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Goals for the lecture

you should understand the following concepts
« the margin
» slack variables
* the linear support vector machine
* nonlinear SVMs
« the kernel trick
« the primal and dual formulations of SVM learning
e support vectors
* the kernel matrix
« valid kernels
« polynomial kernel
» (Gausian kernel
« string kernels
« support vector regression



Algorithm You Should Know

« SVM as constrained optimization
— Fit training data and maximize margin
— Primal and dual formulations
— Kernel trick
— Slack variables to allow imperfect fit
— For now, assuming optimizer is black box

* Next lecture will look inside black box: sequential
minimal optimization (SMO)



Burr Settles, UW CS PhD



Four key SVM ideas

Maximize the margin
don’t choose just any separating hyperplane

Penalize misclassified examples
use soft constraints and slack variables

Use optimization methods to find model
linear programming
quadratic programming

Use kernels to represent nonlinear functions and handle {? ,’,‘ N
complex instances (sequences, trees, graphs, etc.) ‘(;‘




Some key vector concepts

the dot product between two vectors w and x is defined as:

Wex = wx = Ewl.xl.
[

for example
1 [ 4 |
1 =2 | =M@+ C)(-2)+(=5)(-1)=3
-5 -1

the 2-norm (Euclidean length) of a vector x is defined as:

Il = [

l

X.

2
|




Linear separator learning revisited

suppose we encode our classes as {-1,+1} and consider a linear classifier

-

1 1f X. b>0
o) 1 (wa)+ g

—1 otherwise

L

an instance {x, y) will be classified
correctly if

y(wa +b)>0




Large margin classification

« Given a training set that is linearly separable, there are infinitely many
hyperplanes that could separate the positive/negative instances.

* Which one should we choose?
* In SVM learning, we find the hyperplane that maximizes the margin.

1.0

| Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010




Large margin classification

» suppose we learn a hyperplane A given a training set D

* let x, denote the closest instance to the hyperplane among positive
instances, and similarly for x. and negative instances

« the margin is given by

1

marging (h) = EWT(x+ — x_) _ 1

l,

w

length 1 vector in
same direction as w
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The hard-margin SVM

 given a training set D = {{xM, y) ... {xm ym})}
« we can frame the goal of maximizing the margin as a constrained

optimization problem
minimize 1
/ w,b 2
adjust these
parameters

Iwl]

\

to minimize this

T

subject to constraints: y“(w'x” +b)=1

fori=1,....m

T~

correctly classify x®
with room to spare

« and use standard algorithms to find an optimal solution to this

problem

19




The soft-margin SVM

[Cortes & Vapnik, Machine Learning 1995]

 if the training instances are not linearly separable, the
previous formulation will fail

* we can adjust our approach by using slack variables
(denoted by &) to tolerate errors

minimize 1 5 meoo
o=l w +CE§(’)
w,b,§(1)...§( ) 2|| ||2 L

subject to constraints: y“(w'x"” +b)=1-EY

’g‘(i)ZO
fori=1,....m

* ( determines the relative importance of maximizing margin vs.
minimizing slack

20



1.0

The effect of C in a soft-margin SVM

C=100

.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010
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Nonlinear classifiers
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Nonlinear classifiers
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Nonlinear classifiers
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Nonlinear classifiers
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Nonlinear classifiers
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Nonlinear classifiers
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Nonlinear classifiers
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Nonlinear classifiers

What if a linear separator is not an appropriate decision
boundary for a given task?

For any (consistent) data set, there exists a mapping ¢ to a
higher-dimensional space such that the data is linearly separable

D(x) = (9,(x), ,(x), ..., §,(x))
Example: mapping to quadratic space

X = <x1, x2> suppose x is represented by 2 features

¢(x)=(x12, \/lexz, X3, x/le, ﬁxz, 1)

now try to find a linear separator in this space

29



Nonlinear classifiers

for the linear case, our discriminant function was given by

h(x) = 1 if w-J.c+b>O
—1 otherwise

for the nonlinear case, it can be expressed as

1 if w- b>0
h(x) = if w-o(x)+b>
—1 otherwise

where w is a higher dimensional vector

30



SVMs with polynomial kernels

10 linear kernc?l polynomial deg'ree 2 p
-
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Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010

olynomial degree 5
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The kernel trick

explicitly computing this nonlinear mapping does not scale well

a dot product between two higher-dimensional mappings can
sometimes be implemented by a kernel function

example: quadratic kernel
k(x,2)= (x Z+ 1)2
= (xlzl +X,2, + 1)2
= X720 +2X,X,2,2, + X,25 +2X,7, +2%,2, + 1
= (xlz, x/ixlxz, x5, \/le, \/Exz, 1)-
(zf, \/Ezlzz, z2, \/Ezl, \/522, 1)
= ¢(x)-9(z)

32



The kernel trick

thus we can use a kernel to compute the dot product without
explicitly mapping the instances to a higher-dimensional space

k(x,2)=(x-z+1)" = p(x) ¢(2)

But why is the kernel trick helpful?

33



Using the kernel trick

given a training set D = {{x®, y®) .. {xm ym)y

suppose the weight vector can be represented as a linear
combination of the training instances

m .
W = Eaix(’)
i=1

then we can represent a linear SVM as

m
E axVex+b
i=1

and a nonlinear SVM as

m

aiqb(x(i))-¢(x)+b

i

-\ oak(x”.x)+b
> ak(x".x)

i=1

34



Can we represent a weight vector as a
linear combination of training instances?

consider perceptron learning, where each weight can be represented as
E a, x(’)
proof: each weight update has the form w . (t) w. (t 1)+n5(1)y<l) (i)

50 = { 1 if x' misclassified in epoch ¢

0 otherwise

E ﬁ né(oy(z) (i)

i=1

i ( Ené(l) (Z)) (i)

i=1

m
(1)
W= 2 -

i=1



The primal and dual formulations of
the hard-margin SVM

i minimize 1
primal o _H W ||

subject to constraints: y“(w'x"” +b) =1

fori=1,....m

dual | Maximize ia %iia] kymy(k)( <J).x(k))

&, =1 k=1

subject to constraints: a;=0 fori=1,..., m

O )
;aiy 0




The dual formulation with a
kernel (hard margin version)

primal

dual

minimize l” " ||
w.b

subject to constraints:: y(i)(qub(x(i) ) +b)=1

fori=1,....m

maximize ia %iia] ky(“y(k)k( 0 <k>)
=1

m =1 J=1

subject to constraints: a;=0 fori=1,..., m

O )
;(xiy 0




Support vectors

the final solution is a sparse linear combination of the training instances

those instances having o, > 0 are called support vectors — they lie on
the margin boundary

the solution wouldn’t change if all the instances with a, =0 were deleted

1.0

| support vectors

38
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The kernel matrix

the kernel matrix (a.k.a. Gram matrix) represents pairwise
similarities for instances in the training set

k(x(l) x(l)) k(x(l) ,x(2)) . k(x(l) ,x(m))
( (2) (1))
( (m) (1)) k(x(m) x(m))

it represents the information about the training set that is
provided as input to the optimization process

39



Some common kernels

* polynomial of degree d

k(x,z)= (x ’ z)d

« polynomial of degree up to d

k(x,z)= (x-z + l)d

 radial basis function (RBF) (a.k.a. Gaussian)

k(x,z2)= eXp(—V [~ 7] |2)

40



The RBF kernel

« the feature mapping ¢ for the RBF kernel is infinite dimensional!

« recall that k(x,2) = d(x) * P (2)

1 1
k(x,z) = exp(—EHx — z||2) for y=5

1., p |
- oxp| -3/l | exp( -l | exp(x-2)

n

|
\

= exp(—%Htz) exp(—%Hsz) (i <x’j)

n=0

from the Taylor series
expansion of exp(x 2
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The RBF kernel illustrated

Figures from openclassroom.stanford.edu (Andrew Ng)
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What makes a valid kernel?

k(x, z) is a valid kernel if there is some ¢ such that

k(x,2) = p(x) ¢(z)

this holds for a symmetric function k(x, z) if and only if the
kernel matrix K is positive semidefinite for any training set
(Mercer’s theorem)

definition of positive semidefinite (p.s.d): Vv :VTKV = ()

43



Support vector regression

« the SVM idea can also be applied in regression tasks

* an e-insensitive error function specifies that a training instance
is well explained if the model’s prediction is within & of y®

A

( T (’)+b) e

44




Support vector regression

minimize

1 s B A
w,b,fg‘(”...g(m),é(”,,,é“”) EHWHQ +C;(§()+§())

subject to constraints:: (wT 4 b) )< e+ EV
Y - (wa(’) + b) <+ 5(”
g“'),é(” -

fori=1,..., m

slack variables allow predictions
for some training instances to be
off by more than ¢

45



Learning theory justification for
maximizing the margin

2 4
VC(logV’Z + 1) + logg
errory (h) < error, (h) + “\

/ 1 "
error on true training set VC-dimension
distribution error of hypothesis class

Vapnik showed there is a connection between the margin and VC dimension

4R*> <— constant dependent on training data

VC < . >
marging (h)

thus to minimize the VC dimension (and to improve the error bound) =
maximize the margin
46



The power of kernel functions

» Kkernels can be designed and used to represent complex data
types such as

 strings
* trees

e graphs
* etc.
» let’s consider a specific example




The protein classification task

Given: amino-acid sequence of a protein
Do: predict the family to which it belongs

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH

scop Root
”’/"_’-’-’N
Q B o/ o+p Class
Rossmann fold Flavodoxin-like o/p barrel Fold

—— O\

TIM Trp biosynthesis  Glycosyltransferase RuBisCo (C) Superfamily

o~
B-Galactosidase (3) B-Glucanase «-Amylase (N) p-Amylase  Family

Acid a-amylase Taka-amylase  Cyclodextrin glycosyltransferase Domain
2aaa 6taa  2taa ledg lcgt lcgu Ref / PDB
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The k-spectrum feature map

we can represent sequences by counts of all of their k-mers

X = AKQDYYYYEI

J =3

éx)=(0 , 0, . ,1, . ,1, ., 2)
AAA AAC .. AKQ .. DYy o YYY

the dimension of ¢(x) = |AIF where |Al is the size of the alphabet
» using 6-mers for protein sequences, 1201°= 64 million

« almost all of the elements in ¢(x) are 0 since a sequence of
length [ has at most /-k+1 k-mers

49



The k-spectrum kernel

consider the k-spectrum kernel applied to x and z with k=3

X = AKODYYYYET

7 = AKQIAKQYETI

dx)=(0 , .. ,1,.,1, . ,0)
AAA .. AKO .. YEI .. YYY
dz=(0, . ,2,.,1, . ,0)
AAA .. AKO .. YEI . YYY

b(x)* p2)=2+1=3

50



(k, m)-mismatch feature map

» closely related protein sequences may have few exact matches, but
many near matches

» the (k, m)-mismatch feature map uses the k-spectrum representation,
but allows up to m mismatches

X = AKQ
l k=3, m=1
$¢(x=(o0, .. , 1, .. ,1, . ,1, , 0 )

AAA AAQ .. AKQ .. DKQ YYY

51



Using a trie to represent 3-mers

« example: representing all 3-mers of the sequence QAAKKQAKKY

52



Computing the kernels efficiently
With tries [Lesiie et al., NIPS 2002]

k-spectrum kernel

» for each sequence
— build a trie representing its k-mers

« compute kernel ¢(x) * ¢(z) by traversing trie for x using k-mers from z
— update kernel function when reaching a leaf

(k, m)-mismatch kernel
» for each sequence

* Dbuild a trie representing its k-mers and also k-mers with at most m
mismatches

« compute kernel ¢(x) * ¢(z) by traversing trie for x using k-mers from z
— update kernel function when reaching a leaf

scales linearly with sequence length: O(km+1 |A|m (|x| + |z|)) 53



Kernel algebra

« given a valid kernel, we can make new valid kernels using a variety
of operators

kernel composition mapping composition
k(x,v) =k, (x,0) + k,(x,v) p(x) = (9,(x), ¢,(x))
k(x,v)=7 k,(x,v), 7 >0 p(x) =y ¢,(x)

k(x,v) =k (x,v)k,(x,v) ¢,(x) =9, (x)P,;(x)
k(x,v)=x"Av, Aisp.s.d. ¢(x)=L'x, where A= LL'

k(x,v)= f(x)f(v)k, (x,v) p(x) = f(x),(x)

94



Comments on SVMs

« we can find solutions that are globally optimal (maximize the margin)

» because the learning task is framed as a convex optimization
problem

* no local minima, in contrast to multi-layer neural nets

 there are two formulations of the optimization: primal and dual
» dual represents classifier decision in terms of support vectors
» dual enables the use of kernel functions

* we can use a wide range of optimization methods to learn SVM
« standard quadratic programming solvers
« SMO [Platt, 1999]
* linear programming solvers for some formulations

e etc.
55



Comments on SVMs

kernels provide a powerful way to
 allow nonlinear decision boundaries
» represent/compare complex objects such as strings and trees
 incorporate domain knowledge into the learning task

using the kernel trick, we can implicitly use high-dimensional mappings
without explicitly computing them

one SVM can represent only a binary classification task; multi-class
problems handled using multiple SVMs and some encoding

* one class vs. rest
- ECOC
* etc.
empirically, SVMs have shown state-of-the art accuracy for many tasks

the kernel idea can be extended to other tasks (anomaly detection,
regression, etc.) 56



