating our tallies, we have counts of: 1 for
HeartDisease=False, 1 for
HeartDisease=True, 0 for
LungDisease=False, and 2 for
LungDisease=True.

Round 4

•  The next random number is 0.049. Therefore
we draw a value for HeartDisease again.
Because all other variables are unchanged,
and we consider both values of
HeartDisease, once again the distribution is
<0.66, 0.34>. Our next random number is
0.233, so we reset HeartDisease to True.

Round 4 (Continued)

•  Our new counts are as follows: 2 for
HeartDisease=True, 1 for
HeartDisease=False, 3 for
LungDisease=True, and 0 for
LungDisease=False.

Round 5

•  Our next random number is 0.743, so we next
draw a value for LungDisease.

•  The values for all other variables are as they
were the first time we drew a value for
LungDisease, so the distribution remains
<0.82,0.18>. Our next random number is
0.932, so we set LungDisease to False.

Round 5 (Continued)

•  Our new tallies are as follows: 3 each for
HeartDisease=True and LungDisease=True,
and 1 each for HeartDisease=False and
LungDisease=False.

Round 6

•  The next random number is 0.478, so again
we sample HeartDisease. But since the
setting for LungDisease has changed, we
must recompute the distribution over
HeartDisease.

•  To get a value for HeartDisease=True, we
multiply P(heartDisease | smoking) by
P(shortnessOfBreath | HeartDisease=True,

Round 6 (Continued)

•  (Continued)… LungDisease=False). This
results in the product (0.6)(0.8) = 0.48.

•  For HeartDisease=False, we multiply
P(HeartDisease=False | smoking) by
P(shortnessOfBreath | HeartDisease=False,
LungDisease=False). The result is (0.4)(0.1)
= 0.04.

•  Normalizing these values to obtain a

Round 6 (Continued)

•  (Continued)… probability distribution, we get
<0.92, 0.08>. Our next random number is
0.832 so we choose HeartDisease=True.

•  Our tallies now stand at 1 for
HeartDisease=False, 4 for
HeartDisease=True, 2 for
LungDisease=False, and 3 for
LungDisease=True.

Final Results

•  Of course, we have not run the Markov chain
nearly long enough to expect an accurate
estimate. Nevertheless, let’s ask what the
answer is to our query at this point.

•  We assign a probability of 4/5 or 0.8 to
heartDisease.

•  We also might ask about lungDisease, to
which we assign 3/5 or 0.6.

Markov Chain

•  A Markov chain includes
– A set of states
– A set of associated transition probabilities

•  For every pair of states s and s’ (not
necessarily distinct) we have an associated
transition probability T(sès’) of moving from
state s to state s’

•  For any time t, T(sès’) is the probability of the
Markov process being in state s’ at time t+1
given that it is in state s at time t

Some Properties of Markov Chains

•  Irreducible chain: can get from any state to
any other eventually (non-zero probability)

•  Periodic state: state i is periodic with period k
if all returns to i must occur in multiples of k

•  Ergodic chain: irreducible and has an
aperiodic state. Implies all states are
aperiodic, so chain is aperiodic.

•  Finite state space: can represent chain as
matrix of transition probabilities… then
ergodic = regular…

•  Regular chain: some power of chain has only
positive elements

•  Reversible chain: satisfies detailed balance
(later)

Sufficient Condition for Regularity

•  A Markov chain is regular if the following
properties both hold:
 1. For any pair of states s, s’ that each
have nonzero probability there exists some
path from s to s’ with nonzero probability
 2. For all s with nonzero probability, the
“self loop” probability T(sès) is nonzero

•  Gibbs sampling is regular if no zeroes in

CPTs

Notation: Probabilities

•  πt(y) = probability of being in state y at time t

•  Transition function T(yèy’) = probability of
moving from state y to state y’

Bayesian Network Probabilities

•  We use P to denote probabilities according to
our Bayesian network, conditioned on the
evidence
– For example, P(yi’|ui) is the probability that

random variable Yi has value yi’ given that
Yj=yj for all j not equal to i

Assumption: CPTs nonzero

•  We will assume that all probabilities in all
conditional probability tables are nonzero

•  So, for any y,

•  So, for any event S,

•  So, for any events S1 and S2,

0])[|()(
1

>∈∀=∏
=

n

i
ji iParentsjyyPyP

0)()(>=∑
∈Sy

yPSP

0
)(
)()|(

2

21
21 >

∩
=

SP
SSPSSP

How π Changes with Time in a
Markov Chain

•  πt+1(y’) =

•  A distribution πt is stationary if πt = πt+1, that is,
for all y, πt(y) = πt+1(y)

∑ →
y

yyy))T((t 'π

Detailed Balance

•  A Markov chain satisfies detailed balance if
there exists a unique distribution π such that
for all states y, y’,

π(y)T(yèy’) = π(y’)T(y’èy)
•  If a regular Markov chain satisfies detailed

balance with distribution π, then there exists t
such that for any initial distribution π0, πt = π

•  Detailed balance with regularity implies
convergence to unique stationary distribution

Gibbs Sampler satisfies Detailed
Balance

Claim: A Gibbs sampler Markov chain defined by a

Bayesian network with all CPT entries nonzero
satisfies detailed balance with probability distribution
π(y)=P(y) for all states y

Proof: First we will show that P(y)T(yèy’) =

P(y’)T(y’èy). Then we will show that no other
probability distribution π satisfies π(y)T(yèy’) =
π(y’)T(y’èy)

Using Other Samplers

•  The Gibbs sampler only changes one random
variable at a time
– Slow convergence
– High-probability states may not be reached

because reaching them requires going
through low-probability states

Metropolis Sampler

•  Propose a transition with probability
TQ(yèy’)

•  Accept with probability A=min(1, P(y’)/P(y))
•  If for all y, y’ TQ(yèy’)=TQ(y’èy) then the

resulting Markov chain satisfies detailed
balance

Metropolis-Hastings Sampler

•  Propose a transition with probability
TQ(yèy’)

•  Accept with probability
 A=min(1, P(y’)TQ(y’èy)/P(y)TQ(yèy’))

•  Detailed balance satisfied
•  Acceptance probability often easy to compute

even though sampling according to P difficult

Gibbs Sampler as Instance of
Metropolis-Hastings

•  Proposal distribution TQ(ui,yièui,yi’) = P(yi’|ui)
•  Acceptance probability:

1

)
)|'()()|(
)|()()|'(,1min(

)
)',,(),(
),',()',(,1min(

=

=

→

→
=

iiiii

iiiii

iiii
Q

ii

iiii
Q

ii

uyPuPuyP
uyPuPuyP

yuyuTyuP
yuyuTyuPA

Comments on BN inference
•  inference by enumeration is an exact method (i.e. it computes the

exact answer to a given query)

•  it requires summing over a joint distribution whose size is exponential
in the number of variables

•  in many cases we can do exact inference efficiently in large networks

–  variable elimination: save computation by pushing sums inward

–  junction trees: re-use work if same evidence in many queries

•  in general, the Bayes net inference problem is NP-hard

•  there are also methods for approximate inference – these get an
answer which is “close”: belief propagation (not covered), MCMC

•  in general, the approximate inference problem is NP-hard also, but
approximate methods work well for many real-world problems

•  Gibbs sampling and other MCMC methods have many ML
applications outside of Bayes nets also

The parameter learning task

•  Given: a set of training instances, the graph structure of a BN

•  Do: infer the parameters of the CPDs

B E A J M

f f f t f
f t f f f
f f t f t

…

Burglary Earthquake

Alarm

JohnCalls MaryCalls

The structure learning task

•  Given: a set of training instances

•  Do: infer the graph structure (and perhaps the
parameters of the CPDs too)

B E A J M

f f f t f
f t f f f
f f t f t

…

Parameter learning and maximum
likelihood estimation

•  maximum likelihood estimation (MLE)
–  given a model structure (e.g. a Bayes net graph)

and a set of data D	

–  set the model parameters θ to maximize P(D | θ)

•  i.e. make the data D look as likely as possible under
the model P(D | θ)	

Maximum likelihood estimation

x = 1,1,1,0,1,0,0,1,0,1{ }

consider trying to estimate the parameter θ (probability of heads) of
a biased coin from a sequence of flips	

for h heads in n flips
the MLE is h/n	

L(θ | x1,…, xn) = θ x1 (1−θ)1−x1θ xn (1−θ)1−xn

 = θ xi∑ (1−θ)n− xi∑

the likelihood function for θ is given by:	

Maximum likelihood estimation

P(j | a) = 3
4
= 0.75

P(¬j | a) = 1
4
= 0.25

P(j |¬a) = 2
4
= 0.5

P(¬j |¬a) = 2
4
= 0.5

P(b) = 1
8
= 0.125

P(¬b) = 7
8
= 0.875

B E A J M
f f f t f
f t f f f
f f f t t
t f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A	

B	
 E	

M	
J	

consider estimating the CPD parameters for B and J in the alarm
network given the following data set

Learning structure + parameters

•  number of structures is super-exponential in the number
of variables

•  finding optimal structure is NP-complete problem
•  two common options:

–  search very restricted space of possible structures
(e.g. networks with tree DAGs)

–  use heuristic search (e.g. sparse candidate)

The Chow-Liu algorithm

•  learns a BN with a tree structure that maximizes the
likelihood of the training data

•  algorithm
1.  compute weight I(Xi, Xj) of each possible edge (Xi, Xj)	

2.  find maximum weight spanning tree (MST)
3.  assign edge directions in MST

The Chow-Liu algorithm

1.  use mutual information to calculate edge weights

I(X,Y) = P(x, y)log2
y∈ values(Y)
∑ P(x, y)

P(x)P(y)x∈ values(X)
∑

The Chow-Liu algorithm

2.  find maximum weight spanning tree: a maximal-weight
tree that connects all vertices in a graph

A	

B	

C	

D	
 E	

F	
 G	

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

Prim’s algorithm for finding an MST

given: graph with vertices V and edges E	

Vnew ← { v } where v is an arbitrary vertex from V	

Enew ← { } 	

repeat until Vnew = V
{

 choose an edge (u, v) in E with max weight where u is in Vnew and v is not
 add v to Vnew and (u, v) to Enew	

}
return Vnew and Enew which represent an MST

Kruskal’s algorithm for finding an MST

given: graph with vertices V and edges E	

Enew ← { } 	

for each (u, v) in E ordered by weight (from high to low)
{

 remove (u, v) from E 	

 if adding (u, v) to Enew does not create a cycle
 add (u, v) to Enew	

}
return V and Enew which represent an MST

Finding MST in Chow-Liu
A	

B	

C	

D	
 E	

F	
 G	

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

i. A	

B	

C	

D	
 E	

F	
 G	

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

ii.

A	

B	

C	

D	
 E	

F	
 G	

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

iii. A	

B	

C	

D	
 E	

F	
 G	

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

iv.

Finding MST in Chow-Liu

A	

B	

C	

D	
 E	

F	
 G	

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

v. A	

B	

C	

D	
 E	

F	
 G	

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

vi.

Returning directed graph in Chow-Liu

A	

B	

C	

D	
 E	

F	
 G	

A	

B	

C	

D	
 E	

F	
 G	

1
5

1
5

1
7

1
8

1
9

1
71

15

1
6

1
8

1
9

1
11

3.  pick a node for the root, and assign edge directions

The Chow-Liu algorithm

•  How do we know that Chow-Liu will find a tree that
maximizes the data likelihood?

•  Two key questions:
–  Why can we represent data likelihood as sum of I(X;Y)

over edges?
–  Why can we pick any direction for edges in the tree?

Why Chow-Liu maximizes likelihood (for a tree)

logP(D |G,θG) = log2 P(xi
(d) | Pa(Xi))

i
∑

d∈D
∑

data likelihood given directed edges of G, best fit parameters

= D I(Xi,Pa(Xi))−H (Xi)()
i
∑

= D P(Xi,Pa(Xi))log2 P(Xi,Pa(Xi)) / Pa(Xi)()
values(Xi ,Pa(Xi))
∑

i
∑

= D P(Xi,Pa(Xi))log2 P(Xi | Pa(Xi))()
values(Xi ,Pa(Xi))
∑

i
∑

= D P(Xi,Pa(Xi))log2 P(Xi,Pa(Xi)) / P(Xi)(Pa(Xi))()
values(Xi ,Pa(Xi))
∑

i
∑ +

P(Xi,Pa(Xi))log2 P(Xi)

θG

(since summing over all examples is equivalent to computing average
over all examples and then multiplying by total number of examples |D|)

Why Chow-Liu maximizes likelihood (for a tree)

logP(D |G,θG) = log2 P(xi
(d) | Parents(Xi))

i
∑

d∈D
∑

= D I(Xi ,Parents(Xi))− H (Xi)()
i
∑

data likelihood given directed edges

argmaxG logP(D |G,θG) = argmaxG I(Xi ,Parents(Xi))
i
∑

we’re interested in finding the graph G that maximizes this

argmaxG logP(D |G,θG) = argmaxG I(Xi ,Xj)
(Xi ,X j)∈edges
∑

if we assume a tree, one node has no parents, all others have exactly one

I(Xi ,Xj) = I(Xj ,Xi)
edge directions don’t matter for likelihood, because MI is symmetric

Heuristic search for structure learning

•  each state in the search space represents a DAG Bayes
net structure

•  to instantiate a search approach, we need to specify
–  state transition operators
–  scoring function for states
–  search algorithm (how to move through state space)

The typical structure search operators

A

B C

D

A

B C

D

add an edge

A

B C

D

reverse an edge

given the current network
at some stage of the search,
we can…

A

B C

D

delete an edge

Scoring function decomposability

•  If score is likelihood, and all instances in D are complete,
then score can be decomposed as follows (and so can
some other scores we’ll see later)

score(G, D) = score(Xi

i
∑ ,Parents(Xi) :D)

•  thus we can
–  score a network by summing terms over the nodes in

the network

–  efficiently score changes in a local search procedure

Bayesian network search:
hill-climbing

given: data set D, initial network B0	

i = 0	

Bbest ←B0	

while stopping criteria not met
{

 for each possible operator application a	

 {
 Bnew ← apply(a, Bi)
 if score(Bnew) > score(Bbest)

 Bbest ← Bnew	

 }
 ++i	

	
Bi ← Bbest	

}
return Bi	

Bayesian network search:
the Sparse Candidate algorithm

[Friedman et al., UAI 1999]

given: data set D, initial network B0, parameter k	

i = 0	

repeat
{

 ++i	

 // restrict step
 select for each variable Xj a set Cj

i (|Cj
i| ≤ k) of candidate parents

 // maximize step
 find network Bi maximizing score among networks where
∀Xj, Parents(Xj) ⊆Cj

i
} until convergence
return Bi 	

•  to identify candidate parents in the first iteration, can compute
the mutual information between pairs of variables

The restrict step in Sparse Candidate

I(X,Y) = P(
x,y
∑ x, y)log P(x, y)

P(x)P(y)

•  suppose true network structure is:

•  we’re selecting two candidate parents for A,
and I(A, C) > I(A, D) > I(A, B)	

•  the candidate parents for A would then be C
and D ; the maximize step would select C	

•  how could we get B as a candidate parent
on the next iteration?

A	

B	
 C	

D	

A	

D	
 C	

The restrict step in Sparse Candidate

•  to identify candidate parents in the first iteration, can compute
the mutual information between pairs of variables

The restrict step in Sparse Candidate

I(X,Y) = P(
x,y
∑ x, y)log P(x, y)

P(x)P(y)

•  to identify candidate parents in the first iteration, can compute
the mutual information between pairs of variables

•  subsequent iterations keep current parents in candidate set
and condition on parents with conditional mutual information:

The restrict step in Sparse Candidate

I(X,Y) = P(
x,y
∑ x, y)log P(x, y)

P(x)P(y)

I(X,Y | Z) = P(
x,y
∑ x, y, z)log P(x, y | z)

P(x | z)P(y | z)

)(
)(

log)())(||)((
xQ
xP

xPXQXPD
x

KL ∑=

•  mutual information can be thought of as the KL
divergence between the distributions

•  Kullback-Leibler (KL) divergence provides a distance
measure between two distributions, P and Q	

P(X,Y)

P(X)P(Y) (assumes X and Y are independent)

Another view of the restrict step

•  we can use KL to assess the discrepancy between the
network’s estimate Pnet(X, Y) and the empirical estimate

M (X,Y) = DKL (P(X,Y)) || Pnet (X,Y))

A	

B	
 C	

D	

A	

D	
 C	
B	

true distribution current Bayes net

DKL (P(A,B)) || Pnet (A,B))

The restrict step in Sparse Candidate

•  Can estimate Pnet(X, Y) by sampling from the network (i.e.
using it to generate instances).

The restrict step in Sparse Candidate

given: data set D, current network Bi, parameter k	

for each variable Xj	

{

 calculate CMI(Xj , Xl |Parents(Xj) for all Xj ≠ Xl such that
 Xl ∉ Parents(Xj)

 choose highest ranking X1 ... Xk-s where s= | Parents(Xj) |

 // include current parents in candidate set to ensure monotonic
 // improvement in scoring function
 Cj

i =Parents(Xj) ∪ X1 ... Xk-s
}
return { Cj

i } for all Xj

The maximize step in Sparse Candidate

•  hill-climbing search with add-edge, delete-edge,
reverse-edge operators

•  test to ensure that cycles aren’t introduced into the graph

Scoring functions for structure learning
•  Can we find a good structure just by trying to maximize the

likelihood of the data?

argmaxG , θG
 logP(D |G,θG)

•  If we have a strong restriction on the the structures allowed
(e.g. a tree), then maybe.

•  Otherwise, no! Adding an edge will never decrease
likelihood. Overfitting likely.

Scoring functions for structure learning
•  there are many different scoring functions for BN structure

search
•  one general approach where n is number of data points

argminG, θG
 f (n)θG − logP(D |G,θG)

complexity penalty

Akaike Information Criterion (AIC): f (n) = 1

Bayesian Information Criterion (BIC): f (n) =
1
2
log(n)

Bayes nets for classification

•  the learning methods for BNs we’ve discussed so far can
be thought of as being unsupervised
•  the learned models are not constructed to predict the

value of a special class variable
•  instead, they can predict values for arbitrarily selected

query variables

•  now let’s consider BN learning for a standard supervised
task (learn a model to predict Y given X1 … Xn)	

Naïve Bayes

•  one very simple BN approach for supervised tasks is
naïve Bayes

•  in naïve Bayes, we assume that all features Xi are
conditionally independent given the class Y	

Xn	
Xn-1	
X2	
X1	

Y	

P(X1, …, Xn , Y) = P(Y) P(Xi

i=1

n

∏ |Y)

Naïve Bayes

Learning
•  estimate P(Y = y) for each value of the class variable Y	

•  estimate P(Xi =x | Y = y) for each Xi

Xn	
Xn-1	
X2	
X1	

Y	

P(Y = y | x) = P(y)P(x | y)
P(y ')P(x | y ')

y ' ∈ values(Y)
∑

=
P(y) P(xi | y)

i=1

n

∏

P(y ') P(xi | y ')
i=1

n

∏
"
#$

%
&'y ' ∈ values(Y)

∑

Classification: use Bayes’ Rule	

Comments about Naïve Bayes

•  Can extend to numeric features
– Assume P(X|Y) is normal with unknown mean

and variance
– Estimate these by sample mean and variance
– During inference, just plug X into pdf of normal

•  Given n features, just n-1 free parameters in
discrete case

•  Very robust against overfitting, but sensitive to
duplicate features (strong correlations)

Naïve Bayes vs. BNs learned with
an unsupervised structure search

test-set error on 25
data sets from the
UC-Irvine Repository

Figure from Friedman et al., Machine Learning 1997

The Tree Augmented Network
(TAN) algorithm

[Friedman et al., Machine Learning 1997]

•  learns a tree structure to augment the edges of a naïve
Bayes network

•  algorithm

1.  compute weight I(Xi, Xj | Y) for each possible edge
(Xi, Xj) between features	

2.  find maximum weight spanning tree (MST) for graph
over X1 … Xn

3.  assign edge directions in MST
4.  construct a TAN model by adding node for Y and an

edge from Y to each Xi	

Conditional mutual information in the
TAN algorithm

I(Xi ,Xj |Y) =

 P(xi , x j , y)log2
y∈ values(Y)
∑

P(xi , x j | y)
P(xi | y)P(x j | y)x j∈ values(X j)

∑
xi∈ values(Xi)
∑

conditional mutual information is used to calculate edge weights

“how much information Xi provides about Xj when the value of Y is known”

Example TAN network
class variable

naïve Bayes edges

tree augmented edges

TAN vs. Chow-Liu
•  TAN is mostly* focused on learning a Bayes net

specifically for classification problems

•  the MST includes only the feature variables (the class
variable is used only for calculating edge weights)

•  conditional mutual information is used instead of mutual
information in determining edge weights in the
undirected graph

•  the directed graph determined from the MST is added to
the Y → Xi edges that are in a naïve Bayes network

*TAN is still generative in maximizing P(x,y), not P(y|x)

TAN vs. Naïve Bayes

test-set error on 25
data sets from the
UC-Irvine Repository

Figure from Friedman et al., Machine Learning 1997

Back to maximum likelihood estimation

P(j | a) = 3
4
= 0.75

P(¬j | a) = 1
4
= 0.25

P(j |¬a) = 2
4
= 0.5

P(¬j |¬a) = 2
4
= 0.5

P(b) = 1
8
= 0.125

P(¬b) = 7
8
= 0.875

B E A J M
f f f t f
f t f f f
f f f t t
t f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A	

B	
 E	

M	
J	

consider estimating the CPD parameters for B and J in the alarm
network given the following data set

Maximum likelihood estimation

P(b) = 0
8
= 0

P(¬b) = 8
8
= 1

B E A J M
f f f t f
f t f f f
f f f t t
f f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A	

B	
 E	

M	
J	

suppose instead, our data set was this…

do we really want to
set this to 0?

Maximum a posteriori (MAP) estimation

•  instead of estimating parameters strictly from the
data, we could start with some prior belief for each

•  for example, we could use Laplace estimates

•  where nv represents the number of occurrences of
value v	

P(X = x) = nx +1
(nv +1)

v∈ Values(X)
∑ pseudocounts

Maximum a posteriori estimation

a more general form: m-estimates

P(X = x) = nx + pxm

nv
v∈ Values(X)
∑

#

$%
&

'(
+m number of “virtual” instances

prior probability of value x	

M-estimates example

B E A J M
f f f t f
f t f f f
f f f t t
f f f f t
f f t t f
f f t f t
f f t t t
f f t t t

A	

B	
 E	

M	
J	

now let’s estimate parameters for B using m=4 and pb=0.25	

P(b) = 0 + 0.25 × 4
8 + 4

=
1
12

= 0.08 P(¬b) = 8 + 0.75 × 4
8 + 4

=
11
12

= 0.92

Pseudocounts are really
parameters of a Beta distribution

a,b

Any intuition for this?
•  For any positive integer y, Γ(y) = (y-1)!.
•  Suppose we use this, and we also replace

–  x with p
–  a with x
–  a+b with n

•  Then we get:

•  The beta(a,b) is just the binomial(n,p) where
n=a+p, and p becomes the variable. With
change of variable, we need a different
normalizing constant so the sum (integral) is
one. Hence (n+1)! replaces n!.

(n+1)!
x!(n− x)!

px (1− p)n−x

Incorporating a Prior

•  We assume a beta distribution as our prior
distribution over the parameter p.

•  Nice properties: unimodal, we can choose the
mode to reflect the most probable value, we
can choose the variance to reflect our
confidence in this value.

•  Best property: a beta distribution is
parameterized by two positive numbers: a …

Beta Distribution (Continued)

•  (Continued)… and b. Higher values of a
relative to b cause the mode of the
distribution to be more to the left, and higher
values of both a and b cause the distribution
to be more peaked (lower variance). We
might for example take a to be the number of
heads, and b to be the number of tails. At
any time, the mode of

Beta Distribution (Continued)

•  (Continued)… the beta distribution (the
expectation for p) is a/(a+b), and as we get
more data, the distribution becomes more
peaked reflecting higher confidence in our
expectation. So we can specify our prior
belief for p by choosing initial values for a
and b such that a/(a+b)=p, and we can
specify confidence in this belief with high

Beta Distribution (Continued)

•  (Continued)… initial values for a and b.
Updating our prior belief based on data to
obtain a posterior belief simply requires
incrementing a for every heads outcome and
incrementing b for every tails outcome.

•  So after h heads out of n flips, our posterior
distribution says P(heads)=(a+h)/(a+b+n).

Dirichlet Distributions

•  What if our variable is not Boolean but can
take on more values? (Let’s still assume our
variables are discrete.)

•  Dirichlet distributions are an extension of beta
distributions for the multi-valued case
(corresponding to the extension from
binomial to multinomial distributions).

•  A Dirichlet distribution over a variable with n
values has n parameters rather than 2.

Missing data
•  Commonly in machine learning tasks, some feature values are

missing

•  some variables may not be observable (i.e. hidden) even for training
instances

•  values for some variables may be missing at random: what caused the
data to be missing does not depend on the missing data itself
•  e.g. someone accidentally skips a question on an questionnaire
•  e.g. a sensor fails to record a value due to a power blip

•  values for some variables may be missing systematically: the
probability of value being missing depends on the value
•  e.g. a medical test result is missing because a doctor was fairly

sure of a diagnosis given earlier test results
•  e.g. the graded exams that go missing on the way home from

school are those with poor scores

Missing data

•  hidden variables; values missing at random
•  these are the cases we’ll focus on
•  one solution: try impute the values

•  values missing systematically
•  may be sensible to represent “missing” as an explicit feature value
•  might build predictive models for features and use them to impute

Imputing missing data with EM

Given:
•  data set with some missing values
•  model structure, initial model parameters

Repeat until convergence
•  Expectation (E) step: using current model, compute

expectation over missing values
•  Maximization (M) step: given the expectations, compute

maximum likelihood (MLE) or maximum posterior
probability (MAP, maximum a posteriori) parameters

example: EM for parameter learning

B E A J M
f f ? f f
f f ? t f
t f ? t t
f f ? f t
f t ? t f
f f ? f t
t t ? t t
f f ? f f
f f ? t f
f f ? f t

A	

B	
 E	

M	
J	

B E P(A)

t t 0.9

t f 0.6

f t 0.3

f f 0.2

P(B)

0.1

P(E)

0.2

A P(J)

t 0.9

f 0.2

A P(M)

t 0.8

f 0.1

suppose we’re given the following initial BN and training set

example: E-step
B E A J M

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f:0.8 t f

t f t:0.98
f: 0.02 t t

f f t: 0.2
f: 0.8 f t

f t t: 0.3
f: 0.7 t f

f f t:0.2
f: 0.8 f t

t t t: 0.997
f: 0.003 t t

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f: 0.8 t f

f f t: 0.2
f: 0.8 f t

A	

B	
 E	

M	
J	

B E P(A)

t t 0.9

t f 0.6

f t 0.3

f f 0.2

P(B)

0.1

P(E)

0.2

A P(J)

t 0.9

f 0.2

A P(M)

t 0.8

f 0.1

P(¬a |¬b,¬e,¬j,¬m)

P(a |¬b,¬e,¬j,¬m)

example: E-step
P(a |¬b,¬e,¬j,¬m) = P(¬b,¬e,a,¬j,¬m)

P(¬b,¬e,a,¬j,¬m)+ P(¬b,¬e,¬a,¬j,¬m)

 = 0.9 × 0.8 × 0.2 × 0.1× 0.2
0.9 × 0.8 × 0.2 × 0.1× 0.2 + 0.9 × 0.8 × 0.8 × 0.8 × 0.9

 = 0.00288
.4176

= 0.0069

P(a |¬b,¬e, j,¬m) = P(¬b,¬e,a, j,¬m)
P(¬b,¬e,a, j,¬m)+ P(¬b,¬e,¬a, j,¬m)

 = 0.9 × 0.8 × 0.2 × 0.9 × 0.2
0.9 × 0.8 × 0.2 × 0.9 × 0.2 + 0.9 × 0.8 × 0.8 × 0.2 × 0.9

 = 0.02592
.1296

= 0.2

P(a | b,¬e, j,m) = P(b,¬e,a, j,m)
P(b,¬e,a, j,m)+ P(b,¬e,¬a, j,m)

 = 0.1× 0.8 × 0.6 × 0.9 × 0.8
0.1× 0.8 × 0.6 × 0.9 × 0.8 + 0.1× 0.8 × 0.4 × 0.2 × 0.1

 = 0.03456
.0352

= 0.98

example: M-step
B E A J M

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f:0.8 t f

t f t:0.98
f: 0.02 t t

f f t: 0.2
f: 0.8 f t

f t t: 0.3
f: 0.7 t f

f f t:0.2
f: 0.8 f t

t t t: 0.997
f: 0.003 t t

f f t: 0.0069
f: 0.9931 f f

f f t:0.2
f: 0.8 t f

f f t: 0.2
f: 0.8 f t

A	

B	
 E	

M	
J	

P(a | b,e) = 0.997
1

P(a | b,¬e) = 0.98
1

P(a |¬b,e) = 0.3
1

P(a |¬b,¬e) = 0.0069 + 0.2 + 0.2 + 0.2 + 0.0069 + 0.2 + 0.2
7

P(a | b,e) = E #(a∧ b∧ e)
E #(b∧ e)

re-estimate probabilities
using expected counts

B E P(A)

t	
 t	
 0.997	

t	
 f	
 0.98	

f	
 t	
 0.3	

f	
 f	
 0.145	

re-estimate probabilities for
P(J | A) and P(M | A) in same way

Convergence of EM

•  E and M steps are iterated until probabilities
converge

•  will converge to a maximum in the data likelihood
(MLE or MAP)

•  the maximum may be a local optimum, however
•  the optimum found depends on starting conditions

(initial estimated probability parameters)

(“Soft”) EM vs. “Hard” EM

•  Standard (soft) EM: expectation is a
probability distribution.

•  Hard EM: expectation is “all or nothing”…
most likely/probable value.

•  Advantage of hard EM is computational
efficiency when expectation is over state
consisting of values for multiple variables

EM for Parameter Learning: E Step

•  For each data point with missing values,
compute the probability of each possible
completion of that data point. Replace the
original data point with all these completions,
weighted by probabilities.

•  Computing the probability of each completion
(expectation) is just answering query over
missing variables given others.

EM for Parameter Learning: M Step

•  Use the completed data set to update our
Dirichlet distributions as we would use any
complete data set, except that our counts
(tallies) may be fractional now.

•  Update CPTs based on new Dirichlet
distributions, as we would with any complete
data set.

EM for Parameter Learning

•  Iterate E and M steps until no changes occur.
We will not necessarily get the global MAP (or
ML given uniform priors) setting of all the CPT
entries, but under a natural set of conditions
we are guaranteed convergence to a local
MAP solution.

•  EM algorithm is used for a wide variety of
tasks outside of BN learning as well.

K-Means as EM

K-Means as EM

K-Means as EM

K-Means as EM

K-Means as EM

K-Means as EM

Subtlety for BN Parameter Learning
via EM

•  Overcounting based on number of interations
required to converge to settings for the
missing values.

•  After each repetition of E step, reset all
Dirichlet distributions before repeating M step.

EM for Parameter Learning

A B

C

D E

P(A)
0.1 (1,9)

A B P(C)
T T 0.9 (9,1)
T F 0.6 (3,2)
F T 0.3 (3,7)
F F 0.2 (1,4)

P(B)
0.2 (1,4)

 C P(D)
 T 0.9 (9,1)
 F 0.2 (1,4)

 C P(E)
 T 0.8 (4,1)
 F 0.1 (1,9)

A B C D E
0 0 ? 0 0
0 0 ? 1 0
1  0 ? 1 1
0 0 ? 0 1
0 1 ? 1 0
0 0 ? 0 1
1  1 ? 1 1
0 0 ? 0 0
0 0 ? 1 0
0 0 ? 0 1

Data

EM for Parameter Learning

A B

C

D E

P(A)
0.1 (1,9)

A B P(C)
T T 0.9 (9,1)
T F 0.6 (3,2)
F T 0.3 (3,7)
F F 0.2 (1,4)

P(B)
0.2 (1,4)

 C P(D)
 T 0.9 (9,1)
 F 0.2 (1,4)

 C P(E)
 T 0.8 (4,1)
 F 0.1 (1,9)

A B C D E
0 0 0 0
0 0 1 0
1  0 1 1
0 0 0 1
0 1 1 0
0 0 0 1
1  1 1 1
0 0 0 0
0 0 1 0
0 0 0 1

Data

0: 0.99
1: 0.01

0: 0.99
1: 0.01

0: 0.02
1: 0.98

0: 0.80
1: 0.20

0: 0.80
1: 0.20

0: 0.80
1: 0.20

0: 0.80
1: 0.20

0: 0.80
1: 0.20

0: 0.70
1: 0.30

0: 0.003
1: 0.997

Multiple Missing Values

A B

C

D E

P(A)
0.1 (1,9)

A B P(C)
T T 0.9 (9,1)
T F 0.6 (3,2)
F T 0.3 (3,7)
F F 0.2 (1,4)

P(B)
0.2 (1,4)

 C P(D)
 T 0.9 (9,1)
 F 0.2 (1,4)

 C P(E)
 T 0.8 (4,1)
 F 0.1 (1,9)

A B C D E
? 0 ? 0 1

Data

Multiple Missing Values

A B

C

D E

P(A)
0.1 (1,9)

A B P(C)
T T 0.9 (9,1)
T F 0.6 (3,2)
F T 0.3 (3,7)
F F 0.2 (1,4)

P(B)
0.2 (1,4)

 C P(E)
 T 0.8 (4,1)
 F 0.1 (1,9)

 C P(D)
 T 0.9 (9,1)
 F 0.2 (1,4)

A B C D E
0 0 0 0 1
0 0 1 0 1
1 0 0 0 1
1 0 1 0 1

Data

0.72
0.18
0.04
0.06

Multiple Missing Values

A B

C

D E

P(A)
0.1 (1.1,9.9)

A B P(C)
T T 0.9 (9,1)
T F 0.6 (3.06,2.04)
F T 0.3 (3,7)
F F 0.2 (1.18,4.72)

P(B)
0.17 (1,5)

 C P(D)
 T 0.88 (9,1.24)
 F 0.17 (1,4.76)

 C P(E)
 T 0.81 (4.24,1)
 F 0.16 (1.76,9)

A B C D E
0 0 0 0 1
0 0 1 0 1
1 0 0 0 1
1 0 1 0 1

Data

0.72
0.18
0.04
0.06

Problems with EM

•  Only local optimum (not much way around
that, though).

•  Deterministic … if priors are uniform, may be
impossible to make any progress…

•  … next figure illustrates the need for some
randomization to move us off an
uninformative prior…

What will EM do here?

A

B

C

Data

A B C
0 ? 0
1  ? 1
0 ? 0
1  ? 1
0 ? 0
1 ? 1

P(A)
0.5 (1,1)

 B P(C)
 T 0.5 (1,1)
 F 0.5 (1,1)

 A P(B)
 T 0.5 (1,1)
 F 0.5 (1,1)

EM Dependent on Initial Beliefs

A

B

C

Data

A B C
0 ? 0
1  ? 1
0 ? 0
1  ? 1
0 ? 0
1 ? 1

P(A)
0.5 (1,1)

 B P(C)
 T 0.5 (1,1)
 F 0.5 (1,1)

 A P(B)
 T 0.6 (6,4)
 F 0.4 (4,6)

EM Dependent on Initial Beliefs

A

B

C

Data

A B C
0 ? 0
1  ? 1
0 ? 0
1  ? 1
0 ? 0
1 ? 1

P(A)
0.5 (1,1)

 B P(C)
 T 0.5 (1,1)
 F 0.5 (1,1)

 A P(B)
 T 0.6 (6,4)
 F 0.4 (4,6)

B is more likely T
than F when A is T.
Filling this in makes
C more likely T than
F when B is T. This
makes B still more
likely T than F when
A is T. Etc. Small
change in CPT for
B (swap 0.6 and 0.4)
would have opposite
effect.

Comments on Bayesian networks

•  the BN representation has many advantages

•  easy to encode domain knowledge (direct dependencies,
causality)

•  can represent uncertainty

•  principled methods for dealing with missing values

•  can answer arbitrary queries (in theory; in practice may be
intractable)

•  for supervised tasks, it may be advantageous to use a learning
approach (e.g. TAN) that focuses on the dependencies that are
most important

•  although very simplistic, naïve Bayes often learns highly accurate
models

•  BNs are one instance of a more general class of probabilistic
graphical models

