Support Vector Machines

www.cs.wisc.edu/~dpage

Goals for the lecture

you should understand the following concepts

- the margin
- slack variables
- the linear support vector machine
- nonlinear SVMs
- the kernel trick
- the primal and dual formulations of SVM learning
- support vectors
- the kernel matrix
- valid kernels
- polynomial kernel
- Gausian kernel
- string kernels
- support vector regression

Algorithm You Should Know

- SVM as constrained optimization
- Fit training data and maximize margin
- Primal and dual formulations
- Kernel trick
- Slack variables to allow imperfect fit
- For now, assuming optimizer is black box
- Next lecture will look inside black box: sequential minimal optimization (SMO)

Burr Settles, UW CS PhD

Four key SVM ideas

- Maximize the margin don't choose just any separating hyperplane
- Penalize misclassified examples
use soft constraints and slack variables

- Use optimization methods to find model linear programming quadratic programming

- Use kernels to represent nonlinear functions and handle complex instances (sequences, trees, graphs, etc.)

Some key vector concepts

the dot product between two vectors w and x is defined as:

$$
\boldsymbol{w} \cdot \boldsymbol{x}=\boldsymbol{w}^{\top} \boldsymbol{x}=\sum_{i} w_{i} x_{i}
$$

for example

$$
\left[\begin{array}{c}
1 \\
3 \\
-5
\end{array}\right] \cdot\left[\begin{array}{c}
4 \\
-2 \\
-1
\end{array}\right]=(1)(4)+(3)(-2)+(-5)(-1)=3
$$

the 2-norm (Euclidean length) of a vector \boldsymbol{x} is defined as:

$$
\|\boldsymbol{x}\|_{2}=\sqrt{\sum_{i}\left|x_{i}\right|^{2}}
$$

Linear separator learning revisited

suppose we encode our classes as $\{-1,+1\}$ and consider a linear classifier

$$
h(\boldsymbol{x})=\left\{\begin{array}{l}
1 \text { if }\left(\sum_{i=1}^{n} w_{i} x_{i}\right)+b>0 \\
-1 \text { otherwise }
\end{array}\right.
$$

an instance $\langle\boldsymbol{x}, y\rangle$ will be classified correctly if

$$
y\left(\boldsymbol{w}^{\top} \boldsymbol{x}+b\right)>0
$$

Large margin classification

- Given a training set that is linearly separable, there are infinitely many hyperplanes that could separate the positive/negative instances.
- Which one should we choose?
- In SVM learning, we find the hyperplane that maximizes the margin.

Figure from Ben-Hur \& Weston,
Methods in Molecular Biology 2010

Large margin classification

- suppose we learn a hyperplane h given a training set D
- let \boldsymbol{x}_{+}denote the closest instance to the hyperplane among positive instances, and similarly for $\boldsymbol{x}_{\text {- }}$ and negative instances
- the margin is given by

$$
\operatorname{margin}_{D}(h)=\frac{1}{2} \hat{\boldsymbol{w}}^{\top}\left(\boldsymbol{x}_{+}-\boldsymbol{x}_{-}\right)=\frac{1}{\|\boldsymbol{w}\|_{2}}
$$

length 1 vector in same direction as w
Example

$$
\begin{array}{|l|l|lllllllllllll|l|l|l|l|l|lll}
\hline 19 & -18 & -17 & -1 & 6 & -15 & -14 & -13 & -12 & -11 & -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -1 \\
\hline
\end{array}
$$

X_{3} irrelevant, X_{2} twice as important as X_{1}

Example

$$
x_{2} \ldots
$$

X_{3} irrelevant, X_{2} twice as important as X_{1}

Separator is perpendicular to weight vector
X_{2} 。

$2 x_{2}+x_{1}-2 \geq 0$

Changing b moves (shifts) separator
X_{3} irrelevant, X_{2} twice as important as X_{1}

$$
2 x_{2}+x_{1}-6 \geq 0
$$

$$
x_{2} \cdots
$$

Assume labeled data as above

Margin is width between our earlier lines

X_{3} irrelevant, X_{2} twice as important as X_{1}

$$
\begin{aligned}
& 2 x_{2}+x_{1}-4 \geq 0 \\
& 2 x_{2}+x_{1}-2 \geq 0 \\
& 2 x_{2}^{2}+x_{1}-6 \geq 0
\end{aligned}
$$

Specifically margin here is $\left\|\mathbf{e}_{+}-\mathbf{e}_{.}\right\|_{2}$

Let e+ and e-, respectively, be the points where w intersects the hyperplanes:

$$
\begin{aligned}
& 2 x_{2}+x_{1}-2 \geq 0 \\
& 2 x_{2}+x_{1}-6 \geq 0
\end{aligned}
$$

But can double margin artificially

$$
\begin{aligned}
& 2 X_{2}+X_{1}-8 \geq 0 \\
& 2 X_{2}+X_{1}-4=0 \\
& 2 X_{2}+X_{1}-12=0
\end{aligned} \quad \begin{aligned}
& \quad \text { OR... } 4 X_{2}+2 X_{1}-4 \geq 0 \\
& 4 X_{2}+2 X_{1}-2=0 \\
& 4 X_{2}+2 X_{1}-6=0
\end{aligned}
$$

Keep w fixed, double b

Should normalize margin with norm of w

But normalized margin remains unchanged:
$\left\|\mathbf{e}_{+}-\mathbf{e}_{-}\right\|\left\|_{2} /\right\| \mathbf{w} \|_{2}$
Can keep $\|w\|_{2}$ fixed and try to maximize $\left\|\mathbf{e}_{+}-\mathbf{e}\right\|_{2}$
Or fix $\| e_{+}-$e. $_{2}(e . g$, to 2$)$ and minimize $\|w\|_{2}$

The hard-margin SVM

- given a training set $D=\left\{\left\langle\boldsymbol{x}^{(1)}, y^{(1)}\right\rangle, \ldots,\left\langle\boldsymbol{x}^{(m)}, y^{(m)}\right\rangle\right\}$
- we can frame the goal of maximizing the margin as a constrained optimization problem

subject to constraints: $y^{(i)}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}+b\right) \geq 1$ for $i=1, \ldots, m$

- and use standard algorithms to find an optimal solution to this problem

The soft-margin SVM

[Cortes \& Vapnik, Machine Learning 1995]

- if the training instances are not linearly separable, the previous formulation will fail
- we can adjust our approach by using slack variables (denoted by ξ) to tolerate errors

$$
\underset{\boldsymbol{w}, b, \xi^{(1)} \ldots \xi^{(m)}}{\operatorname{minimize}} \quad \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+C \sum_{i=1}^{m} \xi^{(i)}
$$

$$
\text { subject to constraints : } y^{(i)}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}+b\right) \geq 1-\xi^{(i)}
$$

$$
\xi^{(i)} \geq 0
$$

$$
\text { for } i=1, \ldots, m
$$

- C determines the relative importance of maximizing margin vs. minimizing slack

The effect of C in a soft-margin SVM

Figure from Ben-Hur \& Weston,
Methods in Molecular Biology 2010

Nonlinear classifiers

Nonlinear classifiers

Nonlinear classifiers

Nonlinear classifiers

Nonlinear classifiers

Nonlinear classifiers

Nonlinear classifiers

Nonlinear classifiers

- What if a linear separator is not an appropriate decision boundary for a given task?
- For any (consistent) data set, there exists a mapping ϕ to a higher-dimensional space such that the data is linearly separable

$$
\phi(\boldsymbol{x})=\left(\phi_{1}(\boldsymbol{x}), \phi_{2}(\boldsymbol{x}), \ldots, \phi_{k}(\boldsymbol{x})\right)
$$

- Example: mapping to quadratic space

$$
\begin{aligned}
& \boldsymbol{x}=\left\langle x_{1}, x_{2}\right\rangle \quad \text { suppose } x \text { is represented by } 2 \text { features } \\
& \phi(\boldsymbol{x})=\left(x_{1}^{2}, \quad \sqrt{2} x_{1} x_{2}, \quad x_{2}^{2}, \quad \sqrt{2} x_{1}, \quad \sqrt{2} x_{2}, 1\right)
\end{aligned}
$$

- now try to find a linear separator in this space

Nonlinear classifiers

- for the linear case, our discriminant function was given by

$$
h(x)=\left\{\begin{array}{l}
1 \text { if } \boldsymbol{w} \cdot \boldsymbol{x}+b>0 \\
-1 \text { otherwise }
\end{array}\right.
$$

- for the nonlinear case, it can be expressed as

$$
h(x)=\left\{\begin{array}{l}
1 \text { if } \boldsymbol{w} \cdot \phi(\boldsymbol{x})+b>0 \\
-1 \text { otherwise }
\end{array}\right.
$$

where w is a higher dimensional vector

SVMs with polynomial kernels

Figure from Ben-Hur \& Weston,
Methods in Molecular Biology 2010

The kernel trick

- explicitly computing this nonlinear mapping does not scale well
- a dot product between two higher-dimensional mappings can sometimes be implemented by a kernel function
- example: quadratic kernel

$$
\begin{aligned}
k(\boldsymbol{x}, \boldsymbol{z})= & (\boldsymbol{x} \cdot \boldsymbol{z}+1)^{2} \\
= & \left(x_{1} z_{1}+x_{2} z_{2}+1\right)^{2} \\
= & x_{1}^{2} z_{1}^{2}+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} z_{1}+2 x_{2} z_{2}+1 \\
= & \left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right) \cdot \\
& \left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}, \sqrt{2} z_{1}, \sqrt{2} z_{2}, 1\right) \\
= & \phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{z})
\end{aligned}
$$

The kernel trick

- thus we can use a kernel to compute the dot product without explicitly mapping the instances to a higher-dimensional space

$$
k(\boldsymbol{x}, \boldsymbol{z})=(\boldsymbol{x} \cdot \boldsymbol{z}+1)^{2}=\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{z})
$$

But why is the kernel trick helpful?

Using the kernel trick

- given a training set $D=\left\{\left\langle\boldsymbol{x}^{(1)}, y^{(1)}\right\rangle, \ldots,\left\langle\boldsymbol{x}^{(m)}, y^{(m)}\right\rangle\right\}$
- suppose the weight vector can be represented as a linear combination of the training instances

$$
\boldsymbol{w}=\sum_{i=1}^{m} \alpha_{i} \boldsymbol{x}^{(i)}
$$

- then we can represent a linear SVM as

$$
\sum_{i=1}^{m} \alpha_{i} x^{(i)} \cdot x+b
$$

- and a nonlinear SVM as

$$
\begin{aligned}
& \sum_{i=1}^{m} \alpha_{i} \phi\left(\boldsymbol{x}^{(i)}\right) \cdot \phi(\boldsymbol{x})+b \\
= & \sum_{i=1}^{m} \alpha_{i} k\left(\boldsymbol{x}^{(i)}, \boldsymbol{x}\right)+b
\end{aligned}
$$

Can we represent a weight vector as a linear combination of training instances?

- consider perceptron learning, where each weight can be represented as

$$
w_{j}=\sum_{i=1}^{m} \alpha_{i} x_{j}^{(i)}
$$

- proof: each weight update has the form $w_{j}(t)=w_{j}(t-1)+\eta \delta_{t}^{(i)} y^{(i)} x_{j}^{(i)}$

$$
\left.\begin{array}{l}
w_{j}=\sum_{t} \sum_{i=1}^{m} \eta \delta_{t}^{(i)} y^{(i)} x_{j}^{(i)} \\
w_{j}=\sum_{i=1}^{m}\left(\delta_{t}^{(i)} \eta \delta_{t}^{(i)} y^{(i)}\right) x_{j}^{(i)} \\
1 \text { if } \boldsymbol{x}^{(i)} \text { misclassified in epoch } t \\
0 \text { otherwise }
\end{array}\right\}
$$

The primal and dual formulations of the hard-margin SVM

primal
$\underset{\boldsymbol{w}, b}{\operatorname{minimize}} \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}$
subject to constraints : $y^{(i)}\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}+b\right) \geq 1$
for $i=1, \ldots, m$
dual

$$
\begin{gathered}
\operatorname{maximize} \\
\alpha_{1}, \ldots, \alpha_{m}
\end{gathered} \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{j=1}^{m} \sum_{k=1}^{m} \alpha_{j} \alpha_{k} y^{(j)} y^{(k)}\left(\boldsymbol{x}^{(j)} \cdot \boldsymbol{x}^{(k)}\right)
$$

subject to constraints: $\alpha_{i} \geq 0$ for $i=1, \ldots, m$

$$
\sum_{i=1}^{m} \alpha_{i} y^{(i)}=0
$$

The dual formulation with a kernel (hard margin version)

primal

$$
\begin{aligned}
& \quad \begin{array}{l}
\text { minimize } \\
\boldsymbol{w}, b \\
\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { subject to constraints: } y^{(i)}\left(\boldsymbol{w}^{\top} \phi\left(\boldsymbol{x}^{(i)}\right)+b\right) \geq 1 \\
\text { for } i=1, \ldots, m
\end{array}
\end{aligned}
$$

dual

$$
\begin{gathered}
\begin{array}{c}
\text { maximize } \\
\alpha_{1}, \ldots, \alpha_{m}
\end{array} \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{j=1}^{m} \sum_{k=1}^{m} \alpha_{j} \alpha_{k} y^{(j)} y^{(k)} k\left(\boldsymbol{x}^{(j)}, \boldsymbol{x}^{(k)}\right) \\
\text { subject to constraints: } \alpha_{i} \geq 0 \quad \text { for } i=1, \ldots, m \\
\sum_{i=1}^{m} \alpha_{i} y^{(i)}=0
\end{gathered}
$$

Support vectors

- the final solution is a sparse linear combination of the training instances
- those instances having $\alpha_{i}>0$ are called support vectors - they lie on the margin boundary
- the solution wouldn't change if all the instances with $\alpha_{i}=0$ were deleted

The kernel matrix

- the kernel matrix (a.k.a. Gram matrix) represents pairwise similarities for instances in the training set

$$
\left[\begin{array}{cccc}
k\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(1)}\right) & k\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}\right) & \cdots & k\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(m)}\right) \\
k\left(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(1)}\right) & \ddots & & \\
\vdots & & & \\
k\left(\boldsymbol{x}^{(m)}, \boldsymbol{x}^{(1)}\right) & & & k\left(\boldsymbol{x}^{(m)}, \boldsymbol{x}^{(m)}\right)
\end{array}\right]
$$

- it represents the information about the training set that is provided as input to the optimization process

Some common kernels

- polynomial of degree d

$$
k(\boldsymbol{x}, \boldsymbol{z})=(\boldsymbol{x} \cdot \boldsymbol{z})^{d}
$$

- polynomial of degree up to d

$$
k(\boldsymbol{x}, \boldsymbol{z})=(\boldsymbol{x} \cdot \boldsymbol{z}+1)^{d}
$$

- radial basis function (RBF) (a.k.a. Gaussian)

$$
k(\boldsymbol{x}, \boldsymbol{z})=\exp \left(-\gamma\|\boldsymbol{x}-z\|^{2}\right)
$$

The RBF kernel

- the feature mapping ϕ for the RBF kernel is infinite dimensional!
- recall that $k(x, z)=\phi(x) \cdot \phi(z)$

$$
\begin{aligned}
& k(\boldsymbol{x}, \boldsymbol{z})=\exp \left(-\frac{1}{2}\|\boldsymbol{x}-z\|^{2}\right) \quad \text { for } \gamma=\frac{1}{2} \\
&=\exp \left(-\frac{1}{2}\|\boldsymbol{x}\|^{2}\right) \exp \left(-\frac{1}{2}\|z\|^{2}\right) \exp (\boldsymbol{x} \cdot \boldsymbol{z}) \\
&=\exp \left(-\frac{1}{2}\|\boldsymbol{x}\|^{2}\right) \exp \left(-\frac{1}{2}\|z\|^{2}\right)\left(\sum_{n=0}^{\infty} \frac{(\boldsymbol{x} \cdot \boldsymbol{z})^{n}}{n!}\right) \\
& \begin{array}{l}
\text { from the Taylor series } \\
\text { expansion of exp }\left(x^{41} z\right)
\end{array}
\end{aligned}
$$

The RBF kernel illustrated

Figures from openclassroom.stanford.edu (Andrew Ng)

What makes a valid kernel?

- $k(x, z)$ is a valid kernel if there is some ϕ such that

$$
k(\boldsymbol{x}, \boldsymbol{z})=\phi(\boldsymbol{x}) \cdot \phi(\boldsymbol{z})
$$

- this holds for a symmetric function $k(x, z)$ if and only if the kernel matrix K is positive semidefinite for any training set (Mercer's theorem)
definition of positive semidefinite (p.s.d): $\forall \boldsymbol{v}: \boldsymbol{v}^{\top} \boldsymbol{K} \boldsymbol{v} \geq \boldsymbol{0}$

Support vector regression

- the SVM idea can also be applied in regression tasks
- an ε-insensitive error function specifies that a training instance is well explained if the model's prediction is within ε of $y^{(i)}$

Support vector regression

$$
\underset{w, b, \xi^{(1)} \ldots \xi^{(m)}, \hat{\xi}^{(1)} \ldots \hat{\xi}^{(m)}}{\operatorname{minimize}} \quad \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+C \sum_{i=1}^{m}\left(\xi^{(i)}+\hat{\xi}^{(i)}\right)
$$

subject to constraints: $\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}+b\right)-y^{(i)} \leq \varepsilon+\xi^{(i)}$

$$
\begin{aligned}
& y^{(i)}-\left(\boldsymbol{w}^{\top} \boldsymbol{x}^{(i)}+b\right) \leq \varepsilon+\hat{\xi}^{(i)} \\
& \xi^{(i)}, \hat{\xi}^{(i)} \geq 0
\end{aligned}
$$

for $i=1, \ldots, m$
slack variables allow predictions for some training instances to be off by more than ε

Learning theory justification for maximizing the margin

Vapnik showed there is a connection between the margin and VC dimension

$$
V C \leq \frac{4 R^{2}}{\operatorname{margin}_{D}(h)^{2}} \longleftarrow \text { constant dependent on training data }
$$

thus to minimize the VC dimension (and to improve the error bound) \rightarrow maximize the margin

The power of kernel functions

- kernels can be designed and used to represent complex data types such as
- strings
- trees
- graphs
- etc.
- let's consider a specific example

The protein classification task

Given: amino-acid sequence of a protein Do: predict the family to which it belongs

The k-spectrum feature map

- we can represent sequences by counts of all of their k-mers

$$
\begin{aligned}
& \boldsymbol{x}=\mathrm{AK} Q \mathrm{DYYYYEI} \\
& \text { I } k=3
\end{aligned}
$$

- the dimension of $\phi(x)=|A|^{k}$ where $|A|$ is the size of the alphabet
- using 6 -mers for protein sequences, $|20|^{6}=64$ million
- almost all of the elements in $\phi(x)$ are 0 since a sequence of length l has at most $l-k+1 k$-mers

The k-spectrum kernel

- consider the k-spectrum kernel applied to x and z with $k=3$

$$
\begin{aligned}
& x=A K Q D Y Y Y Y E I \\
& z=A K Q I A K Q Y E I
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{\phi}(\boldsymbol{x}) \cdot \boldsymbol{\phi}(z)=2+1=3
\end{aligned}
$$

(k, m)-mismatch feature map

- closely related protein sequences may have few exact matches, but many near matches
- the (k, m)-mismatch feature map uses the k-spectrum representation, but allows up to m mismatches

$$
\begin{aligned}
& \boldsymbol{x}=\mathrm{AKQ} \\
& \text { そ } k=3, m=1
\end{aligned}
$$

Using a trie to represent 3-mers

- example: representing all 3-mers of the sequence QAAKKQAKKY

Computing the kernels efficiently with tries [Leslie et al., NIPS 2002]

k-spectrum kernel

- for each sequence
- build a trie representing its k-mers
- compute kernel $\phi(x) \cdot \phi(z)$ by traversing trie for x using k-mers from z
- update kernel function when reaching a leaf
(k, m)-mismatch kernel
- for each sequence
- build a trie representing its k-mers and also k-mers with at most m mismatches
- compute kernel $\phi(x) \cdot \phi(z)$ by traversing trie for x using k-mers from z
- update kernel function when reaching a leaf
scales linearly with sequence length: $O\left(k^{m+1}|A|^{m}(|x|+|z|)\right)$

Kernel algebra

- given a valid kernel, we can make new valid kernels using a variety of operators

kernel composition

$k(\boldsymbol{x}, \boldsymbol{v})=k_{a}(\boldsymbol{x}, \boldsymbol{v})+k_{b}(\boldsymbol{x}, \boldsymbol{v})$
$k(\boldsymbol{x}, \boldsymbol{v})=\gamma k_{a}(\boldsymbol{x}, \boldsymbol{v}), \gamma>0$
$k(\boldsymbol{x}, \boldsymbol{v})=k_{a}(\boldsymbol{x}, \boldsymbol{v}) k_{b}(\boldsymbol{x}, \boldsymbol{v})$
$k(\boldsymbol{x}, \boldsymbol{v})=\boldsymbol{x}^{\top} A \boldsymbol{v}, \quad A$ is p.s.d.
$k(\boldsymbol{x}, \boldsymbol{v})=f(\boldsymbol{x}) f(\boldsymbol{v}) k_{a}(\boldsymbol{x}, \boldsymbol{v})$
mapping composition
$\phi(\boldsymbol{x})=\left(\phi_{a}(\boldsymbol{x}), \phi_{b}(\boldsymbol{x})\right)$
$\phi(\boldsymbol{x})=\sqrt{\gamma} \phi_{a}(\boldsymbol{x})$
$\phi_{l}(\boldsymbol{x})=\phi_{a i}(\boldsymbol{x}) \phi_{b j}(\boldsymbol{x})$
$\phi(\boldsymbol{x})=L^{\top} \boldsymbol{x}$, where $A=L L^{\top}$
$\phi(\boldsymbol{x})=f(\boldsymbol{x}) \phi_{a}(\boldsymbol{x})$

Comments on SVMs

- we can find solutions that are globally optimal (maximize the margin)
- because the learning task is framed as a convex optimization problem
- no local minima, in contrast to multi-layer neural nets
- there are two formulations of the optimization: primal and dual
- dual represents classifier decision in terms of support vectors
- dual enables the use of kernel functions
- we can use a wide range of optimization methods to learn SVM
- standard quadratic programming solvers
- SMO [Platt, 1999]
- linear programming solvers for some formulations
- etc.

Comments on SVMs

- kernels provide a powerful way to
- allow nonlinear decision boundaries
- represent/compare complex objects such as strings and trees
- incorporate domain knowledge into the learning task
- using the kernel trick, we can implicitly use high-dimensional mappings without explicitly computing them
- one SVM can represent only a binary classification task; multi-class problems handled using multiple SVMs and some encoding
- one class vs. rest
- ECOC
- etc.
- empirically, SVMs have shown state-of-the art accuracy for many tasks
- the kernel idea can be extended to other tasks (anomaly detection, regression, etc.)

