
Support Vector Machines

www.cs.wisc.edu/~dpage

1

Goals for the lecture
you should understand the following concepts

•  the margin
•  slack variables
•  the linear support vector machine
•  nonlinear SVMs
•  the kernel trick
•  the primal and dual formulations of SVM learning
•  support vectors
•  the kernel matrix
•  valid kernels
•  polynomial kernel
•  Gausian kernel
•  string kernels
•  support vector regression

2

Algorithm You Should Know

•  SVM as constrained optimization
–  Fit training data and maximize margin
–  Primal and dual formulations
–  Kernel trick
–  Slack variables to allow imperfect fit
–  For now, assuming optimizer is black box

•  Next lecture will look inside black box: sequential
minimal optimization (SMO)

3

Burr Settles, UW CS PhD
4

Four key SVM ideas
•  Maximize the margin

don’t choose just any separating hyperplane

•  Penalize misclassified examples
use soft constraints and slack variables

•  Use optimization methods to find model

linear programming
quadratic programming

•  Use kernels to represent nonlinear functions and handle
complex instances (sequences, trees, graphs, etc.)

5

Some key vector concepts

w ⋅x = wTx = wixi

i
∑

the dot product between two vectors w and x is defined as:

1
3
−5

"

#

$
$
$

%

&

'
'
'

⋅
4
−2
−1

"

#

$
$
$

%

&

'
'
'

= (1)(4)+ (3)(−2)+ (−5)(−1) = 3

for example

x 2 = xi
2

i
∑

the 2-norm (Euclidean length) of a vector x is defined as:

6

Linear separator learning revisited

h(x) = 1 if wi
i=1

n

∑ xi
"

#$
%

&'
+ b > 0

−1 otherwise

)

*
+

,
+

 y(w
Tx + b) > 0

an instance 〈x, y〉 will be classified
correctly if

suppose we encode our classes as {-1, +1} and consider a linear classifier

x1

x2

7

Large margin classification
•  Given a training set that is linearly separable, there are infinitely many

hyperplanes that could separate the positive/negative instances.
•  Which one should we choose?

•  In SVM learning, we find the hyperplane that maximizes the margin.

Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010

8

Large margin classification
•  suppose we learn a hyperplane h given a training set D
•  let x+ denote the closest instance to the hyperplane among positive

instances, and similarly for x- and negative instances
•  the margin is given by

marginD (h) =

1
2
ŵT x+ − x−() = 1

w 2

x+

x-

length 1 vector in
same direction as w	

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

 3

 4

 5

 6

 7

 8

 9

 1
0

11

 1

2

 1
3

 1

4

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-1
4

-1

3
 -

12

 -1
1

-1

0

-9

-8

 -

7

 -
6

 -5

-4

 -3

-2

 -
1

O
X1

X2

X3 irrelevant, X2 twice as important as X1

Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

 3

 4

 5

 6

 7

 8

 9

 1
0

11

 1

2

 1
3

 1

4

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-1
4

-1

3
 -

12

 -1
1

-1

0

-9

-8

 -

7

 -
6

 -5

-4

 -3

-2

 -
1

O
X1

X2

X3 irrelevant, X2 twice as important as X1

Example

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

 3

 4

 5

 6

 7

 8

 9

 1
0

11

 1

2

 1
3

 1

4

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-1
4

-1

3
 -

12

 -1
1

-1

0

-9

-8

 -

7

 -
6

 -5

-4

 -3

-2

 -
1

O
X1

X2

2X2 + X1 – 2 ≥ 0

X3 irrelevant, X2 twice as important as X1

Separator is perpendicular to weight vector

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

 3

 4

 5

 6

 7

 8

 9

 1
0

11

 1

2

 1
3

 1

4

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-1
4

-1

3
 -

12

 -1
1

-1

0

-9

-8

 -

7

 -
6

 -5

-4

 -3

-2

 -
1

O
X1

X2

2X2 + X1 – 6 ≥ 0

X3 irrelevant, X2 twice as important as X1

Changing b moves (shifts) separator

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

 3

 4

 5

 6

 7

 8

 9

 1
0

11

 1

2

 1
3

 1

4

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-1
4

-1

3
 -

12

 -1
1

-1

0

-9

-8

 -

7

 -
6

 -5

-4

 -3

-2

 -
1

O
X1

X2

Assume labeled data as above

Size of w, b sensitive to data scaling

+

+
-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

 3

 4

 5

 6

 7

 8

 9

 1
0

11

 1

2

 1
3

 1

4

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-1
4

-1

3
 -

12

 -1
1

-1

0

-9

-8

 -

7

 -
6

 -5

-4

 -3

-2

 -
1

O
X1

X2

2X2 + X1 – 4 ≥ 0

X3 irrelevant, X2 twice as important as X1

2X2 + X1 – 2 ≥ 0

Margin is width between our earlier lines

2X2 + X1 – 6 ≥ 0

+

+
-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

 3

 4

 5

 6

 7

 8

 9

 1
0

11

 1

2

 1
3

 1

4

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-1
4

-1

3
 -

12

 -1
1

-1

0

-9

-8

 -

7

 -
6

 -5

-4

 -3

-2

 -
1

O
X1

X2

Let e+ and e-, respectively, be the points where
w intersects the hyperplanes:

Specifically margin here is ||e+ - e-||2

+

+
-

e-

e+

2X2 + X1 – 2 ≥ 0
2X2 + X1 – 6 ≥ 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

 3

 4

 5

 6

 7

 8

 9

 1
0

11

 1

2

 1
3

 1

4

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-1
4

-1

3
 -

12

 -1
1

-1

0

-9

-8

 -

7

 -
6

 -5

-4

 -3

-2

 -
1

O
X1

X2

2X2 + X1 – 8 ≥ 0

But can double margin artificially

+

+

-

2X2 + X1 – 4 = 0
2X2 + X1 – 12 = 0

e+

e-

OR… 4X2 + 2X1 – 4 ≥ 0

4X2 + 2X1 – 2 = 0
4X2 + 2X1 – 6 = 0

Keep w fixed, double b Double w, keep b fixed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

2

 3

 4

 5

 6

 7

 8

 9

 1
0

11

 1

2

 1
3

 1

4

-19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

-1
4

-1

3
 -

12

 -1
1

-1

0

-9

-8

 -

7

 -
6

 -5

-4

 -3

-2

 -
1

O
X1

X2

But normalized margin remains unchanged:
||e+ – e-||2 / ||w||2

Can keep ||w||2 fixed and try to maximize ||e+ – e-||2

Or fix ||e+ – e-||2 (e.g., to 2) and minimize ||w||2

Should normalize margin with norm of w

The hard-margin SVM

subject to constraints : y(i)(wTx(i) + b) ≥1
for i = 1,…, m

minimize
w,b

1
2

 w 2
2

•  given a training set D = {〈x(1), y(1)〉, …, 〈x(m), y(m)〉}
•  we can frame the goal of maximizing the margin as a constrained

optimization problem

adjust these
parameters

to minimize this

•  and use standard algorithms to find an optimal solution to this
problem

correctly classify x(i)
with room to spare

19

The soft-margin SVM
[Cortes & Vapnik, Machine Learning 1995]

•  if the training instances are not linearly separable, the
previous formulation will fail

•  we can adjust our approach by using slack variables
(denoted by ξ) to tolerate errors

subject to constraints : y(i)(wTx(i) + b) ≥1−ξ (i)

 ξ (i) ≥ 0
for i = 1,…, m

minimize
w,b,ξ (1)…ξ (m)

1
2

 w 2
2
+C ξ (i)

i=1

m

∑

•  C determines the relative importance of maximizing margin vs.
minimizing slack

20

The effect of C in a soft-margin SVM

Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010

21

Nonlinear classifiers

22

-1

+1

x1

x2

Nonlinear classifiers

23

+1

-1
x2

x1

x1x2

Nonlinear classifiers

24

+1

-1
x2

x1

x1x2

Nonlinear classifiers

25

+1

-1
y

x1

xy

Nonlinear classifiers

26

+1

-1
y

x1

xy

Nonlinear classifiers

27

+1

-1
y

x1

xy

Nonlinear classifiers

28

-1

+1

x1

x2

Nonlinear classifiers

•  What if a linear separator is not an appropriate decision
boundary for a given task?

•  For any (consistent) data set, there exists a mapping ϕ to a
higher-dimensional space such that the data is linearly separable

 φ(x) = φ1(x), φ2 (x), …, φk (x)()
•  Example: mapping to quadratic space

x = x1, x2

φ(x) = x1
2, 2x11x2, x2

2, 2x11, 2x2, 1()
suppose x is represented by 2 features

•  now try to find a linear separator in this space

29

Nonlinear classifiers

•  for the linear case, our discriminant function was given by

•  for the nonlinear case, it can be expressed as

where w is a higher dimensional vector

h(x) = 1 if w ⋅x + b > 0
−1 otherwise

#
$
%

h(x) = 1 if w ⋅φ(x)+ b > 0
−1 otherwise

$
%
&

'&

30

SVMs with polynomial kernels

Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010

31

The kernel trick
•  explicitly computing this nonlinear mapping does not scale well
•  a dot product between two higher-dimensional mappings can

sometimes be implemented by a kernel function
•  example: quadratic kernel

k(x, z) = x ⋅ z +1()2

 = x1z1 + x2z2 +1()2

 = x1
2z1

2 + 2x1x2z1z2 + x2
2z2

2 + 2x1z1 + 2x2z2 +1

 = x1
2, 2x1x2, x2

2, 2x1, 2x2, 1() i
 z1

2, 2z1z2, z2
2, 2z1, 2z2, 1()

 = φ(x) ⋅φ(z)
32

The kernel trick

•  thus we can use a kernel to compute the dot product without
explicitly mapping the instances to a higher-dimensional space

k(x, z) = x ⋅ z +1()2 = φ(x) ⋅φ(z)

But why is the kernel trick helpful?

33

Using the kernel trick
•  given a training set D = {〈x(1), y(1)〉, …, 〈x(m), y(m)〉}
•  suppose the weight vector can be represented as a linear

combination of the training instances

w = α i
i=1

m

∑ x(i)

α i

i=1

m

∑ x(i) i x + b

•  then we can represent a linear SVM as

 α i
i=1

m

∑ φ x(i)() iφ x() + b

 = α i
i=1

m

∑ k x(i),x() + b

•  and a nonlinear SVM as

34

Can we represent a weight vector as a
linear combination of training instances?

•  consider perceptron learning, where each weight can be represented as

wj = α i
i=1

m

∑ x j
(i)

•  proof: each weight update has the form wj (t) = wj (t −1)+ηδ t
(i)y(i)x j

(i)

δ t
(i) =

1 if x(i) misclassified in epoch t
0 otherwise

"
#
$

%$
wj = ηδ t

(i)y(i)x j
(i)

i=1

m

∑
t
∑

wj = ηδ t
(i)y(i)

t
∑
$

%&
'

()i=1

m

∑ x j
(i)

wj = α i
i=1

m

∑ x j
(i)

35

The primal and dual formulations of
the hard-margin SVM

subject to constraints : y(i)(wTx(i) + b) ≥1
for i = 1,…, m

minimize
w,b

1
2

 w 2
2primal

maximize
α1,…,αm

α i
i=1

m

∑ −
1
2

α jα k y
(j)y(k) x(j) i x(k)()

k=1

m

∑
j=1

m

∑

subject to constraints : α i ≥ 0 for i = 1,…, m

 α i y
(i)

i=1

m

∑ = 0

dual

36

The dual formulation with a
kernel (hard margin version)

subject to constraints : y(i)(wTφ x(i)() + b) ≥1

for i = 1,…, m

minimize
w,b

1
2

 w 2
2primal

maximize
α1,…,αm

α i
i=1

m

∑ −
1
2

α jα k y
(j)y(k)k x(j), x(k)()

k=1

m

∑
j=1

m

∑

subject to constraints : α i ≥ 0 for i = 1,…, m

 α i y
(i)

i=1

m

∑ = 0

dual

37

Support vectors
•  the final solution is a sparse linear combination of the training instances
•  those instances having αi > 0 are called support vectors – they lie on

the margin boundary
•  the solution wouldn’t change if all the instances with αi = 0 were deleted

support vectors

38

The kernel matrix

•  the kernel matrix (a.k.a. Gram matrix) represents pairwise
similarities for instances in the training set

k(x(1),x(1)) k(x(1),x(2)) k(x(1),x(m))
k(x(2),x(1))

k(x(m),x(1)) k(x(m),x(m))

!

"

#
#
#
#
#

$

%

&
&
&
&
&

•  it represents the information about the training set that is
provided as input to the optimization process

39

Some common kernels

•  polynomial of degree d	

•  radial basis function (RBF) (a.k.a. Gaussian)

k(x, z) = x ⋅ z +1()d

k(x, z) = x ⋅ z()d

k(x, z) = exp −γ x − z 2()

•  polynomial of degree up to d

40

The RBF kernel
•  the feature mapping ϕ for the RBF kernel is infinite dimensional!

•  recall that k(x, z) = ϕ(x) � ϕ (z)	

k(x, z) = exp −
1
2
x − z 2"

#$
%
&'

 for γ = 1
2

= exp −
1
2
x 2"

#$
%
&'
exp −

1
2
z 2"

#$
%
&'
exp x ⋅ z()

= exp −
1
2
x 2"

#$
%
&'
exp −

1
2
z 2"

#$
%
&'

x ⋅ z()n

n!n=0

∞

∑
"

#
$

%

&
'

from the Taylor series
expansion of exp(x � z) 41

The RBF kernel illustrated

γ = −10 γ = −1000γ = −100

Figures from openclassroom.stanford.edu (Andrew Ng)

42

What makes a valid kernel?

•  k(x, z) is a valid kernel if there is some ϕ such that

k(x, z) = φ(x) ⋅φ(z)

•  this holds for a symmetric function k(x, z) if and only if the
kernel matrix K is positive semidefinite for any training set
(Mercer’s theorem)

∀v :vTKv ≥ 0definition of positive semidefinite (p.s.d):

43

Support vector regression

•  the SVM idea can also be applied in regression tasks
•  an ε-insensitive error function specifies that a training instance

is well explained if the model’s prediction is within ε of y(i)

y(i) − wTx(i) + b() = ε

wTx(i) + b()− y(i) = ε

44

Support vector regression

subject to constraints : wTx(i) + b()− y(i) ≤ ε + ξ (i)

 y(i) − wTx(i) + b() ≤ ε + ξ̂ (i)

 ξ (i),ξ̂ (i) ≥ 0
for i = 1,…, m

minimize
w,b,ξ (1)…ξ (m),ξ̂ (1)…ξ̂ (m) 1

2
 w 2

2
+C ξ (i) + ξ̂ (i)()

i=1

m

∑

slack variables allow predictions
for some training instances to be
off by more than ε

45

Learning theory justification for
maximizing the margin

errorD (h) ≤ errorD(h)+

VC log 2m
VC

+1"
#$

%
&'
+ log 4

δ
m

error on true
distribution

training set
error

VC-dimension
of hypothesis class

thus to minimize the VC dimension (and to improve the error bound) è
maximize the margin

VC ≤

4R2

marginD (h)
2

Vapnik showed there is a connection between the margin and VC dimension

constant dependent on training data

46

The power of kernel functions

•  kernels can be designed and used to represent complex data
types such as
•  strings
•  trees
•  graphs
•  etc.

•  let’s consider a specific example

47

The protein classification task

Given: amino-acid sequence of a protein
Do: predict the family to which it belongs

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH

48

The k-spectrum feature map

•  we can represent sequences by counts of all of their k-mers

x = AKQDYYYYEI

ϕ(x) =(0 , 0 , … , 1 , … , 1 , … , 2)
 AAA AAC … AKQ … DYY … YYY

•  the dimension of ϕ(x) = |A|k where |A| is the size of the alphabet
•  using 6-mers for protein sequences, |20|6 = 64 million
•  almost all of the elements in ϕ(x) are 0 since a sequence of

length l has at most l-k+1 k-mers

k = 3	

49

The k-spectrum kernel

•  consider the k-spectrum kernel applied to x and z with k = 3	

x = AKQDYYYYEI

ϕ(x) =(0 , … , 1 , … , 1 , … , 0)
 AAA … AKQ … YEI … YYY

z = AKQIAKQYEI

ϕ(x) � ϕ(z) = 2 + 1 = 3

ϕ(z) =(0 , … , 2 , … , 1 , … , 0)
 AAA … AKQ … YEI … YYY

50

(k, m)-mismatch feature map

•  closely related protein sequences may have few exact matches, but
many near matches

•  the (k, m)-mismatch feature map uses the k-spectrum representation,
but allows up to m mismatches

x = AKQ

ϕ(x) =(0, … , 1 , … , 1 , … , 1 , … , 0)
 AAA AAQ … AKQ … DKQ … YYY

k = 3, m = 1	

51

Using a trie to represent 3-mers
•  example: representing all 3-mers of the sequence QAAKKQAKKY

A K Q

2 1 1 1 1 1 1

A K K Q A

K K Q Y A A K

52

Computing the kernels efficiently
with tries [Leslie et al., NIPS 2002]

k-spectrum kernel
•  for each sequence

–  build a trie representing its k-mers
•  compute kernel ϕ(x) � ϕ(z) by traversing trie for x using k-mers from z	

–  update kernel function when reaching a leaf

(k, m)-mismatch kernel
•  for each sequence

•  build a trie representing its k-mers and also k-mers with at most m
mismatches

•  compute kernel ϕ(x) � ϕ(z) by traversing trie for x using k-mers from z	

–  update kernel function when reaching a leaf

O km+1 A m x + z()()scales linearly with sequence length: 53

Kernel algebra
•  given a valid kernel, we can make new valid kernels using a variety

of operators

φ(x) = φa (x), φb (x)()k(x,v) = ka (x,v)+ kb (x,v)

k(x,v) = γ ka (x,v), γ > 0 φ(x) = γ φa (x)

k(x,v) = ka (x,v)kb (x,v) φl (x) = φai (x)φbj (x)

k(x,v) = xTAv, A is p.s.d. φ(x) = LTx, where A = LLT

k(x,v) = f (x) f (v)ka (x,v) φ(x) = f (x)φa (x)

kernel composition mapping composition

54

Comments on SVMs

•  we can find solutions that are globally optimal (maximize the margin)
•  because the learning task is framed as a convex optimization

problem
•  no local minima, in contrast to multi-layer neural nets

•  there are two formulations of the optimization: primal and dual
•  dual represents classifier decision in terms of support vectors
•  dual enables the use of kernel functions

•  we can use a wide range of optimization methods to learn SVM
•  standard quadratic programming solvers
•  SMO [Platt, 1999]
•  linear programming solvers for some formulations
•  etc.

55

Comments on SVMs
•  kernels provide a powerful way to

•  allow nonlinear decision boundaries

•  represent/compare complex objects such as strings and trees

•  incorporate domain knowledge into the learning task

•  using the kernel trick, we can implicitly use high-dimensional mappings
without explicitly computing them

•  one SVM can represent only a binary classification task; multi-class
problems handled using multiple SVMs and some encoding

•  one class vs. rest

•  ECOC

•  etc.

•  empirically, SVMs have shown state-of-the art accuracy for many tasks

•  the kernel idea can be extended to other tasks (anomaly detection,
regression, etc.) 56

