
Learning Probabilistic Relational 
Models 



Overview 

•  Motivation 
•  Definitions and semantics of probabilistic 

relational models (PRMs) 
•  Learning PRMs from data 

– Parameter estimation 
– Structure learning 

•  Experimental results 



Motivation 

•  Most real-world data are stored in relational 
DBMS 

•  Few learning algorithms are capable of handling 
data in its relational form; thus we have to resort 
to “flattening” the data in order to do analysis 

•  As a result, we lose relational information which 
might be crucial to understanding the data 



Related Work 

•  Most inductive logic programming (ILP) 
approaches are deterministic classification 
approaches, i.e. they do not attempt to model a 
probability distribution but rather learn a set of 
rules for classifying when a particular predicate 
holds 

•  Recent developments in ILP related to PRMs: 
–  Stochastic logic programs (SLPs)  [Muggleton, 1996 

and Cussens, 1999]  
–  Bayesian logic programs (BLPs) [Kersting et al., 2000] 



What are PRMs? 
•  The starting point of this work is the structured 

representation of probabilistic models of Bayesian 
networks (BNs).  BNs for a given domain involves 
a pre-specified set of attributes whose relationship 
to each other is fixed in advance 

•  PRMs conceptually extend BNs to allow the 
specification of a probability model for classes of 
objects rather than a fixed set of simple attributes 

•  PRMs also allow properties of an entity to depend 
probabilistically on properties of other related 
entities 



Mapping PRMs from Relational 
Models 

•  The representation of PRMs is a direct mapping 
from that of relational databases 

•  A relational model consists of a set of classes X1,
…,Xn and a set of relations R1,…,Rm, where each 
relation Ri is typed 

•  Each class or entity type (corresponding to a 
single relational table) is associated with a set of 
attributes A(Xi) and a set of reference slots R (X) 



PRM Semantics 

•  Reference slots correspond to attributes that are 
foreign keys (key attributes of another table) 

•  X.ρ, is used to denote reference slot ρ of X.  Each 
reference slot ρ is typed according to the relation 
that it references 
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PRM Semantics Continued 

•  Each attribute Aj ∈ A(Xi) takes on values in some 
fixed domain of possible values  denoted V(Aj).  
We assume that value spaces are finite 

•  Attribute A of class X is denoted X.A 
•  For example, the Student class has an Intelligence 

attribute and the value space or domain for 
Student.Intelligence might be {high, low} 



PRM Semantics Continued 

•  An instance I of a schema specifies a set of 
objects x, partitioned into classes; such that there 
is a value for each attribute x.A and a value for 
each reference slot x.ρ 

• A(x) is used as a shorthand for A(X), where x is of 
class X.  For each object x in the instance and each 
of its attributes A, we use Ix.A to denote the value 
of x.A in I 



University Domain Example – 
An Instance of the Schema 

One 
professor 
is the 
instructor 
for both 
courses 

Jane Doe is registered 
for only one course, 
Phil101, while the other 
student is registered for 
both courses 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Course 
Name 
       Phil101 
Difficulty 
       low 
Rating 
       high 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Professor 
Name 
       Prof. Gump 
Popularity 
       high 
Teaching-Ability 
       medium 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Course 
Name 
       Phil101 
Difficulty 
       low 
Rating 
       high 



University Domain Example – 
Another Instance of the Schema 

There are 
two 
professors 
instructing 
a course 

There are three 
students in the 
Phil201 course 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Professor 
Name 
       Prof. Gump 
Popularity 
       high 
Teaching-Ability 
       medium 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Registration 
RegID 
       #5723 
Grade 
       A 
Satisfaction 
       3 

Course 
Name 
       Phil201 
Difficulty 
       low 
Rating 
       high 

Professor 
Name 
       Prof. Vincent 
Popularity 
       high 
Teaching-Ability 
       high 

Student 
Name 
       John Doe 
Intelligence 
       high 
Ranking 
       average 



PRM Semantics Continued 

•  Some attributes, such as name or social security 
number, are fully determined.  Such attributes are 
labeled as fixed.  Assume that they are known in 
any instantiation of the schema 

•  The other attributes are called probabilistic 
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PRM Semantics Continued 

•  A skeleton structure σ of a relational schema is a 
partial specification of an instance of the schema.  
It specifies the set of objects Oσ(Xi) for each class, 
the values of the fixed attributes of these objects, 
and the relations that hold between the objects 

•  The values of probabilistic attributes are left 
unspecified 

•  A completion I of the skeleton structure σ extends 
the skeleton by also specifying the values of the 
probabilistic attributes 



University Domain Example – 
Relational Skeleton 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Course 
Name 
       Phil101 
Difficulty 
       low 
Rating 
       high 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Professor 
Name 
       Prof. Gump 
Popularity 
       ??? 
Teaching-Ability 
       ??? 

Student 
Name 
       Jane Doe 
Intelligence 
       ??? 
Ranking 
       ??? 

Registration 
RegID 
       #5639 
Grade 
       ??? 
Satisfaction 
       ??? 

Course 
Name 
       Phil101 
Difficulty 
       ??? 
Rating 
       ??? 



Registration 
Name 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Registration 
Name 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Course 
Name 
       Phil101 
Difficulty 
       low 
Rating 
       high 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Professor 
Name 
       Prof. Gump 
Popularity 
       high 
Teaching-Ability 
       medium 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Registration 
Name 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Course 
Name 
       Phil101 
Difficulty 
       low 
Rating 
       high 

University Domain Example – 
The Completion Instance I 



University Domain Example – 
Another Relational Skeleton 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Professor 
Name 
       Prof. Gump 
Popularity 
       high 
Teaching-Ability 
       ??? 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Registration 
RegID 
       #5723 
Grade 
       ??? 
Satisfaction 
       ??? 

Course 
Name 
       Phil201 
Difficulty 
       ??? 
Rating 
       ??? 

Professor 
Name 
       Prof. Vincent 
Popularity 
       ??? 
Teaching-Ability 
       ??? 

Student 
Name 
       John Doe 
Intelligence 
       ??? 
Ranking 
       ??? 

PRMs allow 
multiple possible 
skeletons 



University Domain Example – 
The Completion Instance I 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Registration 
RegID 
       #5639 
Grade 
       A 
Satisfaction 
       3 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Professor 
Name 
       Prof. Gump 
Popularity 
       high 
Teaching-Ability 
       medium 

Student 
Name 
       Jane Doe 
Intelligence 
       high 
Ranking 
       average 

Registration 
RegID 
       #5723 
Grade 
       A 
Satisfaction 
       3 

Course 
Name 
       Phil201 
Difficulty 
       low 
Rating 
       high 

Professor 
Name 
       Prof. Vincent 
Popularity 
       high 
Teaching-Ability 
       high 

Student 
Name 
       John Doe 
Intelligence 
       high 
Ranking 
       average 

PRMs also allow 
multiple possible 
instances and 
values 



More PRM Semantics 
•  For each reference slot ρ, we define an inverse 

slot, ρ-1, which is the inverse function of ρ 
•  For example, we can define an inverse slot for the 

Student slot of Registration and call it Registered-
In.  Since the original relation is a one-to-many 
relation, it returns a set of Registration objects 

•  A final definition is the notion of a slot chain 
τ=ρ1..ρm, which is a sequence of reference slots 
that defines functions from objects to other objects 
to which they are indirectly related.  For example, 
Student.Registered-In.Course.Instructor can be 
used to denote a student’s set of instructors 



Definition of PRMs 
•  The probabilistic model consists of two 

components: the qualitative dependency structure, 
S, and the parameters associated with it, θS 

•  The dependency structure is defined by 
associating with each attribute X.A a set of parents 
Pa(X.A); parents are attributes that are “direct 
influences” on X.A.  This dependency holds for 
any object of class X 



Definition of PRMs Cont’d 
•  The attribute X.A can depend on another 

probabilistic attribute B of X.  This dependence 
induces a corresponding dependency for 
individual objects 

•  The attribute X.A can also depend on attributes of 
related objects X.τ.B, where τ is a slot chain 

•  For example, given any Registration object r and 
the corresponding Professor object p for that 
instance,  r.Satisfaction will depend 
probabilistically on r.Grade as well as p.Teaching-
Ability 

 



PRM Dependency Structure for 
the University Domain 
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Dependency Structure in PRMs 

•  As mentioned earlier, x.τ represents the set of 
objects that are τ-relatives of x.  Except in cases 
where the slot chain is guaranteed to be single-
valued, we must specify the probabilistic 
dependence of x.A on the multiset {y.B:y ∈ x.τ} 

•  The notion of aggregation from database theory 
gives us the tool to address this issue; i.e., x.a will 
depend probabilistically on some aggregate 
property of this multiset 



Aggregation in PRMs 
•  Examples of aggregation are: the mode of the set 

(most frequently occurring value); mean value of 
the set (if values are numerical); median, 
maximum, or minimum (if values are ordered); 
cardinality of the set; etc 

•  An aggregate essentially takes a multiset of values 
of some ground type and returns a summary of it 

•  The type of the aggregate can be the same as that 
of its arguments, or any type returned by an 
aggregate.  X.A can have γ(X.τ.B) as a parent; the 
semantics is that for any x ∈ X, x.a will depend on 
the value of γ(x.τ.b), V(γ(x.τ.b)) 



PRM Dependency Structure 
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Parameters of PRMs 

•  A PRM contains a conditional probability 
distribution (CPD) P(X.A|Pa(X.A)) for each 
attribute X.A of each class 

•  More precisely, let U be the set of parents of X.A.  
For each tuple of values u ∈ V(U), the CPD 
specifies a distribution P(X.A|u) over V(X.A).  The 
parameters in all of these CPDs comprise θS 



CPDs in PRMs 

Student 
Intelligence 
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D.I      A      B      C 
h,h     0.5    0.4    0.1 
h,l      0.1    0.5    0.4 
l,h      0.8    0.1    0.1 
l,l       0.3    0.6    0.1 

avg      l      m      h 
 A     0.1    0.2    0.7 
 B     0.2    0.4    0.4 
 C     0.6    0.3    0.1 



Parameters of PRMs Continued 

•  Given a skeleton structure for our schema, we 
want to use these local probability models to 
define a probability distribution over all 
completions of the skeleton 

•  Note that the objects and relations between objects 
in a skeleton are always specified by σ, hence we 
are disallowing uncertainty over the relational 
structure of the model 



Parameters of PRMs Continued 

•  To define a coherent probabilistic model, we must 
ensure that our probabilistic dependencies are 
acyclic, so that a random variable does not 
depend, directly or indirectly, on its own value 

•  A dependency structure S is acyclic relative to a 
skeleton σ if the directed graph over all the parents 
of the variables x.A is acyclic 

•  If S is acyclic relative to σ, then the following 
defines a distribution over completions I of σ: P(I|
σ,S,θS) =  ∏ ∏ ∏

∈ ∈i i iX
axPa

XA XOx
ax IIP )|( ).(

)(A )(
.

σ



Class Dependency Graph for the 
University Domain 
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Ensuring Acyclic Dependencies 

•  In general, however, a cycle in the class 
dependency graph does not imply that all 
skeletons induce cyclic dependencies 

•  A model may appear to be cyclic at the class level, 
however, this cyclicity is always resolved at the 
level of individual objects 

•  The ability to guarantee that the cyclicity is 
resolved relies on some prior knowledge about the 
domain.  The user can specify that certain slots are 
guaranteed acyclic 



PRM for the Genetics Domain 
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Dependency Graph for Genetics 
Domain 
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Learning PRMs: Parameter 
Estimation 

•  Assume that the qualitative dependency structure 
S of the PRM is known 

•  The parameters are estimated using the likelihood 
function which gives an estimate of the probability 
of the data given the model 

•  The likelihood function used is the same as that 
for Bayesian network parameter estimation.  The 
only difference is that parameters for different 
nodes in the network – those corresponding to the 
x.A for different objects x from the same class – 
are forced to be identical 



Learning PRMs: Parameter 
Estimation 

•  Our goal is to find the parameter setting θS that maximizes 
the likelihood L(θS| I,σ,S) for a given I, σ and S: L(θS|I,σ,S) 
= P(I|σ,S,θS).  Working with the logarithm of this function: 
l(θS|I,σ,S) = log P(I|σ,S,θS) = 

•  This estimation is simplified by the decomposition of log-
likelihood function into a summation of terms 
corresponding to the various attributes of the different 
classes.  Each of the terms in the square brackets can be 
maximized independently of the rest 

•  Parameter priors can also be incorporated 

∑ ∑ ∑
∈ ∈ ⎥
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A Ox
x.AII

σ



Learning PRMs: Structure 
Learning 

•  We now move to the more challenging problem of 
learning a dependency structure automatically 

•  There are three important issues that need to be 
addressed: hypothesis space, scoring function, and 
search algorithm 

•  Our hypothesis specifies a set of parents for each 
attribute X.A.  Note that this hypothesis space is 
infinite.  Our hypothesis space is restricted by 
ensuring that the structure we are learning will 
generate a consistent probability model for any 
skeleton we are likely to see 



Learning PRMs: Structure 
Learning Continued 

•  The second key component is the ability to 
evaluate different structures in order to pick one 
that fits the data well.  Bayesian model selection 
methods were adapted 

•  Bayesian model selection utilizes a probabilistic 
scoring function.  It ascribes a prior probability 
distribution over any aspect of the model about 
which we are uncertain 

•  The Bayesian score of a structure S is defined as 
the posterior probability of the structure given the 
data I 



Learning PRMs: Structure 
Learning Continued 

•  Using Bayes rule: P(S|I,σ) ∝ P(I|S,σ) P(S|σ) 
•  It turns out that marginal likelihood is a crucial 

component, which has the effect of penalizing 
models with a large number of parameters.  Thus 
this score automatically balances the complexity 
of the structure with its fit to the data 

•  Now we need only provide an algorithm for 
finding a high-scoring hypotheses in our space 



Learning PRMs: Structure 
Learning Continued 

•  The simplest heuristic search algorithm is greedy 
hill-climbing search, using the scoring function as 
a metric.  Maintain the current candidate structure 
and iteratively improve it 

•  Local maxima can be dealt with using random 
restarts, i.e., when a local maximum is reached, 
we take a number of random steps, and then 
continue the greedy hill-climbing process 



Learning PRMs: Structure 
Learning Continued 

•  The problems with this simple approach is that 
there are infinitely many possible structures, and it 
is very costly in computational operations 

•  A heuristic search algorithm addresses these 
issues.  At a high level, the algorithm proceeds in 
phases 



Learning PRMs: Structure 
Learning Continued 

•  At each phase k, we have a set of potential parents 
Potk(X.A) for each attribute X.A 

•  Then apply a standard structure search restricted 
to the space of structures in which the parents of 
each X.A are in Potk(X.A).  The phased search is 
structured so that it first explores dependencies 
within objects, then between objects that are 
directly related, then between objects that are two 
links apart, etc 



Learning PRMs: Structure 
Learning Continued 

•  One advantage of this approach is that it gradually 
explores larger and larger fragments of the 
infinitely large space, giving priority to 
dependencies between objects that are more 
closely related 

•  The second advantage is that we can precompute 
the database view corresponding to X.A, 
Potk(X.A); most of the expensive computations – 
the joins and aggregation required in the definition 
of the parents – are precomputed in these views 



Experimental Results 
•  The learning algorithm was tested on one 

synthetic dataset and two real ones 
•  Genetics domain – a artificial genetic database 

similar to the example mentioned earlier was used 
to test the learning algorithm 

•  Training sets of size 200 to 800, with 10 training 
sets of each size were used.  An independent test 
database of size 10,000 was also generated 

•  A dataset size of n consists of a family tree 
containing n people, with an average of 0.6 blood 
tests per person 



Experimental Results Continued 



Experimental Results Continued 

•  Tuberculosis patient domain – drawn from a 
database of epidemiological data for 1300 patients 
from the SF tuberculosis (TB) clinic, and their 
2300 contacts 

•  Relational dependencies, along with other 
interesting dependencies, were discovered: there is 
a dependence between the patient’s HIV result 
and whether he transmits the disease to a contact; 
there is a correlation between the ethnicity of the 
patient and the number of patients infected by the 
strain 



Experimental Results Continued 



Experimental Results Continued 

•  Company domain – a dataset of company and 
company officers obtained from Security and 
Exchange Commission (SEC) data 

•  The dataset includes information, gathered over a 
five year period, about companies, corporate 
officers in the companies, and the role that the 
person plays in the company 

•  For testing, the following classes and table sizes 
were used: Company (20,000), Person (40,000), 
and Role (120,000) 



Experimental Results Continued 



Discussion 

•  How do you determine the probability 
distribution when there is an unbound 
variable? 

•  The literature assumes that domain values 
are finite.  Can it handle continuous values? 
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