1. In the Markov network below, what is the probability of the setting with A true, B false, and C true?

2. Consider a Markov logic program whose only constant is *A* and whose two rules are:

R1: $\forall x P(x) \rightarrow Q(x)$ R2: $\forall x Q(x) \rightarrow P(x)$

Draw the Markov logic network. Given the data set below, what are the weights of these rules after a single step of gradient ascent maximum likelihood parameter learning, assuming our learning rate parameter is 0.1 and weights are initialized to 0.

Data:

P(A)	Q(A)
T	T
Т	F
F	F
T	T

3. What is the OLS regression line given the following data, where *Y* is the response (dependent) variable?

X	Y
1.0	2.1
1.5	2.8
0.4	1.0

4. Given the following background knowledge B, positive examples P, and negative examples N, suppose we are in FOIL's Learn-Rule procedure to learn a single rule. Furthermore suppose our current rule is $Can_{reach}(x,y)$. What is the FOIL-Gain of adding the literal $Linked_{to}(x,z)$, to yield the rule $Can_{reach}(x,y) \leftarrow Linked_{to}(x,z)$?

B:

Linked_to(1,2)

Linked_to(2,3)

Linked_to(3,4)

P:

Can_reach(1,2)

Can_reach(1,3)

Can_reach(1,4)

Can_reach(2,3)

Can_reach(2,4)

Can_reach(3,4)

N:

Can_reach(1,1)

Can_reach(2,1)

Can_reach(3,1)

Can_reach(4,1)

Can_reach(2,2)

Can reach(3,2)

Can_reach(4,2)

Can_reach(3,3)

Can_reach(4,3)

Can_reach(4,4)