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Goals for the lecture 
you should understand the following concepts 

•  the margin 
•  slack variables 
•  the linear support vector machine 
•  nonlinear SVMs 
•  the kernel trick 
•  the primal and dual formulations of SVM learning 
•  support vectors 
•  the kernel matrix 
•  valid kernels 
•  polynomial kernel 
•  Gausian kernel 
•  string kernels 
•  support vector regression 
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Algorithm You Should Know 

•  SVM as constrained optimization 
–  Fit training data and maximize margin 
–  Primal and dual formulations 
–  Kernel trick 
–  Slack variables to allow imperfect fit 
–  For now, assuming optimizer is black box 

•  Next lecture will look inside black box: sequential 
minimal optimization (SMO) 
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Burr Settles, UW CS PhD 
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Four key SVM ideas 
•  Maximize the margin 

don’t choose just any separating hyperplane 

•  Penalize misclassified examples 
use soft constraints and slack variables 

 
 
•  Use optimization methods to find model 

linear programming 
quadratic programming 

•  Use kernels to represent nonlinear functions and handle 
complex instances (sequences, trees, graphs, etc.) 
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Some key vector concepts 

 
w ⋅x  =  wTx  =  wixi

i
∑

the dot product between two vectors w and x is defined as: 
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the 2-norm (Euclidean length) of a vector x is defined as: 
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Linear separator learning revisited 

h(x) = 1  if  wi
i=1

n

∑ xi
"

#$
%

&'
+ b > 0

−1  otherwise             
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 y(w
Tx + b) > 0

an instance 〈x, y〉 will be classified 
correctly if  

suppose we encode our classes as {-1, +1} and consider a linear classifier 

x1

x2
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Large margin classification 
•  Given a training set that is linearly separable, there are infinitely many 

hyperplanes that could separate the positive/negative instances. 
•  Which one should we choose? 

•  In SVM learning, we find the hyperplane that maximizes the margin. 

Figure from Ben-Hur & Weston,  
Methods in Molecular Biology 2010 
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Large margin classification 
•  suppose we learn a hyperplane h given a training set D 
•  let x+ denote the closest instance to the hyperplane among positive 

instances, and similarly for x- and negative instances  
•  the margin is given by 

  
marginD (h) =

1
2
ŵT x+ − x−( ) = 1

w 2

x+ 

x- 

length 1 vector in 
same direction as w	
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2X2 + X1 – 2 ≥ 0 

X3 irrelevant, X2 twice as important as X1 

Separator is perpendicular to weight vector 
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2X2 + X1 – 6 ≥ 0 

X3 irrelevant, X2 twice as important as X1 

Changing b moves (shifts) separator 
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2X2 + X1 – 4 ≥ 0 

X3 irrelevant, X2 twice as important as X1 

2X2 + X1 – 2 ≥ 0 

Margin is width between our earlier lines 

2X2 + X1 – 6 ≥ 0 
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Let e+ and e-, respectively, be the points where 
w intersects the hyperplanes:  

Specifically margin here is ||e+ - e-||2 

+ 

+ 
- 

e- 

e+ 

2X2 + X1 – 2 ≥ 0 
2X2 + X1 – 6 ≥ 0 
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2X2 + X1 – 8 ≥ 0 

But can double margin artificially 

+ 
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2X2 + X1 – 4 = 0 
2X2 + X1 – 12 = 0 

e+ 

e- 

OR… 4X2 + 2X1 – 4 ≥ 0 

4X2 + 2X1 – 2 = 0 
4X2 + 2X1 – 6 = 0 

Keep w fixed, double b Double w, keep b fixed 
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But normalized margin remains unchanged: 
||e+ – e-||2 / ||w||2 
 
Can keep ||w||2 fixed and try to maximize ||e+ – e-||2 
 
Or fix ||e+ – e-||2 (e.g., to 2) and minimize ||w||2 
 
 

Should normalize margin with norm of w 



The hard-margin SVM 

 

subject to constraints :   y(i )(wTx(i ) + b) ≥1      
for  i = 1,…,  m

 

minimize
w,b

1
2

 w 2
2

•  given a training set D = {〈x(1), y(1)〉, …, 〈x(m), y(m)〉}   
•  we can frame the goal of maximizing the margin as a constrained 

optimization problem 

adjust these 
parameters 

to minimize this 

•  and use standard algorithms to find an optimal solution to this 
problem  

correctly classify x(i)  
with room to spare 
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The soft-margin SVM 
[Cortes & Vapnik, Machine Learning 1995] 

•  if the training instances are not linearly separable, the 
previous formulation will fail 

•  we can adjust our approach by using slack variables 
(denoted by ξ) to tolerate errors 

 

subject to constraints :   y(i )(wTx(i ) + b) ≥1−ξ (i )

                                        ξ (i ) ≥ 0      
for  i = 1,…,  m

  

minimize
w,b,ξ (1)…ξ (m )

1
2

 w 2
2
+C ξ (i )

i=1

m

∑

•  C determines the relative importance of maximizing margin vs. 
minimizing slack 
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The effect of C in a soft-margin SVM 

Figure from Ben-Hur & Weston,  
Methods in Molecular Biology 2010 
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Nonlinear classifiers 
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Nonlinear classifiers 
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Nonlinear classifiers 

24 

+1 

-1 
x2 

x1 

x1x2 



Nonlinear classifiers 
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Nonlinear classifiers 
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Nonlinear classifiers 
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Nonlinear classifiers 
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Nonlinear classifiers 

•  What if a linear separator is not an appropriate decision 
boundary for a given task? 

•  For any (consistent) data set, there exists a mapping ϕ to a 
higher-dimensional space such that the data is linearly separable 

 φ(x) = φ1(x),  φ2 (x),  …,  φk (x)( )
•  Example: mapping to quadratic space 

x = x1,  x2

φ(x) = x1
2,   2x11x2,   x2

2,   2x11,   2x2,   1( )
suppose x is represented by 2 features 

•  now try to find a linear separator in this space 
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Nonlinear classifiers 

•  for the linear case, our discriminant function was given by 

•  for the nonlinear case, it can be expressed as 

 
where w is a higher dimensional vector 

h(x) = 1  if  w ⋅x + b > 0
−1  otherwise             

 
#
$
%

h(x) = 1  if  w ⋅φ(x)+ b > 0
−1  otherwise             

 
$
%
&

'&
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SVMs with polynomial kernels 

Figure from Ben-Hur & Weston,  
Methods in Molecular Biology 2010 
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The kernel trick 
•  explicitly computing this nonlinear mapping does not scale well 
•  a dot product between two higher-dimensional mappings can 

sometimes be implemented by a kernel function 
•  example: quadratic kernel 

 

k(x, z) = x ⋅ z +1( )2

         = x1z1 + x2z2 +1( )2

         = x1
2z1

2 + 2x1x2z1z2 + x2
2z2

2 + 2x1z1 + 2x2z2 +1

         = x1
2,  2x1x2,  x2

2,  2x1,  2x2,  1( ) i
             z1

2,  2z1z2,  z2
2,  2z1,  2z2,  1( )

         = φ(x) ⋅φ(z)
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The kernel trick 

•  thus we can use a kernel to compute the dot product without 
explicitly mapping the instances to a higher-dimensional space 

k(x, z) = x ⋅ z +1( )2 = φ(x) ⋅φ(z)

But why is the kernel trick helpful? 
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Using the kernel trick 
•  given a training set D = {〈x(1), y(1)〉, …, 〈x(m), y(m)〉}  
•  suppose the weight vector can be represented as a linear 

combination of the training instances 

w = α i
i=1

m

∑ x(i )

 
α i

i=1

m

∑ x(i ) i x + b

•  then we can represent a linear SVM as 

 

    α i
i=1

m

∑ φ x(i )( ) iφ x( ) + b

 = α i
i=1

m

∑ k x(i ),x( ) + b

•  and a nonlinear SVM as 
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Can we represent a weight vector as a 
linear combination of training instances? 

•  consider perceptron learning, where each weight can be represented as 

wj = α i
i=1

m

∑ x j
(i )

•  proof: each weight update has the form wj (t) = wj (t −1)+ηδ t
(i )y(i )x j

(i )

δ t
(i ) =

1 if x(i )  misclassified in epoch t
0 otherwise                              

"
#
$

%$
wj = ηδ t

(i )y(i )x j
(i )

i=1

m

∑
t
∑

wj = ηδ t
(i )y(i )

t
∑
$

%&
'

()i=1

m

∑  x j
(i )

wj = α i
i=1

m

∑ x j
(i )
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The primal and dual formulations of 
the hard-margin SVM 

 

subject to constraints :   y(i )(wTx(i ) + b) ≥1      
for  i = 1,…,  m

 

minimize
w,b

1
2

 w 2
2primal 

  

maximize
α1,…,αm

α i
i=1

m

∑ −
1
2

α jα k y
( j )y(k ) x( j ) i x(k )( )

k=1

m

∑
j=1

m

∑

 

subject to constraints :   α i ≥ 0      for  i = 1,…,  m

                                        α i y
(i )

i=1

m

∑ = 0

dual 
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The dual formulation with a 
kernel (hard margin version) 

 

subject to constraints :   y(i )(wTφ x(i )( ) + b) ≥1      

for  i = 1,…,  m

 

minimize
w,b

1
2

 w 2
2primal 

  

maximize
α1,…,αm

α i
i=1

m

∑ −
1
2

α jα k y
( j )y(k )k x( j ),  x(k )( )

k=1

m

∑
j=1

m

∑

 

subject to constraints :   α i ≥ 0      for  i = 1,…,  m

                                        α i y
(i )

i=1

m

∑ = 0

dual 
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Support vectors 
•  the final solution is a sparse linear combination of the training instances 
•  those instances having αi > 0 are called support vectors – they lie on 

the margin boundary 
•  the solution wouldn’t change if all the instances with αi = 0 were deleted  

support vectors 
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The kernel matrix 

•  the kernel matrix (a.k.a. Gram matrix) represents pairwise 
similarities for instances in the training set 

 

k(x(1),x(1) ) k(x(1),x(2) )  k(x(1),x(m ) )
k(x(2),x(1) ) 


k(x(m ),x(1) ) k(x(m ),x(m ) )

!

"

#
#
#
#
#

$

%

&
&
&
&
&

•  it represents the information about the training set that is 
provided as input to the optimization process 
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Some  common kernels 

•  polynomial of degree d	


•  radial basis function (RBF)  (a.k.a. Gaussian)  

k(x, z) = x ⋅ z +1( )d

k(x, z) = x ⋅ z( )d

k(x, z) = exp −γ x − z 2( )

•  polynomial of degree up to d 
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The RBF kernel 
•  the feature mapping ϕ for the RBF kernel is infinite dimensional! 

•  recall that k(x, z) = ϕ(x) � ϕ (z)	


k(x, z) = exp −
1
2
x − z 2"

#$
%
&'

   for γ = 1
2

= exp −
1
2
x 2"

#$
%
&'
exp −

1
2
z 2"

#$
%
&'
exp x ⋅ z( )

= exp −
1
2
x 2"

#$
%
&'
exp −

1
2
z 2"

#$
%
&'

x ⋅ z( )n

n!n=0

∞

∑
"

#
$

%

&
'

from the Taylor series 
expansion of exp(x � z) 41 



The RBF kernel illustrated 

γ = −10 γ = −1000γ = −100

Figures from openclassroom.stanford.edu (Andrew Ng) 
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What makes a valid kernel? 

•  k(x, z) is a valid kernel if there is some ϕ such that 

k(x, z) = φ(x) ⋅φ(z)

•  this holds for a symmetric function k(x, z) if and only if the 
kernel matrix K is positive semidefinite for any training set 
(Mercer’s theorem) 

∀v :vTKv ≥ 0definition of positive semidefinite (p.s.d): 
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Support vector regression 

•  the SVM idea can also be applied in regression tasks 
•  an ε-insensitive error function specifies that a training instance 

is well explained if the model’s prediction is within ε of y(i)  

 
y(i ) − wTx(i ) + b( ) = ε

 
wTx(i ) + b( )− y(i ) = ε
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Support vector regression 

 

subject to constraints :   wTx(i ) + b( )− y(i ) ≤ ε + ξ (i )

                                        y(i ) − wTx(i ) + b( ) ≤ ε + ξ̂ (i )

                                        ξ (i ),ξ̂ (i ) ≥ 0      
for  i = 1,…,  m

  

minimize
w,b,ξ (1)…ξ (m ),ξ̂ (1)…ξ̂ (m )   1

2
 w 2

2
+C ξ (i ) + ξ̂ (i )( )

i=1

m

∑

slack variables allow predictions 
for some training instances to be 
off by more than ε  
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Learning theory justification for  
maximizing the margin 

  
errorD (h) ≤ errorD(h)+

VC log 2m
VC

+1"
#$

%
&'
+ log 4

δ
m

error on true 
distribution 

training set 
error 

VC-dimension 
of hypothesis class 

thus to minimize the VC dimension (and to improve the error bound) è 
maximize the margin 

 
VC ≤

4R2

marginD (h)
2

Vapnik showed there is a connection between the margin and VC dimension 

constant dependent on training data 
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The power of kernel functions 

•  kernels can be designed and used to represent complex data 
types such as 
•  strings 
•  trees 
•  graphs 
•  etc. 

•  let’s consider a specific example 
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The protein classification task 

Given: amino-acid sequence of a protein 
Do: predict the family to which it belongs 

GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVCVLAHHFGKEFTPPVQAAYAKVVAGVANALAHKYH 
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The k-spectrum feature map 

•  we can represent sequences by counts of all of their k-mers 

x = AKQDYYYYEI 

ϕ(x) =( 0 , 0 , … , 1 , … , 1 ,    …   , 2 ) 
      AAA AAC  …  AKQ  …  DYY     …    YYY   

•  the dimension of ϕ(x) = |A|k where |A| is the size of the alphabet 
•  using 6-mers for protein sequences, |20|6 = 64 million 
•  almost all of the elements in ϕ(x) are 0 since a sequence of 

length l has at most l-k+1 k-mers 

k = 3	
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The k-spectrum kernel 

•  consider the k-spectrum kernel applied to x and z with k = 3	


x = AKQDYYYYEI 

ϕ(x) =( 0 ,  … , 1 , … , 1 ,   …   , 0 ) 
      AAA   …  AKQ  …  YEI    …    YYY   

z = AKQIAKQYEI 

ϕ(x) � ϕ(z) = 2 + 1 = 3 

ϕ(z) =( 0 ,  … , 2 , … , 1 ,   …   , 0 ) 
      AAA   …  AKQ  …  YEI    …    YYY   
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(k, m)-mismatch feature map 

•  closely related protein sequences may have few exact matches, but 
many near matches 

•  the (k, m)-mismatch feature map uses the  k-spectrum representation, 
but allows up to m mismatches 

x = AKQ 

ϕ(x) =( 0, … , 1 , … , 1 , … , 1 ,    …   , 0 ) 
      AAA    AAQ  …  AKQ  …  DKQ     …    YYY   

k = 3, m = 1	
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Using a trie to represent 3-mers 
•  example: representing all 3-mers of the sequence QAAKKQAKKY 

A K Q 

2 1 1 1 1 1 1 

A K K Q A 

K K Q Y A A K 
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Computing the kernels efficiently  
with tries [Leslie et al., NIPS 2002] 

k-spectrum kernel 
•  for each sequence 

–  build a trie representing  its k-mers  
•  compute kernel ϕ(x) � ϕ(z) by traversing trie for x using k-mers from z	


–  update kernel function when reaching a leaf 

(k, m)-mismatch kernel 
•  for each sequence 

•  build a trie representing  its k-mers and also k-mers with at most m 
mismatches 

•  compute kernel ϕ(x) � ϕ(z) by traversing trie for x using k-mers from z	

–  update kernel function when reaching a leaf 

O km+1 A m x + z( )( )scales linearly with sequence length: 53 



Kernel algebra 
•  given a valid kernel, we can make new valid kernels using a variety 

of operators 

φ(x) = φa (x),  φb (x)( )k(x,v) = ka (x,v)+ kb (x,v)

k(x,v) = γ  ka (x,v),  γ > 0 φ(x) = γ  φa (x)

k(x,v) = ka (x,v)kb (x,v) φl (x) = φai (x)φbj (x)

k(x,v) = xTAv,   A is p.s.d. φ(x) = LTx,  where A = LLT  

k(x,v) = f (x) f (v)ka (x,v) φ(x) = f (x)φa (x)

kernel composition mapping composition 
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Comments on SVMs 

•  we can find solutions that are globally optimal (maximize the margin) 
•  because the learning task is framed as a convex optimization 

problem 
•  no local minima, in contrast to multi-layer neural nets 

•  there are two formulations of the optimization: primal and dual 
•  dual represents classifier decision in terms of support vectors 
•  dual enables the use of kernel functions 

•  we can use a wide range of optimization methods to learn SVM 
•  standard quadratic programming solvers 
•  SMO [Platt, 1999] 
•  linear programming solvers for some formulations 
•  etc. 
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Comments on SVMs 
•  kernels provide a powerful way to 

•  allow nonlinear decision boundaries 

•  represent/compare complex objects such as strings and trees 

•  incorporate domain knowledge into the learning task 

•  using the kernel trick, we can implicitly use high-dimensional mappings 
without explicitly computing them 

•  one SVM can represent only a binary classification task; multi-class 
problems handled using multiple SVMs and some encoding 

•  one class vs. rest 

•  ECOC 

•  etc. 

•  empirically, SVMs have shown state-of-the art accuracy for  many tasks 

•  the kernel idea can be extended to other tasks (anomaly detection, 
regression, etc.) 56 


